Skip to main content

Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates

  • Chapter
  • First Online:
Bioavailability of Organic Chemicals in Soil and Sediment

Abstract

Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources.

This chapter highlights how science has contributed with data from the last 5 years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    a.i. – active ingredient.

  2. 2.

    d.w. – dry weight.

References

  1. Morgado RG, Loureiro S, González-Alcaraz MN (2018) Changes in soil ecosystem structure and functions due to soil contamination BT – soil pollution: from monitoring to remediation. In: Soil pollution: from monitoring to remediation. Elsevier, Amsterdam, pp 59–87

    Google Scholar 

  2. Wall DH, Bardgett RD, Behan-Pelletier V et al (2012) Soil ecology and ecosystem services. OUP Oxford, Oxford, pp 1–421

    Google Scholar 

  3. Ockleford C, Adriaanse P, Berny P et al (2017) Scientific opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J 15:191

    Google Scholar 

  4. Franke C, Studinger G, Berger G et al (1994) The assessment of bioaccumulation. Chemosphere 29:1501–1514

    CAS  Google Scholar 

  5. van Gestel CAM, van Straalen NM (1994) Ecotoxicological test systems for terrestrial invertebrates BT – soil pollution: from monitoring to remediation. In: Donker MH, Eijsackers H, Heimbach F (eds) Soil pollution: from monitoring to remediation. CRC Press, Boca Raton, pp 206–228

    Google Scholar 

  6. Belfroid AC, Scinen W, van Gestel KCAM et al (1995) Modelling the accumulation of hydrophobic organic chemicals in earthworms – application of the equilibrium partitioning theory. Environ Sci Pollut Res 2:5–15

    CAS  Google Scholar 

  7. OECD (1984) Test No. 207: Earthworm, acute toxicity tests. In: Guidelines for the Testing of Chemicals, pp 1–9

    Google Scholar 

  8. Novo M, Muñiz-González AB, Trigo D et al (2019) Applying sunscreens on earthworms: molecular response of Eisenia fetida after direct contact with an organic UV filter. Sci Total Environ 676:97–104

    CAS  Google Scholar 

  9. Hopkin SP (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, Oxford

    Google Scholar 

  10. Ogungbemi AO, van Gestel CAM (2018) Extrapolation of imidacloprid toxicity between soils by exposing Folsomia candida in soil pore water. Ecotoxicology 27:1107–1115

    CAS  Google Scholar 

  11. Kampe S, Schlechtriem C (2016) Bioaccumulation of hexachlorobenzene in the terrestrial isopod Porcellio scaber. Environ Toxicol Chem 35:2867–2873

    CAS  Google Scholar 

  12. Wood CT, Zimmer M (2014) Can terrestrial isopods (Isopoda: Oniscidea) make use of biodegradable plastics? Appl Soil Ecol 77:72–79

    Google Scholar 

  13. Tourinho PS, Kočí V, Loureiro S, van Gestel CAM (2019) Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ Pollut 252:1246–1256

    CAS  Google Scholar 

  14. Wu Q, Tao H, Wong MH (2019) Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environ Geochem Health 41:17–26

    CAS  Google Scholar 

  15. van Gestel CAM, Loureiro S, Idar P (2018) Terrestrial isopods as model organisms in soil ecotoxicology: a review. Zookeys 801:127–162

    Google Scholar 

  16. Gillott C (2005) Entomology. 3rd edn. Springer, Dordrecht

    Google Scholar 

  17. Becker FD (1936) Some observations on respiration in the terrestrial isopod, Porcellio scaber Latreille. Trans Am Microsc Soc 55:442

    Google Scholar 

  18. Loureiro S, Tourinho PS, Cornelis G et al (2018) Nanomaterials as soil pollutants BT - soil pollution: from monitoring to remediation. In: Soil pollution: from monitoring to remediation. Academic Press, Cambridge, pp 161–190

    Google Scholar 

  19. Borgå K (2013) Ecotoxicology: bioaccumulation BT – reference module in earth systems and environmental sciences. In: Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  20. Borgå K (2008) Bioaccumulation BT – encyclopedia of ecology, five-volume set. In: Encyclopedia of ecology, five-volume set. Norsk institutt for vannforskning, Oslo, pp 346–348

    Google Scholar 

  21. Visser B, Willett DS, Harvey JA, Alborn HT (2017) Concurrence in the ability for lipid synthesis between life stages in insects. R Soc Open Sci 4:160815

    Google Scholar 

  22. Hendriks AJ (1995) Modeling response of species to microcontaminants: comparative ecotoxicology by (sub)lethal body burdens as a function of species size and partition ratio of chemicals. Ecotoxicol Environ Saf 32:103–130

    Google Scholar 

  23. Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36:4201–4217

    CAS  Google Scholar 

  24. di Toro DM, Zarba CS, Hansen DJ et al (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Google Scholar 

  25. Belfroid A, Sikkenk M, Seinen W et al (1994) The toxicokinetic behavior of chlorobenzenes in earthworm (Eisenia andrei) experiments in soil. Environ Toxicol Chem 13:93–99

    CAS  Google Scholar 

  26. Giesen D, van Gestel CAM (2013) QSAR development and bioavailability determination: the toxicity of chloroanilines to the soil dwelling springtail Folsomia candida. Chemosphere 90:2667–2673

    CAS  Google Scholar 

  27. Dubus IG, Brown CD, Beulke S (2003) Sources of uncertainty in pesticide fate modelling. Sci Total Environ 317:53–72

    CAS  Google Scholar 

  28. Eckel WP (2019) Novel calculator for estimation of Freundlich partitioning coefficient. Chemosphere 230:308–315

    CAS  Google Scholar 

  29. Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival – a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540

    CAS  Google Scholar 

  30. Ockleford C, Adriaanse P, Berny P et al (2018) Scientific opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA J 16:954

    Google Scholar 

  31. Jager T, Crommentuijn T, van Gestel CAM, Kooijman SALM (2007) Chronic exposure to chlorpyrifos reveals two modes of action in the springtail Folsomia candida. Environ Pollut 145:452–458

