Skip to main content

Biodegradation of Plastics in Tenebrio Genus (Mealworms)

  • Chapter
  • First Online:
Microplastics in Terrestrial Environments

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 95))

Abstract

Most petroleum-based plastics are resistant to biodegradation in the environment. Observation of damage, penetration, and ingestion of plastics by insects and their larvae lead to research on biodegradation of plastics by insects. The larvae of darkling beetles (Coleoptera: Tenebrionidae), especially Tenebrio molitor and Tenebrio obscurus larvae, showed the capacity of rapid gut microbe-dependent degradation of polystyrene (PS). T. molitor larvae also degrade low-density polyethylene (LDPE). The biodegradation was evaluated on the basis of plastic mass balance, modification of ingested polymers, formation of biodegraded intermediates, as well as 13C isotopic tracer tests. Ingested PS or LDPE polymer can be depolymerized by up 60–70% within 12–24 h after 1- or 2-week adaption. Ingested PS or PE supports the larvae with energy for life activities but not growth. Co-feeding normal diet (e.g., bran) enhances PS and PE consumption rate significantly. Gut microbial communities shifted after the larvae were fed with PS or PE. A few plastic-degrading gut bacterial strains have been isolated from gut of T. molitor, but they grow on plastics slowly. The rapid biodegradation of PS and PE is likely a result of synergistic effects of intestinal microbial activities and host digestive system, and further research is needed to understand the mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29(10):2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004

    Article  CAS  Google Scholar 

  2. Plastics Europe. Plastics-the-facts-2018. http://staging-plasticseurope.idloom.com/index.php?cID=179

  3. USEPA (2002) Municipal solid waste in the United States: 2000 facts and figures. Executive summary. Office of solid waste management and emergency response (5305W), EPA530-S-02-001, June. Available at: www.epa.gov

  4. USEPA (2008) Municipal solid waste in the United States: 2007 facts and figures. Executive summary. Office of solid waste management and emergency response (5306P), EPA530-R-08-010, November. Available at: www.epa.gov

  5. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, Takada H, Teh S, Thompson RC (2013) Policy: classify plastic waste as hazardous. Nature 494(7436):169–171. https://doi.org/10.1038/494169a

    Article  CAS  Google Scholar 

  6. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771. https://doi.org/10.1126/science.1260352

    Article  CAS  Google Scholar 

  7. Thompson RC, Moore C, Saal FV, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B 364(1526):2153–2166. https://doi.org/10.1098/rstb.2009.0053

    Article  CAS  Google Scholar 

  8. Yang SS, Brandon AM, Xing DF, Yang J, Pang JW, Criddle CS, Ren NQ, Wu WM (2018) Progresses in polystyrene biodegradation and prospects for solutions to plastic waste pollution. IOP Conf Ser Earth Environ Sci 150:1–9. https://doi.org/10.1088/1755-1315/150/1/012005

    Article  Google Scholar 

  9. Wu WM, Yang J, Criddle CS (2017) Microplastics pollution and reduction strategies. Front Environ Sci Eng 11:6–7. https://doi.org/10.1007/s11783-017-0897-7

    Article  CAS  Google Scholar 

  10. Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

    Article  CAS  Google Scholar 

  11. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ Sci Technol 42:5026–5031. https://doi.org/10.1021/es800249a

    Article  CAS  Google Scholar 

  12. Uhrin AV, Schellinger J (2011) Marine debris impacts to a tidal fringing-marsh in North Carolina. Mar Pollut Bull 62:2605–2610. https://doi.org/10.1016/j.marpolbul.2011.10.006

    Article  CAS  Google Scholar 

  13. Pauly JL, Stegmeier SJ, Allaart HA, Cheney RT, Zhang PJ, Mayer AG, Streck RJ (1998) Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomarkers Prev 7:419–428. https://doi.org/10.1023/A:1008833422577

    Article  CAS  Google Scholar 

  14. Atiq N (2011) Biodegradability of synthetic plastics polystyrene and styrofoam by fungal isolates. Doctor of philosophy in microbiology, Quaid-i-Azam University

    Google Scholar 

  15. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques-a review. Chemosphere 73:429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

    Article  CAS  Google Scholar 

  16. Jones PH, Prasad D, Heskins M, Morgan MH, Guillet JE (1974) Biodegradability of photodegraded polymers. I. Development of experimental procedures. Environ Sci Technol 8:919–923. https://doi.org/10.1021/es60095a010

