Skip to main content

Bio-electro-Fenton: A New Combined Process – Principles and Applications

  • Chapter
  • First Online:
Electro-Fenton Process

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 61))

Abstract

Biological treatments show insufficient removal efficiency in the case of recalcitrant organic compounds. Therefore, the necessity of upgrading wastewater treatment plants (WWTPs) with advanced treatment steps is unequivocal. Advanced oxidation processes (AOPs) are the most effective technologies for the removal of a large range of organic pollutants from water due to the generation of strong oxidizing species like hydroxyl radicals (OH). However, AOPs often involve high energy and/or reagent consumption and are considered as less cost-effective than biological processes. Hence, the combination of AOPs and biological treatments has been implemented aiming at maximizing efficient removal of recalcitrant organic pollutants while minimizing treatment costs. Among AOPs, electrochemical advanced oxidation processes (EAOPs) have been widely explored during coupled processes, since they possess remarkable advantages, such as high efficiencies, operability at mild conditions, economic feasibility, ease of automation, as well as eco-friendly character. The electro-Fenton process (EF) stands out as one of the most applied EAOPs and the present chapter is devoted to the advances and applications of EF process as a treatment step coupled with biological methods: the so-called bio-electro-Fenton (Bio-EF) process, which brings together the high oxidation power of EF and cost-effectiveness of biological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int 75:33–51

    Article  CAS  Google Scholar 

  2. Uribe IO, Mosquera-Corral A, Rodicio JL, Esplugas S (2015) Advanced technologies for water treatment and reuse. AICHE J 61:3146–3158

    Article  CAS  Google Scholar 

  3. Barbosa MO, Moreira NFF, Ribeiro AR et al (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU decision 2015/495. Water Res 94:257–279

    Article  CAS  Google Scholar 

  4. Luo Y, Guo W, Ngo HH et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    Article  Google Scholar 

  5. Prasse C, Stalter D, Schulte-Oehlmann U et al (2015) Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res 87:237–270

    Article  CAS  Google Scholar 

  6. Ahmed MB, Zhou JL, Ngo HH et al (2016) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298

    Article  Google Scholar 

  7. Tran NH, Urase T, Ngo HH et al (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146:721–731

    Article  CAS  Google Scholar 

  8. Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563

    Article  CAS  Google Scholar 

  9. Picó Y, Barceló D (2015) Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon. Anal Bioanal Chem 407:6257–6273

    Article  Google Scholar 

  10. Garcia-Rodríguez A, Matamoros V, Fontàs C, Salvadó V (2013) The ability of biologically based wastewater treatment systems to remove emerging organic contaminants – a review. Environ Sci Pollut Res 21:11708–11728

    Article  Google Scholar 

  11. Pomiès M, Choubert J-M, Wisniewski C, Coquery M (2013) Modelling of micropollutant removal in biological wastewater treatments: a review. Sci Total Environ 443:733–748

    Article  Google Scholar 

  12. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641

    Article  CAS  Google Scholar 

  13. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ 409:4141–4166

    Article  CAS  Google Scholar 

  14. Dirany A, Sirés I, Oturan N et al (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46:4074–4082

    Article  CAS  Google Scholar 

  15. Oturan MA, Pimentel M, Oturan N, Sirés I (2008) Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment. Electrochim Acta 54:173–182

    Article  CAS  Google Scholar 

  16. Ganzenko O, Huguenot D, van Hullebusch ED et al (2014) Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 21:8493–8524

    Article  CAS  Google Scholar 

  17. Olvera-Vargas H, Oturan N, Buisson D, Oturan MA (2016) A coupled bio-EF process for mineralization of the pharmaceuticals furosemide and ranitidine: feasibility assessment. Chemosphere 155:606–613

    Article  CAS  Google Scholar 

  18. Trellu C, Ganzenko O, Papirio S et al (2016) Combination of anodic oxidation and biological treatment for the removal of phenanthrene and tween 80 from soil washing solution. Chem Eng J 306:588–596

    Article  CAS  Google Scholar 

  19. Ganzenko O, Trellu C, Papirio S et al (2017) Bio-electro-Fenton: evaluation of a combined biological-advanced oxidation treatment for pharmaceutical wastewater. Environ Sci Pollut Res. doi:10.1007/s11356-017-8450-6