    CAS  Google Scholar 

  32. Robinson A, Hesketh H, Lahive E et al (2017) Comparing bee species responses to chemical mixtures: common response patterns? PLoS One 12:e0176289

    Google Scholar 

  33. Hesketh H, Lahive E, Horton AA et al (2016) Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling. Nat Publ Group 6:37655

    CAS  Google Scholar 

  34. Wang F, Ji R, Jiang Z, Chen W (2014) Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms. Environ Pollut 186:241–247

    CAS  Google Scholar 

  35. Tejada M, Gómez I, Franco-Andreu L, Benitez C (2016) Role of different earthworms in a soil polluted with oxyfluorfen herbicide. Short-time response on soil biochemical properties. Ecol Eng 86:39–44

    Google Scholar 

  36. Goto Y, Sudo M (2018) Uptake and elimination kinetics of trifluralin and pendimethalin in Pheretima spp. and Eisenia spp. Environ Sci Pollut Res Int 25:12352–12360

    CAS  Google Scholar 

  37. Jing X, Yao G, Liu D et al (2017) Enantioselective toxicity and degradation of chiral herbicide fenoxaprop-ethyl in earthworm Eisenia fetida. Ecol Indic 75:126–131

    CAS  Google Scholar 

  38. Li X, Zhu L, Du Z et al (2018) Mesotrione-induced oxidative stress and DNA damage in earthworms (Eisenia fetida). Ecol Indic 95:436–443

    CAS  Google Scholar 

  39. Baurand P-E, Capelli N, de Vaufleury A (2015) Genotoxicity assessment of pesticides on terrestrial snail embryos by analysis of random amplified polymorphic DNA profiles. J Hazard Mater 298:320–327

    CAS  Google Scholar 

  40. Hattab S, Boughattas I, Boussetta H et al (2015) Transcriptional expression levels and biochemical markers of oxidative stress in the earthworm Eisenia andrei after exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). Ecotoxicol Environ Saf 122:76–82

    CAS  Google Scholar 

  41. Uwizeyimana H, Wang M, Chen W (2017) Evaluation of combined noxious effects of siduron and cadmium on the earthworm Eisenia fetida. Environ Sci Pollut Res Int 24:5349–5359

    CAS  Google Scholar 

  42. de Mattos IM, Soares AEE, Tarpy DR (2018) Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. Ecotoxicology 27:32–44

    Google Scholar 

  43. Hackenberger DK, Stjepanović N, Lončarić Ž, Hackenberger BK (2018) Acute and subchronic effects of three herbicides on biomarkers and reproduction in earthworm Dendrobaena veneta. Chemosphere 208:722–730

    CAS  Google Scholar 

  44. Samal S, Mishra CSK, Sahoo S (2019) Setal-epidermal, muscular and enzymatic anomalies induced by certain agrochemicals in the earthworm Eudrilus eugeniae (Kinberg). Environ Sci Pollut Res Int 26:8039–8049

    CAS  Google Scholar 

  45. Salvio C, Menone ML, Rafael S et al (2016) Survival, reproduction, avoidance behavior and oxidative stress biomarkers in the earthworm Octolasion cyaneum exposed to glyphosate. Bull Environ Contam Toxicol 96:314–319

    CAS  Google Scholar 

  46. Tahir HM, Basheer T, Ali S et al (2019) Effect of pesticides on biological control potential of Neoscona theisi (Araneae: Araneidae). J Insect Sci 19:17

    Google Scholar 

  47. Faita MR, de Medeiros Oliveira M, Alves VV et al (2018) Changes in hypopharyngeal glands of nurse bees (Apis mellifera) induced by pollen-containing sublethal doses of the herbicide Roundup®. Chemosphere 211:566–572

    CAS  Google Scholar 

  48. Druart C, Gimbert F, Scheifler R, de Vaufleury A (2017) A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption. Environ Pollut 226:240–249

    CAS  Google Scholar 

  49. Velki M, Ečimović S (2015) Changes in exposure temperature lead to changes in pesticide toxicity to earthworms: a preliminary study. Environ Toxicol Pharmacol 40:774–784

    CAS  Google Scholar 

  50. Ma L, Liu H, Qu H et al (2016) Chiral quizalofop-ethyl and its metabolite quizalofop-acid in soils: enantioselective degradation, enzymes interaction and toxicity to Eisenia foetida. Chemosphere 152:173–180

    CAS  Google Scholar 

  51. Wang Y, Cang T, Yu R et al (2016) Joint acute toxicity of the herbicide butachlor and three insecticides to the terrestrial earthworm, Eisenia fetida. Environ Sci Pollut Res Int 23:11766–11776

    CAS  Google Scholar 

  52. Jovana M, Tanja M, Mirjana S (2014) Effects of three pesticides on the earthworm Eisenia fetida (Savigny 1826) under laboratory conditions: assessment of mortality, biomass and growth inhibition. Eur J Soil Biol 62:127–131

    CAS  Google Scholar 

  53. Yang G, Chen C, Wang Y et al (2017) Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxicol Environ Saf 142:29–39

    CAS  Google Scholar 

  54. García-Torres T, Giuffré L, Romaniuk R et al (2014) Exposure assessment to glyphosate of two species of annelids. Bull Environ Contam Toxicol 93:209–214

    Google Scholar 

  55. von Mérey G, Manson PS, Mehrsheikh A et al (2016) Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota. Environ Toxicol Chem 35:2742–2752

    Google Scholar 

  56. European Food Safety Authority (EFSA) (2015) Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J 13:4302

    Google Scholar 

  57. Domínguez A, Brown GG, Sautter KD et al (2016) Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Nat Publ Group 6:19731

    Google Scholar 

  58. Ogeleka DF, Onwuemene CJ, Okieimen FE (2017) Toxicity potential of Grassate® a non-selective herbicide on snails (Archachatina marginata) and earthworms (Aporrectodea longa). Chem Ecol 33:447–463