    Article  CAS  Google Scholar 

  17. Albertsson AC, Karlsson S (1988) The three stages in degradation of polymers−polyethylene as a model substance. J Appl Polym Sci 35(5):1289–1302. https://doi.org/10.1002/app.1988.070350515

    Article  CAS  Google Scholar 

  18. Pegram JE, Andrady AL (1989) Outdoor weathering of selected polymeric materials under marine exposure conditions. Polym Degrad Stab 26(4):333–345. https://doi.org/10.1016/0141-3910(89)90112-2

    Article  CAS  Google Scholar 

  19. Ohtake Y, Kobayashi TA, H M N, Ono K (1998) Oxidative degradation and molecular weight change of LDPE buried under bioactive soil for 32–37 years. J Appl Polym Sci 70(9):1643–1648. https://doi.org/10.2324/gomu.66.756

    Article  CAS  Google Scholar 

  20. Artham T, Sudhakar M, Venkatesan R, Madhavan NC, Murty KVGK, Doble M (2009) Biofouling and stability of synthetic polymers in sea water. Int Biodeterior Biodegrad 63(7):884–890. https://doi.org/10.1016/j.ibiod.2009.03.003

    Article  CAS  Google Scholar 

  21. Ohtake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low−density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 56(13):1789–1796. https://doi.org/10.1002/app.1995.070561309

    Article  Google Scholar 

  22. Gautam R, Bassi AS, Yanful EK (2007) A review of biodegradation of synthetic plastic and foams. Appl Biochem Biotechnol 141(1):85–108. https://doi.org/10.1007/s12010-007-9212-6

    Article  CAS  Google Scholar 

  23. Guillet JE, Regulski TW, Mcaneney TBJ (2002) Biodegradability of photodegraded polymers. II. Tracer studies of biooxidation of Ecolyte PS polystyrene. Environ Sci Technol 8(10):923–925. https://doi.org/10.1021/es60095a011

    Article  Google Scholar 

  24. Sielicki M, Focht DD, Martin JPJ (1978) Microbial degradation of [C14C]polystyrene and 1,3-diphenylbutane. Can J Microbiol 24(7):798. https://doi.org/10.1139/m78-134

    Article  CAS  Google Scholar 

  25. Kaplan DL, Hartenstein R, Sutter J (1979) Biodegradation of polystyrene, poly(methyl methacrylate), and phenol formaldehyde. Appl Environ Microbiol 38(3):551–553

    Article  CAS  Google Scholar 

  26. Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19(6):851–858. https://doi.org/10.1007/s10532-008-9188-0

    Article  CAS  Google Scholar 

  27. Atiq N, Ahmed S, Ali MI, Andleeb S, Ahmad B, Robson G (2010) Isolation and identification of polystyrene biodegrading bacteria from soil. Afr J Microbiol Res 4(14):1537. https://doi.org/10.1016/j.mrgentox.2010.05.014

    Article  CAS  Google Scholar 

  28. Albertsson AC (1978) Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. J Appl Polym Sci. https://doi.org/10.1002/app.1978.070221207

  29. Albertsson AC, Bánhidi ZG, Beyer-Ericsson LL (1978) Biodegradation of synthetic polymers. III. The liberation of 14CO2 by molds like Fusarium redolens from 14C labeled pulverized high density polyethylene. J Appl Polym Sci 22(12):3435–3447. https://doi.org/10.1002/app.1978.070221208

    Article  CAS  Google Scholar 

  30. Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352. https://doi.org/10.1007/s00253-005-0259-4

    Article  CAS  Google Scholar 

  31. Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp AKS2 biofilm. Environ Sci Pollut R 20(6):4146–4153. https://doi.org/10.1007/s11356-012-1378-y

    Article  CAS  Google Scholar 

  32. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh KV (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51(2):205–211. https://doi.org/10.1111/j.1472-765X.2010.02883.x

    Article  CAS  Google Scholar 

  33. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419. https://doi.org/10.1007/s12088-012-0250-6

    Article  CAS  Google Scholar 

  34. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77(1–2):100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025

    Article  CAS  Google Scholar 

  35. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tania Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72(2):323–327. https://doi.org/10.1016/S0141-3910(01)00027-1

    Article  CAS  Google Scholar 

  36. Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupattelli P, Giovannozzi SG (1993) Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl Environ Microbiol 59(11):3695–3700. https://doi.org/10.1002/bit.260420917

    Article  CAS  Google Scholar 

  37. Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegradation 63(1):106–111. https://doi.org/10.1016/j.ibiod.2008.06.005

