Skip to main content

Microplastics and Their Effects on Soil Function as a Life-Supporting System

  • Chapter
  • First Online:
Microplastics in Terrestrial Environments

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 95))

Abstract

Particles play important roles in terrestrial systems, where the natural soil environment provides a complex habitat in which the three-dimensional organization of mineral and organic matter is combined to a diverse array of water levels, microscopic life forms, and their metabolites. Soils are the foundation for most land-based life and terrestrial ecosystem services that benefit humans. When plastics arrive at the soil, their nonnatural structure, distinct chemical composition, and unique surface properties trigger a series of abrupt environmental changes in the soil. Indeed, the current evidence suggests changes in the fundamental physical, chemical, and microbiological properties of the soils. Consequently, water and other biogeochemical cycles, as well as plant performance and animal health, can be affected. In this chapter, we present the recent advances in understanding how microplastics can change elementary properties of soil systems, such as soil aggregation and structure. This is discussed jointly with the linked effects in the microbial activity and function. Then, we address the recent studies regarding the effects of micro- and nanoplastics on plants and animals. Finally, we elaborate the properties of the various types of microplastics, soil processes, and soil organisms that are probably influencing the observed effects. We conclude by highlighting that current scientific information is not enough to devise solid risk assessments on microplastics in soils and suggest research directions to fulfill this gap.

All responsibility for the content of this chapter is taken by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Charlson RJ et al (1992) Climate forcing by anthropogenic aerosols. Science 255(5043):423–430

    CAS  Google Scholar 

  2. Wagg C et al (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111(14):5266–5270

    CAS  Google Scholar 

  3. Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: a hidden reality. FAO- Food and Agriculture Organization of the United Nations, Rome, p 142

    Google Scholar 

  4. Grandy AS et al (2008) Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions. Biogeochemistry 91(1):37–49

    CAS  Google Scholar 

  5. Sprague HBSAB (1964) Hunger signs in crops: a symposium. McKay, Dysart

    Google Scholar 

  6. Klute A et al (1986) Methods of soil analysis: part 1—physical and mineralogical methods. SSSA book series. Soil Science Society of America, American Society of Agronomy, Madison

    Google Scholar 

  7. de Souza Machado AA et al (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24(4):1405–1416

    Google Scholar 

  8. Filella M (2015) Questions of size and numbers in environmental research on microplastics: methodological and conceptual aspects. Environ Chem 12(5):527–538

    CAS  Google Scholar 

  9. Rillig MC, Ingraffia R, de Souza Machado AA (2017) Microplastic incorporation into soil in agroecosystems. Front Plant Sci 8:1805

    Google Scholar 

  10. Lwanga EH et al (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50(5):2685–2691

    Google Scholar 

  11. Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7:6

    Google Scholar 

  12. Maass S et al (2017) Transport of microplastics by two collembolan species. Environ Pollut 225:456–459

    CAS  Google Scholar 

  13. Zhu D et al (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem 116:302–310

    CAS  Google Scholar 

  14. Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol 50(20):10777–10779

    CAS  Google Scholar 

  15. Li J, Liu H, Paul Chen J (2018) Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374

    CAS  Google Scholar 

  16. Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol 53(19):11496–11506

    CAS  Google Scholar 

  17. Fuller S, Gautam A (2016) A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol 50(11):5774–5780

    CAS  Google Scholar 

  18. Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20

    CAS  Google Scholar 

  19. Horton AA et al (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    CAS  Google Scholar 

  20. Kirstein IV et al (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8

    CAS  Google Scholar 

  21. Arias-Andres M et al (2018) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261

    CAS  Google Scholar 

  22. Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1(5):0116

    Google Scholar 

  23. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46(12):6453–6454

    CAS  Google Scholar 

  24. Liu HF et al (2017) Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185:907–917

    CAS  Google Scholar 

  25. Windsor FM et al (2019) A catchment-scale perspective of plastic pollution. Glob Chang Biol 25(4):1207–1221

    Google Scholar 

  26. de Souza Machado AA et al (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52(17):9656–9665