    CAS  Google Scholar 

  59. Stellin F, Gavinelli F, Stevanato P et al (2018) Effects of different concentrations of glyphosate (Roundup 360®) on earthworms (Octodrilus complanatus, Lumbricus terrestris and Aporrectodea caliginosa) in vineyards in the North-East of Italy. Appl Soil Ecol 123:802–808

    Google Scholar 

  60. Gomes SIL, Scott-Fordsmand JJ, Campos EVR et al (2019) On the safety of nanoformulations to non-target soil invertebrates – an atrazine case study. Environ Sci Nano 6:1950–1958

    CAS  Google Scholar 

  61. Zahuri SH, Khalik MZ (2014) Toxicity testing of three commonly used herbicides on soil- dwelling ant (Family: Formicidae – Odontomachus simillimus). Borneo J Resour Sci Technol 4:28–33

    Google Scholar 

  62. Zhu YC, Adamczyk J, Rinderer T et al (2015) Spray toxicity and risk potential of 42 commonly used formulations of row crop pesticides to adult honey bees (Hymenoptera: Apidae). J Econ Entomol 108:2640–2647

    CAS  Google Scholar 

  63. Hasan F, Ansari MS (2016) Ecotoxicological hazards of herbicides on biological attributes of Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). Chemosphere 154:398–407

    CAS  Google Scholar 

  64. Chakravorty PP, Haque A, Sanyal S, Dasgupta R (2015) Effect of herbicides on Cyphoderus javanus (Hexapoda: Collembola) under laboratory conditions. J Entomol Zool Stud 3:220–223

    Google Scholar 

  65. Bini B, Kumar MGS (2017) Effect of Herbicide (Glyphosate) upon the fecundity and moulting of a terrestrial isopod (Philoscia javanensis) under lab condition. Int J Pure Appl Res 4:27–33

    Google Scholar 

  66. Freydier L, Lundgren JG (2016) Unintended effects of the herbicides 2,4-D and dicamba on lady beetles. Ecotoxicology 25:1270–1277

    CAS  Google Scholar 

  67. Schmidt-Jeffris RA, Cutulle MA (2019) Non-target effects of herbicides on Tetranychus urticae and its predator, Phytoseiulus persimilis: implications for biological control. Pest Manag Sci 75:3226–3234

    CAS  Google Scholar 

  68. Niedobová J, Skalský M, Ouředníčková J et al (2019) Synergistic effects of glyphosate formulation herbicide and tank-mixing adjuvants on Pardosa spiders. Environ Pollut 249:338–344

    Google Scholar 

  69. Vázquez DE, Ilina N, Pagano EA et al (2018) Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One 13:e0205074

    Google Scholar 

  70. Heard MS, Baas J, Dorne J-L et al (2017) Comparative toxicity of pesticides and environmental contaminants in bees: are honey bees a useful proxy for wild bee species? Sci Total Environ 578:357–365

    CAS  Google Scholar 

  71. Saska P, Skuhrovec J, Lukáš J et al (2017) Treating prey with glyphosate does not alter the demographic parameters and predation of the Harmonia axyridis (Coleoptera: Coccinellidae). J Econ Entomol 110:392–399

    CAS  Google Scholar 

  72. Simões T, Novais SC, Natal-da-Luz T et al (2019) Fate and effects of two pesticide formulations in the invertebrate Folsomia candida using a natural agricultural soil. Sci Total Environ 675:90–97

    Google Scholar 

  73. Chelinho S, Domene X, Campana P et al (2014) Toxicity of phenmedipham and carbendazim to Enchytraeus crypticus and Eisenia andrei (Oligochaeta) in Mediterranean soils. J Soils Sediments 14:584–599

    CAS  Google Scholar 

  74. de Santo FB, Ramos GA, Ricardo Filho AM et al (2018) Screening effects of metsulfuron-methyl to collembolans and earthworms: the role of adjuvant addition on ecotoxicity. Environ Sci Pollut Res Int 25:24143–24149

    Google Scholar 

  75. Milanovic J, Milutinovic T, Stojanovic M (2014) Effects of three pesticides on the earthworm Eisenia fetida (Savigny 1826) under laboratory conditions: assessment of mortality, biomass and growth inhibition. Eur J Soil Biol 62:127–131

    Google Scholar 

  76. Godfrey JA, Rypstra AL (2019) Atrazine exposure shifts activity but has minimal effects on courtship in an agrobiont spider. Ecotoxicology 28:499–506

    CAS  Google Scholar 

  77. Niemeyer JC, de Santo FB, Guerra N et al (2018) Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment. Chemosphere 198:154–160

    CAS  Google Scholar 

  78. Sanogo S, Kabre TJA, Cecchi P (2014) Acute toxicity tests of two herbicides diuron and atrazine on the beetle Crenitis sp in Volta Basin, Burkina Faso. Int Res J Publ Environ Health 1:110–120

    Google Scholar 

  79. Behrend JE, Rypstra AL (2018) Contact with a glyphosate-based herbicide has long-term effects on the activity and foraging of an agrobiont wolf spider. Chemosphere 194:714–721

    CAS  Google Scholar 

  80. Migdał P, Roman A, Popiela-Pleban E et al (2018) The impact of selected pesticides on honey bees. Pol J Environ Stud 27:787–792

    Google Scholar 

  81. Herbert LT, Vázquez DE, Arenas A, Farina WM (2014) Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol 217:3457–3464

    Google Scholar 

  82. Qu H, Wang P, Ma R et al (2014) Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia foetida). Sci Total Environ 485–486:415–420

    Google Scholar 

  83. Chang J, Wang Y, Wang H et al (2016) Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm. Chemosphere 144:1351–1357

    CAS  Google Scholar 

  84. Ye X, Xiong K, Liu J (2016) Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida. J Hazard Mater 310:82–88

    CAS  Google Scholar 

  85. Liu T, Zhang X, Wang X et al (2018) Comparative toxicity and bioaccumulation of two dinotefuran metabolites, UF and DN, in earthworms (Eisenia fetida). Environ Pollut 234:988–996