    Article  CAS  Google Scholar 

  38. Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegradation 64(6):530–536. https://doi.org/10.1016/j.ibiod.2010.06.002

    Article  CAS  Google Scholar 

  39. Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85. https://doi.org/10.1016/j.biortech.2013.08.074

    Article  CAS  Google Scholar 

  40. Gerhardt PD, Lindgren DL (1954) Penetration of packaging films: film materials used for food packaging tested for resistance to some common stored-product insects. J Econ Entomol 47(2):282–287. https://doi.org/10.1111/j.1529-8817.1988.tb04232.x

    Article  Google Scholar 

  41. Cline LD (1978) Penetration of seven common flexible packaging materials by larvae and adults of eleven species of stored product insects. J Econ Entomol 71:726–729. https://doi.org/10.1093/jee/71.5.726

    Article  Google Scholar 

  42. Newton J (1988) Insects and packaging-a review. Int Biodeterior 24:175–187. https://doi.org/10.1016/0265-3036(88)90047-4

    Article  Google Scholar 

  43. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–13784. https://doi.org/10.1021/es504038a

    Article  CAS  Google Scholar 

  44. Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R1–R3. https://doi.org/10.1016/j.cub.2017.02.060

    Article  CAS  Google Scholar 

  45. Kong HG, Kim HH, Chung JH, Jun JH, Lee S, Kim HM, Jeon S, Park SG, Bhak J, Ryu CM (2019) The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell Rep 26:2451–2464. https://doi.org/10.1016/j.celrep.2019.02.018

    Article  CAS  Google Scholar 

  46. Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya SP (2019) Efficient biodegradation of polyethylene (HDPE) waste by plastic eating lesser waxworm (Achroia grisella). Environ Sci Pollut R 26(18):18509–18519. https://doi.org/10.1007/s11356-019-05038-9

    Article  CAS  Google Scholar 

  47. Yang Y, Yang J, Wu WM, Zhao J, Song YL, Gao LC, Yang RF, Jiang L (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49(20):12080–12086. https://doi.org/10.1021/acs.est.5b02661

    Article  CAS  Google Scholar 

  48. Yang Y, Yang J, Wu WM, Zhao J, Song YL, Gao LC, Yang RF, Jiang L (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49(20):12087–12093. https://doi.org/10.1021/acs.est.5b02663

    Article  CAS  Google Scholar 

  49. Yang SS, Brandon AM, Flanagan JCA, Yang J, Ning DL, Cai SY, Fan HQ, Wang ZY, Ren J, Benbow E, Ren NQ, Waymouth RM, Zhou JZ, Criddle CS, Wu WM (2018) Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191:979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117

    Article  CAS  Google Scholar 

  50. Yang SS, Wu WM, Brandon AM, Fan HQ, Receveur JP, Li Y, Wang ZY, Fan R, McClellan RL, Gao SH, Ning D, Phillips DH, Peng BY, Wang H, Cai SY, Li P, Cai WW, Ding LY, Yang J, Zheng M, Ren J, Zhang YL, Gao J, Xing D, Ren NQ, Waymouth RM, Zhou J, Tao HC, Picard CJ, Benbow ME, Criddle CS (2018) Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere 212:262–271. https://doi.org/10.1016/j.chemosphere.2018.08.078

    Article  CAS  Google Scholar 

  51. Peng BY, Su Y, Chen Z, Chen J, Zhou X, Benbow ME, Zhang Y (2019) Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environ Sci Technol 53(9):5256–5265. https://doi.org/10.1021/acs.est.8b06963

    Article  CAS  Google Scholar 

  52. Brandon AM, Gao SH, Tian R, Ning DL, Yang SS, Zhou JZ, Wu WM, Criddle CS (2018) Biodegradation of polyethylene in mealworms (larvae of Tenebrio molitor Linnaeus): depolymerization, mineralization, and effects on the gut microbiome. Environ Sci Technol 52:6526–6533. https://doi.org/10.1021/acs.est.8b02301

    Article  CAS  Google Scholar 

  53. Sina (2003) Mealworms can digest plastics. (in Chinese). http://news.sina.com.cn/c/2003-12-30/16251466914s.shtml. Accessed 8 Feb 2017

  54. Burkart K (2009) High school girl discovers styrofoam-eating bacterium. Mother Nature Network. http://www.mnn.com/green-tech/research-innovations/blogs/high-school-girl-discovers-styrofoam-eating-bacterium. Accessed 8 Feb 2017