    Google Scholar 

  27. Rochman CM et al (2019) Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem 38(4):703–711

    CAS  Google Scholar 

  28. de Souza Machado AA et al (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044

    Google Scholar 

  29. Machado AAS, Valyi K, Rillig MC (2017) Potential environmental impacts of an “underground revolution”: a response to bender et al. Trends Ecol Evol 32(1):8–10

    Google Scholar 

  30. de Souza Machado AA et al (2016) Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity. Sci Total Environ 541:268–281

    Google Scholar 

  31. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H-2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609

    CAS  Google Scholar 

  32. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55(1):485–529

    CAS  Google Scholar 

  33. Liebezeit G, Liebezeit E (2015) Origin of synthetic particles in honeys. Polish J Food Nutr Sci 65(2):143–147

    CAS  Google Scholar 

  34. Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(12):2136–2140

    CAS  Google Scholar 

  35. Sanders LC, Lord EM (1989) Directed movement of latex-particles in the gynoecia of 3 species of flowering plants. Science 243(4898):1606–1608

    CAS  Google Scholar 

  36. Qi Y et al (2018) Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    CAS  Google Scholar 

  37. Bosker T et al (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    CAS  Google Scholar 

  38. Sjollema SB et al (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261

    CAS  Google Scholar 

  39. van Weert S et al (2019) Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci Total Environ 654:1040–1047

    Google Scholar 

  40. Rillig MC et al (2019) Microplastic effects on plants. New Phytol 223:1066

    Google Scholar 

  41. Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169

    CAS  Google Scholar 

  42. Navarro E et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    CAS  Google Scholar 

  43. Huerta Lwanga E et al (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220(Pt A):523–531

    CAS  Google Scholar 

  44. Huerta Lwanga E et al (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50(5):2685–2691

    CAS  Google Scholar 

  45. Huerta Lwanga E et al (2018) Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration. Sci Total Environ 624:753–757

    CAS  Google Scholar 

  46. Rodriguez-Seijo A et al (2017) Histopathological and molecular effects of microplastics in Eisenia andrei bouche. Environ Pollut 220:495–503

    CAS  Google Scholar 

  47. Gaylor MO, Harvey E, Hale RC (2013) Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils. Environ Sci Technol 47(23):13831–13839

    CAS  Google Scholar 

  48. Hodson ME et al (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721

    CAS  Google Scholar 

  49. Jemec Kokalj A et al (2018) Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods. Sci Total Environ 615:761–766

    CAS  Google Scholar 

  50. Selonen S et al (2019) Exploring the impacts of plastics in soil – the effects of polyester textile fibers on soil invertebrates. Sci Total Environ:134451

    Google Scholar 

  51. Kim D et al (2019) Soil ecotoxicity study of DEHP with respect to multiple soil species. Chemosphere 216:387–395

    CAS  Google Scholar 

  52. Lei L et al (2018) Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 619-620:1–8

    CAS  Google Scholar 

  53. Zubris KAV, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138(2):201–211

    CAS  Google Scholar 

  54. Barnes DK et al (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):1985–1998

    CAS  Google Scholar 

  55. Lwanga EH et al (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7:7

    Google Scholar 

  56. Kiyama Y, Miyahara K, Ohshima Y (2012) Active uptake of artificial particles in the nematode Caenorhabditis elegans. J Exp Biol 215(7):1178–1183

    Google Scholar 

  57. de Souza Machado AA, Wood CM, Kloas W (2019) Novel concepts for novel entities: updating ecotoxicology for a sustainable Anthropocene. Environ Sci Technol 53(9):4680–4682

    Google Scholar 

  58. Ng E-L et al (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388

    CAS  Google Scholar 

  59. Cao D et al (2017) Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. In: IOP conference series: earth and environmental science, vol 61. p 012148

    Google Scholar 

  60. Prendergast-Miller MT et al (2019) Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris. Environ Pollut 251:453–459