    CAS  Google Scholar 

  86. Svobodová M, Šmídová K, Hvězdová M, Hofman J (2018) Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils. Environ Pollut 236:257–264

    Google Scholar 

  87. Muangphra P, Sengsai S, Gooneratne R (2015) Earthworm biomarker responses on exposure to commercial cypermethrin. Environ Toxicol 30:597–606

    CAS  Google Scholar 

  88. Wang J, Wang J, Wang G et al (2016) DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere 144:510–517

    CAS  Google Scholar 

  89. Liu T, Wang X, Xu J et al (2017) Biochemical and genetic toxicity of dinotefuran on earthworms (Eisenia fetida). Chemosphere 176:156–164

    CAS  Google Scholar 

  90. Zhang Q, Zhang G, Yin P et al (2015) Toxicological effects of soil contaminated with spirotetramat to the earthworm Eisenia fetida. Chemosphere 139:138–145

    CAS  Google Scholar 

  91. Wang K, Mu X, Qi S et al (2015) Toxicity of a neonicotinoid insecticide, guadipyr, in earthworm (Eisenia fetida). Ecotoxicol Environ Saf 114:17–22

    CAS  Google Scholar 

  92. Cardoso DN, Silva ARR, Cruz A et al (2017) The comet assay in Folsomia candida: a suitable approach to assess genotoxicity in collembolans. Environ Toxicol Chem 36:2514–2520

    Google Scholar 

  93. Lee Y-S, Lee S-E, Son J et al (2018) Toxicity effects and biomarkers of tebufenozide exposure in Yuukianura szeptyckii (Collembola: Neanuridae). Environ Geochem Health 40:2773–2784

    CAS  Google Scholar 

  94. Christen V, Schirrmann M, Frey JE, Fent K (2018) Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honey bees (Apis mellifera). Environ Sci Technol 52:7534–7544

    CAS  Google Scholar 

  95. Wang K, Pang S, Mu X et al (2015) Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere 132:120–126

    CAS  Google Scholar 

  96. Velki M, Hackenberger BK, Lončarić Ž, Hackenberger DK (2014) Application of microcosmic system for assessment of insecticide effects on biomarker responses in ecologically different earthworm species. Ecotoxicol Environ Saf 104:110–119

    CAS  Google Scholar 

  97. Andrade-Herrera M, Escalona-Segura G, González-Jáuregui M et al (2019) Presence of pesticides and toxicity assessment of agricultural soils in the Quintana Roo Mayan zone, Mexico using biomarkers in earthworms (Eisenia fetida). Water Air Soil Pollut 230:121

    Google Scholar 

  98. Ferreira NGC, Morgado R, Santos MJG et al (2015) Biomarkers and energy reserves in the isopod Porcellionides pruinosus: the effects of long-term exposure to dimethoate. Sci Total Environ 502:91–102

    Google Scholar 

  99. Leomanni A, Schettino T, Calisi A et al (2015) Antioxidant and oxidative stress related responses in the Mediterranean land snail Cantareus apertus exposed to the carbamate pesticide Carbaryl. Comp Biochem Physiol C 168:20–27

    CAS  Google Scholar 

  100. Balieira KVB, Mazzo M, Bizerra PFV et al (2018) Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie 49:562–572

    CAS  Google Scholar 

  101. Zhu YC, Yao JX, Adamczyk J (2019) Long-term risk assessment on noneffective and effective toxic doses of imidacloprid to honeybee workers. J Appl Entomol 143:118–128

    CAS  Google Scholar 

  102. Saxena PN, Gupta SK, Murthy RC (2014) Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida – a possible mechanism. Ecotoxicol Environ Saf 100:218–225

    CAS  Google Scholar 

  103. Alves PRL, Cardoso EJBN, Martines AM et al (2014) Seed dressing pesticides on springtails in two ecotoxicological laboratory tests. Ecotoxicol Environ Saf 105:65–71

    CAS  Google Scholar 

  104. Lavtižar V, Berggren K, Trebse P et al (2016) Comparative ecotoxicity of chlorantraniliprole to non-target soil invertebrates. Chemosphere 159:473–479

    Google Scholar 

  105. e Silva CDL, Brennan N, Brouwer JM et al (2017) Comparative toxicity of imidacloprid and thiacloprid to different species of soil invertebrates. Ecotoxicology 26:1–10

    Google Scholar 

  106. Leitão S, Cerejeira MJ, van den Brink PJ, Sousa JP (2014) Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol 76:124–131

    Google Scholar 

  107. Salvio C, Manetti PL, Clemente NL, López AN (2015) Efectos de clorpirifos, cipermetrina y glifosato sobre Milax gagates (Mollusca: Pulmonata) y Armadillidium vulgare (Crustacea: Isopoda). Ciênc Agron 26:43–46

    Google Scholar 

  108. Liu H, Yi X, Bi J et al (2019) The enantioselective environmental behavior and toxicological effects of pyriproxyfen in soil. J Hazard Mater 365:97–106

    CAS  Google Scholar 

  109. Leitão S, Moreira-Santos M, van den Brink PJ et al (2014) Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios. Ecotoxicol Environ Saf 103:36–44

    Google Scholar 

  110. van Gestel CAM, de Lima e Silva C, Lam T et al (2017) Multigeneration toxicity of imidacloprid and thiacloprid to Folsomia candida. Ecotoxicology 26:1–9

    Google Scholar 

  111. Szabó B, Bakonyi G (2017) Multigenerational and transgenerational side-effects of an insecticide on eggs of Folsomia candida (Collembola). Pol J Ecol 65:110–121

    Google Scholar 

  112. Bori J, Ribalta C, Domene X et al (2015) Environmental impacts of an imidacloprid-containing formulation: from soils to waters. Afinidad 571:169–176

    Google Scholar 

  113. Mesnage R, Antoniou MN (2018) Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front Public Health 5:361

    Google Scholar 

  114. Yu CH, Lin RH, Fu MR et al (2014) Impact of imidacloprid on life-cycle development of Coccinella septempunctata in laboratory microcosms. Ecotoxicol Environ Saf 110:168–173