  55. Yang Y, Wang JL, Xia ML (2020) Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ 708:135233. https://doi.org/10.1016/j.scitotenv.2019.135233

  56. Miao SJ, Zhang YL (2010) Feeding and degradation effect on plastics of Zophobasmorio. J Environ Entomol 32(4):435–444.. (in Chinese). https://doi.org/10.3969/j.issn.1674-0858.2010.04.001

    Article  Google Scholar 

  57. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99(21):8857–8874. https://doi.org/10.1007/s00253-015-6879-4

    Article  CAS  Google Scholar 

  58. Market Research Store (2015) Polystyrene (PS) & expandable polystyrene (EPS) market for building & construction, electrical & electronics, packaging and other applications: global industry perspective, comprehensive analysis, and forecast, 2014–2020. https://www.marketresearchstore.com/report/polystyrene-expandable-polystyrene-market-for-building-z37708. Accessed 8 Feb 2017

  59. Zhou P, Huang CG, Fang HD, Cai WX, Li DM, Li XM, Yu HS (2011) The abundance composition and sources of marine debris in coastal seawaters or beaches around the northern South China Sea (China). Mar Pollut Bull 62:1998–2007. https://doi.org/10.1016/j.marpolbul.2011.06.018

    Article  CAS  Google Scholar 

  60. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. https://doi.org/10.1021/es2031505

    Article  CAS  Google Scholar 

  61. Råberg U, Hafrén J (2008) Biodegradation and appearance of plastic treated solid wood. Int Biodeterior Biodegrad 62:210–213. https://doi.org/10.1016/j.ibiod.2007.12.006

    Article  CAS  Google Scholar 

  62. Guillet JE, Regulski TW, McAneney TB (1974) Biodegradability of photodegraded polymers II: tracer studies of biooxidation of Ecolyte PS polystyrene. Environ Sci Technol 8:923–925. https://doi.org/10.1021/es60095a011

    Article  CAS  Google Scholar 

  63. Motta O, Proto A, Carlo FD, Caro FD, Santoro E, Brunetti L, Capunzo M (2009) Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi. Int J Hyg Environ Health 212:61–66. https://doi.org/10.1016/j.ijheh.2007.09.014

    Article  CAS  Google Scholar 

  64. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  Google Scholar 

  65. The economist (2016) Single-use refuse. http://www.economist.com/news/international/21670516-over-trillion-plasticbags-are-used-every-year-does-chargingthem-help-single-use-refuse

  66. Lambert S, Wagner M (2018) Microplastics are contaminants of emerging concern in freshwater environments: an overview. In: Freshwater microplastics. Springer, Cham, pp 1–23. https://doi.org/10.1007/978-3-319-61615-5

    Chapter  Google Scholar 

  67. Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18(1):73–87. https://doi.org/10.1016/0141-3910(87)90084-X

    Article  CAS  Google Scholar 

  68. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  Google Scholar 

  69. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott C (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452. https://doi.org/10.1016/S0141-3910(03)00129-0

    Article  CAS  Google Scholar 

  70. Calmont B, Soldati F (2008) Ecologie et biologie de Tenebrio opacus Duftschmid, 1812 Distribution et détermination des espèces françaises du genre Tenebrio Linnaeus, 1758 (Coleoptera, Tenebrionidae). R A R E, T XVII(3):81–87

    Google Scholar 

  71. Nukmal N, Umar S, Amanda SP, Kanedi M (2018) Effect of Styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). J Biol Sci 18(1):24–28. https://doi.org/10.3844/ojbsci.2018.24.28

    Article  CAS  Google Scholar 

  72. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  Google Scholar 

  73. Raddadi N, Fava F (2019) Biodegradation of oil-based plastics in the environment: existing knowledge and needs of research and innovation. Sci Total Environ 679:148–158. https://doi.org/10.1016/j.scitotenv.2019.04.419

    Article  CAS  Google Scholar 

  74. Boźek M, Hanus-Lorenz B, Rybak J (2017) The studies on waste biodegradation by Tenebrio molitor. In: E3S web of conferences, vol 17, p 00011. https://doi.org/10.1051/e3sconf/20171700011

  75. Roberson WH (2005) Urban insects and arachnids, a handbook of urban entomology. Cambridge University Press, Cambridge, pp 126–127. https://doi.org/10.1017/CBO9780511542718

    Book  Google Scholar 

  76. Albertsson AC, Erlandsson B, Hakkarainen M, Karlsson S (1998) Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene. J Polym Environ 6:187–195. https://doi.org/10.1023/a:1021873631162