    CAS  Google Scholar 

  61. Lahive E et al (2019) Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environ Pollut 255:113174

    CAS  Google Scholar 

  62. Rodríguez-Seijo A et al (2019) Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environ Chem 16(1):8–17

    Google Scholar 

  63. Wang G et al (2018) Oxidative damage and genetic toxicity induced by DBP in earthworms (Eisenia fetida). Arch Environ Contam Toxicol 74(4):527–538

    CAS  Google Scholar 

  64. Rodríguez-Seijo A et al (2018) Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environ Sci Pollut Res 25(33):33599–33610

    Google Scholar 

  65. Yu M et al (2019) Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environ Chem 16(1):31–40

    CAS  Google Scholar 

  66. Song Y et al (2019) Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ Pollut 250:447–455

    CAS  Google Scholar 

  67. Dawson AL et al (2018) Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat Commun 9(1):1001

    Google Scholar 

  68. Dillon RT (2000) The ecology of freshwater molluscs. Cambridge University Press, Cambridge

    Google Scholar 

  69. McClatchie S, Boyd CM (1983) Morphological study of sieve efficiencies and mandibular surfaces in the Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 40(7):955–967

    Google Scholar 

  70. Lei L et al (2018) Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ Sci Nano 5(8):2009–2020

    CAS  Google Scholar 

  71. Zhao L et al (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg L−1 in the nematode Caenorhabditis elegans. Environ Sci Nano 4(12):2356–2366

    CAS  Google Scholar 

  72. Wan Y et al (2019) Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 654:576–582

    CAS  Google Scholar 

  73. Awet TT et al (2018) Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ Sci Eur 30(1):11

    CAS  Google Scholar 

  74. Dexter AR (2004) Soil physical quality - part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120(3–4):201–214

    Google Scholar 

  75. Mattsson K et al (2017) Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7:7

    Google Scholar 

  76. Horton AA et al (2017) Large microplastic particles in sediments of tributaries of the River Thames, UK - abundance, sources and methods for effective quantification. Mar Pollut Bull 114(1):218–226

    CAS  Google Scholar 

  77. Rillig MC (2018) Microplastic disguising as soil carbon storage. Environ Sci Technol 52:6079

    CAS  Google Scholar 

  78. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    CAS  Google Scholar 

  79. Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158(3):327–339

    CAS  Google Scholar 

  80. Yang CZ et al (2011) Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 119(7):8

    Google Scholar 

  81. Steinmetz Z et al (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705

    CAS  Google Scholar 

  82. Nomura T et al (2016) Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions. Chemosphere 149:84–90

    CAS  Google Scholar 

  83. Bergmann J et al (2016) The interplay between soil structure, roots, and microbiota as a determinant of plant-soil feedback. Ecol Evol 6(21):7633–7644

    Google Scholar 

  84. Eisenhauer N et al (2017) Priorities for research in soil ecology. Pedobiologia 63:1–7

    Google Scholar 

  85. Elert AM et al (2017) Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut 231:1256–1264

    CAS  Google Scholar 

  86. Miyazaki J et al (2014) Adhesion and internalization of functionalized polystyrene latex nanoparticles toward the yeast Saccharomyces cerevisiae. Adv Powder Technol 25(4):1394–1397

    CAS  Google Scholar 

  87. Mohanty SK, Saiers JE, Ryan JN (2015) Colloid mobilization in a fractured soil during dry-wet cycles: role of drying duration and flow path permeability. Environ Sci Technol 49(15):9100–9106

    CAS  Google Scholar 

  88. William James L (2005) Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15(3):477–481

    Google Scholar 

Download references

Acknowledgment

Work funded by the German Ministry of Education and Research BMBF within the collaborative project “Bridging in Biodiversity Science- BIBS” funding number (01LC1501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Abel de Souza Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Souza Machado, A.A., Horton, A.A., Davis, T., Maaß, S. (2020). Microplastics and Their Effects on Soil Function as a Life-Supporting System. In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2020_450

Download citation

Publish with us

Policies and ethics