    CAS  Google Scholar 

  115. Owojori OJ, Waszak K, Roembke J (2014) Avoidance and reproduction tests with the predatory mite Hypoaspis aculeifer: effects of different chemical substances. Environ Toxicol Chem 33:230–237

    CAS  Google Scholar 

  116. Williams GR, Troxler A, Retschnig G et al (2015) Neonicotinoid pesticides severely affect honey bee queens. Nat Publ Group 5:14621

    CAS  Google Scholar 

  117. Byrne FJ, Visscher PK, Leimkuehler B et al (2014) Determination of exposure levels of honey bees foraging on flowers of mature citrus trees previously treated with imidacloprid. Pest Manag Sci 70:470–482

    CAS  Google Scholar 

  118. Overmyer J, Feken M, Ruddle N et al (2017) Thiamethoxam honey bee colony feeding study: linking effects at the level of the individual to those at the colony level. Environ Toxicol Chem 37:816–828

    Google Scholar 

  119. Wang L, Zeng L, Chen J (2015) Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) feeding, digging, and foraging behavior. Environ Entomol 44:1544–1552

    Google Scholar 

  120. Skouras PJ, Stathas GJ, Voudouris CC et al (2017) Effect of synthetic insecticides on the larvae of Coccinella septempunctata from Greek populations. Phytoparasitica 45:165–173

    CAS  Google Scholar 

  121. Bredeson MM, Reese RN, Lundgren JG (2015) The effects of insecticide dose and herbivore density on tri-trophic effects of thiamethoxam in a system involving wheat, aphids, and ladybeetles. Crop Prot 69:70–76

    CAS  Google Scholar 

  122. Li M, Xu G, Yu R et al (2019) Bioaccumulation and toxicity of pentachloronitrobenzene to earthworm (Eisenia fetida). Ecotoxicol Environ Saf 174:429–434

    CAS  Google Scholar 

  123. Qin F, Gao Y, Guo B et al (2014) Enantioselective acute toxicity effects and bioaccumulation of furalaxyl in the earthworm (Eisenia foetida). Chirality 26:307–312

    CAS  Google Scholar 

  124. Li M, Wang S, Lang Z et al (2019) Combination of chemical and toxicological methods to assess bioavailability of Tolclofos-methyl by earthworms. Chemosphere 233:183–189

    CAS  Google Scholar 

  125. Huan Z, Luo J, Xu Z, Xie D (2016) Acute toxicity and genotoxicity of carbendazim, main impurities and metabolite to earthworms (Eisenia foetida). Bull Environ Contam Toxicol 96:62–69

    CAS  Google Scholar 

  126. Simões T, Novais SC, Natal-da-Luz T et al (2019) Using time-lapse omics correlations to integrate toxicological pathways of a formulated fungicide in a soil invertebrate. Environ Pollut 246:845–854

    Google Scholar 

  127. Qiao M, Wang GP, Zhang C et al (2015) Transcriptional profiling of the soil invertebrate Folsomia candida in pentachlorophenol-contaminated soil. Environ Toxicol Chem 34:1362–1368

    CAS  Google Scholar 

  128. Christen V, Krebs J, Fent K (2019) Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees (Apis mellifera) at sublethal concentrations. J Hazard Mater 377:215–226

    CAS  Google Scholar 

  129. Wang C, Zhang Q, Wang F, Liang W (2017) Toxicological effects of dimethomorph on soil enzymatic activity and soil earthworm (Eisenia fetida). Chemosphere 169:316–323

    CAS  Google Scholar 

  130. Rico A, Sabater C, Castillo M-Á (2016) Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicol Environ Saf 127:222–229

    CAS  Google Scholar 

  131. Morgado RG, Gomes PAD, Ferreira NGC et al (2016) Toxicity interaction between chlorpyrifos, mancozeb and soil moisture to the terrestrial isopod Porcellionides pruinosus. Chemosphere 144:1845–1853

    CAS  Google Scholar 

  132. Liu K, Pan X, Han Y et al (2012) Estimating the toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) using in situ pore water concentrations in different soils. Sci Total Environ 438:26–32

    CAS  Google Scholar 

  133. Yu Y, Li X, Yang G et al (2019) Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida). Chemosphere 227:489–495

    CAS  Google Scholar 

  134. de Menezes Oliveira VB, de Oliveira BM, Espíndola ELG (2018) Hazard assessment of the pesticides KRAFT 36 EC and SCORE in a tropical natural soil using an ecotoxicological test battery. Environ Toxicol Chem 37:2919–2924

    Google Scholar 

  135. Bart S, Barraud A, Amossé J et al (2019) Effects of two common fungicides on the reproduction of Aporrectodea caliginosa in natural soil. Ecotoxicol Environ Saf 181:518–524

    CAS  Google Scholar 

  136. Guimarães B, Maria VL, Römbke J, Amorim MJB (2019) Multigenerational exposure of Folsomia candida to ivermectin – using avoidance, survival, reproduction, size and cellular markers as endpoints. Geoderma 337:273–279

    Google Scholar 

  137. Anyanwu IN, Clifford OI, Semple KT (2017) Effects of single, binary and quinary mixtures of phenanthrene and its N-PAHs on Eisenia fetida in soil. Water Air Soil Pollut 228:1–10

    CAS  Google Scholar 

  138. Heneberg P, Bogusch P, Astapenková A (2019) The effects of contact exposure to azole fungicides on insect metamorphosis. Crop Prot 121:66–72

    CAS  Google Scholar 

  139. Zhu W, Schmehl DR, Mullin CA, Frazier JL (2014) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS One 9:e77547

    Google Scholar 

  140. Yoder JA, Jajack AJ, Rosselot AE et al (2013) Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J Toxicol Environ Health Part A 76:587–600

    CAS  Google Scholar 

  141. Schnug L, Jensen J, Scott-Fordsmand JJ, Leinaas HP (2014) Toxicity of three biocides to springtails and earthworms in a soil multi-species (SMS) test system. Soil Biol Biochem 74:115–126