    Article  CAS  Google Scholar 

  77. Jeon HJ, Kim MN (2016) Isolation of mesophilic bacterium for biodegradation of polypropylene. Int Biodeter Biodegr 115:244–249. https://doi.org/10.1016/j.ibiod.2016.08.025

  78. Lou Y, Ekaterina P, Yang SS, Lu BY, Liu BF, Ren NQ, Corvini PFX, Xing DF (2020) Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ Sci Technol 54(5):2821–2831. https://doi.org/10.1021/acs.est.9b07044

  79. Mecozzi M, Pietroletti M, Monakhova YB (2016) FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: application to monitoring studies. Mar Pollut Bull 106:155–161. https://doi.org/10.1016/j.marpolbul.2016.03.012

    Article  CAS  Google Scholar 

  80. Al-Kadhemy MFH, Rasheed ZS, Salim SR (2016) Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray. J Radiat Res Appl Sci 9:321–331. https://doi.org/10.1016/j.jrras.2016.02.004

    Article  CAS  Google Scholar 

  81. Sekhar VC, Nampoothiri KM, Mohan AJ, Nair NR, Bhaskar T, Pandey A (2016) Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J Hazard Mater 318:347–354. https://doi.org/10.1016/j.jhazmat.2016.07.008

    Article  CAS  Google Scholar 

  82. Hopkins DW, Chudek JA, Bignell DE, Frouz J, Webster EA, Lawson T (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by wood and soil-feeding termites, and a coprophagous litter-dwelling dipteran larva. Biodegradation 9:423–431. https://doi.org/10.1023/a:1008313309557

    Article  CAS  Google Scholar 

  83. Gilardi G, Abis L, Cass AEG (1995) Carbon-13 CP/MAS solid state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzym Microb Technol 17:268–275. https://doi.org/10.1016/0141-0229(94)00019-n

    Article  CAS  Google Scholar 

  84. Genta FA, Dillon RJ, Terra WR, Ferreira C (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 52:593–601. https://doi.org/10.1016/j.jinsphys.2006.02.007

    Article  CAS  Google Scholar 

  85. Yang Y, Chen JW, Wu WM, Zhao J, Yang J (2015) Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm’s gut. J Biotechnol 200:77–88. https://doi.org/10.1016/j.jbiotec.2015.02.034

    Article  CAS  Google Scholar 

  86. Suh DE, Lee DY (2016) Polyethylene terephthalate, polyvinyl chloride, polystyrene, polypropylene, polyethylene biodegrading microbes and its use for plastic recycling processes. J Int STEAM 1(1):1–6

    Google Scholar 

  87. Tang ZL, Kuo TA, Liu HH (2017) The study of the microbes degraded polystyrene. Adv Technol Innov 2(1):13–17

    Google Scholar 

  88. Yang SS, Chen YD, Kang JH, Xie TR, He L, Xing DF, Ren NQ, Ho S-H, Wu WM (2019) Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. J Clean Prod 227:33–47. https://doi.org/10.1016/j.jclepro.2019.04.005

    Article  CAS  Google Scholar 

  89. Yang SS, Chen YD, Zhang Y, Zhou HM, Ji XY, He L, Xing DF, Ren NQ, Ho S-H, Wu WM (2019) A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as by product for heavy metal removal. Environ Pollut 252:1142–1153. https://doi.org/10.1016/j.envpol.2019.06.28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by Harbin Institute of Technology, Harbin, China, and Stanford University, Stanford, USA. The authors gratefully acknowledge the financial support by the Woods Institute for Environment at Stanford University (award 1197667-10-WTAZB), the National Natural Science Foundation of China (Grant No. 51708154), and the Open Project of State Key Laboratory of Urban Water Resource and Environment (Grant No. ES201906). We appreciate the contributions of data, figures, and tables by our long-term research team members: Professor Craig S. Criddle and Ms. Anja M. Brandon, Stanford University, USA; Professor Jun Yang and Dr. Yu Yang, Beihang University, China; Professor Yalei Zhang and Mr. Boyu Peng, Tongji University, China; Professor Defeng Xing and Professor Nanqi Ren, Harbin Institute of Technology, China; Professor Debra Phillips, Queen’s University of Belfast, UK; and Mr. Joseph P. Receveur and Professor Mark Eric Benbow, Michigan State University, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Shan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, SS., Wu, WM. (2020). Biodegradation of Plastics in Tenebrio Genus (Mealworms). In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2020_457

Download citation

Publish with us

Policies and ethics