    CAS  Google Scholar 

  142. McDonnell R, Ju Y, Kenna P et al (2016) Can essential oils be used as novel drench treatments for the eggs and juveniles of the pest snail Cornu aspersum in potted plants ? J Pest Sci 89:549–555

    Google Scholar 

  143. Bieri M (2003) The environmental profile of metaldehyde. In: World Agriculture British Crop Protection BCPC symposium proceedings, vol 80. pp 255–260

    Google Scholar 

  144. Dörler D, Scheucher A, Zaller JG (2019) Efficacy of chemical and biological slug control measures in response to watering and earthworms. Nat Publ Group 9:2954

    Google Scholar 

  145. Cardoso DN, Santos MJG, Soares AMVM, Loureiro S (2015) Molluscicide baits impair the life traits of Folsomia candida (Collembola): possible hazard to the population level and soil function. Chemosphere 132:1–7

    CAS  Google Scholar 

  146. Carter LJ, Garman CD, Ryan J et al (2014) Fate and uptake of pharmaceuticals in soil-earthworm systems. Environ Sci Technol 48:5955–5963

    CAS  Google Scholar 

  147. Carter LJ, Ryan JJ, Boxall ABA (2016) Does uptake of pharmaceuticals vary across earthworm species? Bull Environ Contam Toxicol 97:316–322

    CAS  Google Scholar 

  148. Gao Y, Sun X, Gu X, Sun Z (2013) Gene expression responses in different regions of Eisenia fetida with antiparasitic albendazole exposure. Ecotoxicol Environ Saf 89:239–244

    CAS  Google Scholar 

  149. Chen G, den Braver MW, van Gestel CAM et al (2015) Ecotoxicogenomic assessment of diclofenac toxicity in soil. Environ Pollut 199:253–260

    CAS  Google Scholar 

  150. Oliveira M, Cardoso DN, Soares AMVM, Loureiro S (2015) Effects of short-term exposure to fluoxetine and carbamazepine to the collembolan Folsomia candida. Chemosphere 120:86–91

    CAS  Google Scholar 

  151. Oliveira M, Cardoso DN, Soares AMVM, Loureiro S (2018) Toxic effects of human pharmaceuticals to Folsomia candida – a multigeneration approach. Sci Total Environ 625:1225–1233

    CAS  Google Scholar 

  152. Pino MR, Val J, Mainar AM et al (2015) Acute toxicological effects on the earthworm Eisenia fetida of 18 common pharmaceuticals in artificial soil. Sci Total Environ 518–519:225–237

    Google Scholar 

  153. Zortéa T, Segat JC, Maccari AP et al (2017) Toxicity of four veterinary pharmaceuticals on the survival and reproduction of Folsomia candida in tropical soils. Chemosphere 173:460–465

    Google Scholar 

  154. Alves PRL, Bandeira FO, Giraldi M et al (2019) Ecotoxicological assessment of Fluazuron: effects on Folsomia candida and Eisenia andrei. Environ Sci Pollut Res 26:5842–5850

    CAS  Google Scholar 

  155. Menezes-Oliveira V, Loureiro S, Amorim MJB et al (2018) Hazard assessment of the veterinary pharmaceuticals monensin and nicarbazin using a soil test battery. Environ Toxicol Chem 37:3145–3153

    CAS  Google Scholar 

  156. Jager T, Sanchez FAA, Muijs B et al (2000) Toxicokinetics of polycyclic aromatic hydrocarbons in Eisenia andrei (Oligochaeta) using spiked soil. Environ Toxicol Chem 19:953–961

    CAS  Google Scholar 

  157. Jager T, Fleuren RHLJ, Hogendoorn EA, de Korte G (2003) Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol 37:3399–3404

    CAS  Google Scholar 

  158. Šmídová K, Hofman J (2014) Uptake kinetics of five hydrophobic organic pollutants in the earthworm Eisenia fetida in six different soils. J Hazard Mater 267:175–182

    Google Scholar 

  159. Zhi-Ming S, Li X, Feng H (2014) A hierarchic method for studying the distribution of phenanthrene in Eisenia fetida. Pedosphere 24:743–752

    Google Scholar 

  160. Zhang L, He N, Chang D et al (2018) Does ecotype matter? The influence of ecophysiology on benzo[a]pyrene and cadmium accumulation and distribution in earthworms. Soil Biol Biochem 121:24–34

    CAS  Google Scholar 

  161. Rorat A, Wloka D, Grobelak A et al (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manag 187:347–353

    CAS  Google Scholar 

  162. Malev O, Contin M, Licen S et al (2016) Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils. Environ Sci Pollut Res 23:3491–3502

    CAS  Google Scholar 

  163. Prodana M, Silva C, Gravato C et al (2019) Influence of biochar particle size on biota responses. Ecotoxicol Environ Saf 174:120–128

    CAS  Google Scholar 

  164. Duan X, Xu L, Song J et al (2015) Effects of benzo[ a]pyrene on growth, the antioxidant system, and DNA damage in earthworms (Eisenia fetida) in 2 different soil types under laboratory conditions. Environ Toxicol Chem 34:283–290

    CAS  Google Scholar 

  165. Sforzini S, Moore MN, Boeri M et al (2015) Effects of PAHs and dioxins on the earthworm Eisenia andrei: a multivariate approach for biomarker interpretation. Environ Pollut 196:60–71

    CAS  Google Scholar 

  166. Vasseur P, Bonnard M (2014) Ecogenotoxicology in earthworms: a review. Curr Zool 60:255–272

    CAS  Google Scholar 

  167. Soroldoni S, Silva G, Correia FV, Marques M (2019) Spent lubricant oil-contaminated soil toxicity to Eisenia andrei before and after bioremediation. Ecotoxicology 28:1–10

    Google Scholar 

  168. Ye X, Ma J, Wei J et al (2019) Comparison of the bioavailability of benzo[a]pyrene (B[a]p) in a B[a] p-contaminated soil using the different addition approaches. Nat Publ Group 9:1–9

    Google Scholar 

  169. Nam T-H, Kim L, Jeon H-J et al (2017) Biomarkers indicate mixture toxicities of fluorene and phenanthrene with endosulfan toward earthworm (Eisenia fetida). Environ Geochem Health 39:307–317

    CAS  Google Scholar 

  170. Roelofs D, Bicho RC, de Boer TE et al (2016) Mechanisms of phenanthrene toxicity in the soil invertebrate, Enchytraeus crypticus. Environ Toxicol Chem 35:2713–2720

    CAS  Google Scholar 

  171. Holmstrup M, Slotsbo S, Schmidt SN et al (2014) Physiological and molecular responses of springtails exposed to phenanthrene and drought. Environ Pollut 184:370–376

    CAS  Google Scholar 

  172. Anyanwu IN, Semple KT (2016) Effects of phenanthrene and its nitrogen-heterocyclic analogues aged in soil on the earthworm Eisenia fetida. Appl Soil Ecol 105:151–159

    Google Scholar 

  173. Gainer A, Akre R, Owojori OJ, Siciliano SD (2019) Protecting vulnerable individuals in a population: is the avoidance response of juvenile soil invertebrates more sensitive than the adults response? Chemosphere 220:658–667

    CAS  Google Scholar 

  174. Tourinho PS, Waalewijn-Kool PL, Zantkuijl I et al (2015) CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida. Ecotoxicol Environ Saf 113:201–206

    CAS  Google Scholar 

  175. Anyanwu IN, Semple KT (2015) Fate and behaviour of nitrogen-containing polycyclic aromatic hydrocarbons in soil. Environ Technol Innov 3:108–120

    Google Scholar 

  176. Fajana HO, Gainer A, Jegede OO et al (2019) Oppia nitens C.L. Koch, 1836 (Acari: Oribatida): current status of its bionomics and relevance as a model invertebrate in soil ecotoxicology. Environ Toxicol Chem 38:2593–2613

    CAS  Google Scholar 

  177. Gainer A, Cousins M, Hogan N, Siciliano SD (2018) Petroleum hydrocarbon mixture toxicity and a trait-based approach to soil invertebrate species for site-specific risk assessments. Environ Toxicol Chem 37:2222–2234

    CAS  Google Scholar 

  178. Paumen ML, de Voogt P, van Gestel CAM, Kraak MHS (2009) Comparative chronic toxicity of homo- and heterocyclic aromatic compounds to benthic and terrestrial invertebrates: generalizations and exceptions. Sci Total Environ 407:4605–4609

    Google Scholar 

  179. Gainer A, Hogan N, Siciliano SD (2019) Soil invertebrate avoidance behavior identifies petroleum hydrocarbon contaminated soils toxic to sensitive plant species. J Hazard Mater 361:338–347

    CAS  Google Scholar 

  180. Šmídová K, Šerá J, Bielská L, Hofman J (2015) Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia andrei. Environ Pollut 207:168–175

    Google Scholar 

  181. He Z, Xu Y, Wang W, Liu X (2018) Stereoselective bioaccumulation and elimination of chiral PCBs 95 and 149 in earthworm Eisenia fetida. Chemosphere 212:497–503

    CAS  Google Scholar 

  182. He Z, Wang Y, Zhang Y et al (2018) Stereoselective bioaccumulation of chiral PCB 91 in earthworm and its metabolomic and lipidomic responses. Environ Pollut 238:421–430

    CAS  Google Scholar 

  183. Silvani L, Hjartardottir S, Bielská L et al (2019) Can polyethylene passive samplers predict polychlorinated biphenyls (PCBs) uptake by earthworms and turnips in a biochar amended soil? Sci Total Environ 662:873–880

    CAS  Google Scholar 

  184. Wang Y, Wang L, Wang Y-J et al (2015) Measuring the bioavailability of polychlorinated biphenyls to earthworms in soil enriched with biochar or activated carbon using triolein-embedded cellulose acetate membrane. J Soils Sediments 16:527–536

    Google Scholar 

  185. Ville P, Roch P, Cooper EL et al (1995) PCBs increase molecular-related activities (lysozyme, antibacterial, hemolysis, proteases) but inhibit macrophage-related functions (phagocytosis, wound-healing) in earthworms. J Invertebr Pathol 65:217–224

    CAS  Google Scholar 

  186. Duan X, Fu X, Song J et al (2017) Physiological and molecular responses of the earthworm Eisenia fetida to polychlorinated biphenyl contamination in soil. Environ Sci Pollut Res 24:1–10

    Google Scholar 

  187. Shen DS, Tao XQ, Shen CC et al (2014) Antioxidant defense enzymes response following polychlorinated biphenyls exposure to Eisenia fetida in actual polluted soil. Adv Mater Res 1010–1012:142–146

    Google Scholar 

  188. Navarro I, de la Torre A, Sanz P et al (2016) Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils. Environ Res 149:32–39

    CAS  Google Scholar 

  189. Huang L, Wang W, Zhang S et al (2017) Bioaccumulation and bound-residue formation of 14C-decabromodiphenyl ether in an earthworm-soil system. J Hazard Mater 321:591–599

    CAS  Google Scholar 

  190. Wang L, Huang X, Laserna AKC, Li SFY (2018) Metabolism of tri-n-butyl phosphate in earthworm Perionyx excavatus. Environ Pollut 234:389–395

    CAS  Google Scholar 

  191. Liang R, Chen J, Shi Y et al (2018) Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point. Environ Pollut 240:653–660

    CAS  Google Scholar 

  192. Shi Y, Xu X, Zheng X, Lu Y (2015) Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether. Comp Biochem Physiol Part C 174–175:32–38

    Google Scholar 

  193. Yang Y, Ji F, Cui Y, Li M (2016) Ecotoxicological effects of earthworm following long-term Dechlorane Plus exposure. Chemosphere 144:2476–2481

    CAS  Google Scholar 

  194. Chen X, Gu J, Wang Y et al (2017) Fate and O-methylating detoxification of Tetrabromobisphenol A (TBBPA) in two earthworms (Metaphire guillelmi and Eisenia fetida). Environ Pollut 227:526–533

    CAS  Google Scholar 

  195. Rothenbacher KP, Pecquet AM (2018) Summary of historical terrestrial toxicity data for the brominated flame retardant tetrabromobisphenol A (TBBPA): effects on soil microorganisms, earthworms, and seedling emergence. Environ Sci Pollut Res 25:1–10

    Google Scholar 

  196. Chevillot F, Guyot M, Desrosiers M et al (2018) Accumulation and sublethal effects of triclosan and its transformation product methyl-triclosan in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil. Environ Toxicol Chem 37:1940–1948

    CAS  Google Scholar 

  197. Macherius A, Lapen DR, Reemtsma T et al (2014) Triclocarban, triclosan and its transformation product methyl triclosan in native earthworm species four years after a commercial-scale biosolids application. Sci Total Environ 472:235–238

    CAS  Google Scholar 

  198. Havranek I, Coutris C, Norli HR et al (2017) Uptake and elimination kinetics of the biocide triclosan and the synthetic musks galaxolide and tonalide in the earthworm Dendrobaena veneta when exposed to sewage sludge. Environ Toxicol Chem 36:2068–2073

    CAS  Google Scholar 

  199. Rivier P-A, Havranek I, Coutris C et al (2019) Transfer of organic pollutants from sewage sludge to earthworms and barley under field conditions. Chemosphere 222:954–960

    CAS  Google Scholar 

  200. Lin D, Li Y, Zhou Q et al (2014) Effect of triclosan on reproduction, DNA damage and heat shock protein gene expression of the earthworm Eisenia fetida. Ecotoxicology 23:1826–1832

    CAS  Google Scholar 

  201. Ma L, Xie Y, Han Z et al (2017) Responses of earthworms and microbial communities in their guts to Triclosan. Chemosphere 168:1194–1202

    CAS  Google Scholar 

  202. Wang X, Liu Z, Wang W et al (2014) Assessment of toxic effects of triclosan on the terrestrial snail (Achatina fulica). Chemosphere 108:225–230

    CAS  Google Scholar 

  203. Schnug L, Leinaas HP, Jensen J (2014) Synergistic sub-lethal effects of a biocide mixture on the springtail Folsomia fimetaria. Environ Pollut 186:158–164

    CAS  Google Scholar 

  204. van Gestel CAM (2011) Mixture toxicity: linking approaches from ecological and human toxicology. CRC Press, Boca Raton

    Google Scholar 

  205. Morgado RG, Ferreira NGC, Cardoso DN et al (2018) Joint effects of chlorpyrifos and mancozeb on the terrestrial isopod Porcellionides pruinosus: a multiple biomarker approach. Environ Toxicol Chem 37:1446–1457

    CAS  Google Scholar 

  206. de Santo FB, Guerra N, Vianna MS et al (2019) Laboratory and field tests for risk assessment of metsulfuron-methyl-based herbicides for soil fauna. Chemosphere 222:645–655

    Google Scholar 

  207. Chevillot F, Convert Y, Desrosiers M et al (2017) Selective bioaccumulation of neonicotinoids and sub-lethal effects in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil. Chemosphere 186:839–847

    CAS  Google Scholar 

  208. Bednarska AJ, Choczyński M, Laskowski R, Walczak M (2017) Combined effects of chlorpyriphos, copper and temperature on acetylcholinesterase activity and toxicokinetics of the chemicals in the earthworm Eisenia fetida. Environ Pollut 220:567–576

    CAS  Google Scholar 

  209. EFSA (2015) Risk profile related to production and consumption of insects as food and feed. EFSA J 13:4257

    Google Scholar 

  210. van Huis A, van Itterbeeck J, Klunder H et al (2013) Future prospects for food and feed security. FAO Forestry Paper 171. Food and Agriculture Organization of the United Nation, Rome, pp 1–190. Available from http://www.fao.org/3/i3253e/i3253e.pdf Accessed 5 April 2020

  211. Charlton AJ, Dickinson M, Wakefield ME et al (2015) Exploring the chemical safety of fly larvae as a source of protein for animal feed. J Insect Food Feed 1:7–16

    Google Scholar 

  212. Houbraken M, Spranghers T, De Clercq P et al (2016) Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chem 201:264–269

    CAS  Google Scholar 

  213. Lalander C, Senecal J, Gros Calvo M et al (2016) Fate of pharmaceuticals and pesticides in fly larvae composting. Sci Total Environ 565:279–286

    CAS  Google Scholar 

  214. Roeder KA, Kuriachan I, Vinson SB, Behmer ST (2010) Evaluation of a microbial inhibitor in artificial diets of a generalist caterpillar, Heliothis virescens. J Insect Sci 10:1–12

    Google Scholar 

  215. Gao Y, Chen J, Wang H et al (2013) Enantiomerization and enantioselective bioaccumulation of benalaxyl in Tenebrio molitor larvae from wheat bran. J Agric Food Chem 61:9045–9051

    Google Scholar 

  216. Lv X, Liu C, Li Y et al (2014) Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae. Ecotoxicol Environ Saf 107:71–76

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding to the ECOCENE (POCI-01-0145-FEDER-032471) and METOXCLIM (POCI-01-0145-FEDER-029557) projects funded by FEDER, through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES, and to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020) through national funds. Rui Morgado was granted by FCT with a postdoctoral grant (SFRH/BPD/123384/2016). Catarina Malheiro was granted by the Doctoral Programme in Biology and Ecology of Global Change of the University of Aveiro with a Ph.D. grant from FCT (PD/BD/135577/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Loureiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Alcaraz, M.N. et al. (2020). Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates. In: Ortega-Calvo, J.J., Parsons, J.R. (eds) Bioavailability of Organic Chemicals in Soil and Sediment. The Handbook of Environmental Chemistry, vol 100. Springer, Cham. https://doi.org/10.1007/698_2020_511

Download citation

Publish with us

Policies and ethics