  20. Pulgarin C, Invernizzi M, Parra S et al (1999) Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. Catal Today 54:341–352

    Article  CAS  Google Scholar 

  21. Contreras S, Rodrıguez M, Momani FA et al (2003) Contribution of the ozonation pre-treatment to the biodegradation of aqueous solutions of 2,4-dichlorophenol. Water Res 37:3164–3171

    Article  CAS  Google Scholar 

  22. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    Article  CAS  Google Scholar 

  23. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal Environ 202:217–261

    Article  CAS  Google Scholar 

  24. Sopaj F, Oturan N, Pinson J et al (2016) Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine. Appl Catal Environ 199:331–341

    Article  CAS  Google Scholar 

  25. Mousset E, Ko ZT, Syafiq M et al (2016) Electrocatalytic activity enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment. Electrochim Acta 222:1628–1641

    Article  CAS  Google Scholar 

  26. Ganiyu SO, Le TXH, Bechelany M et al (2017) Hierarchical CoFe-layered double hydroxide modified carbon-felt cathode: synthesis, characterization and application in heterogeneous electro-Fenton degradation of organic pollutants at circumneutral pH. J Mater Chem A 4:17686–17693

    Google Scholar 

  27. He Z, Gao C, Qian M et al (2014) Electro-Fenton process catalyzed by Fe3O4 magnetic nanoparticles for degradation of C.I. Reactive blue 19 in aqueous solution: operating conditions, influence, and mechanism. Ind Eng Chem Res 53:3435–3447

    Article  CAS  Google Scholar 

  28. Khataee A, Sajjadi S, Hasanzadeh A et al (2017) One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process. J Environ Manage 199:31–45

    Article  CAS  Google Scholar 

  29. Ganiyu SO, van Hullebusch ED, Cretin M et al (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156:891–914

    Article  CAS  Google Scholar 

  30. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407

    Article  Google Scholar 

  31. Lin SH, Chang CC (2000) Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Res 34:4243–4249

    Article  CAS  Google Scholar 

  32. Olvera-Vargas H, Cocerva T, Oturan N et al (2016) Bioelectro-Fenton: a sustainable integrated process for removal of organic pollutants from water: application to mineralization of metoprolol. J Hazard Mater 319:13–23

    Article  CAS  Google Scholar 

  33. Mousset E, Oturan N, van Hullebusch ED et al (2014) Treatment of synthetic soil washing solutions containing phenanthrene and cyclodextrin by electro-oxidation. Influence of anode materials on toxicity removal and biodegradability enhancement. Appl Catal Environ 160–161:666–675

    Article  Google Scholar 

  34. Mousset E, Oturan N, van Hullebusch ED et al (2014) Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process – study of soil washing recycling possibilities and environmental impact. Water Res 48:306–316

    Article  CAS  Google Scholar 

  35. Mousset E et al. (2017) Soil remediation by electro-Fenton process. Handb Environ Chem. doi:10.1007/698_2017_38

  36. Belkheiri D, Fourcade F, Geneste F et al (2011) Feasibility of an electrochemical pre-treatment prior to a biological treatment for tetracycline removal. Sep Purif Technol 83:151–156

    Article  Google Scholar 

  37. Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A (2013) Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture. Chem Eng J 221:418–425

    Article  CAS  Google Scholar 

  38. Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E (2010) Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Res 44:2773–2780

    Article  CAS  Google Scholar 

  39. Mansour D, Fourcade F, Soutrel I et al (2015) Mineralization of synthetic and industrial pharmaceutical effluent containing trimethoprim by combining electro-Fenton and activated sludge treatment. J Taiwan Inst Chem Eng 53:58–67

    Article  CAS  Google Scholar 

  40. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  41. Mansour D, Fourcade F, Huguet S et al (2014) Improvement of the activated sludge treatment by its combination with electro Fenton for the mineralization of sulfamethazine. Int Biodeter Biodegr 88:29–36

    Article  CAS  Google Scholar 

  42. Moreira FC, Soler J, Fonseca A et al (2015) Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate. Water Res 81:375–387

    Article  CAS  Google Scholar 

  43. Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11:274–277

    Article  CAS  Google Scholar 

  44. Huong Le TX, Esmilaire R, Drobek M et al (2016) Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution. J Mater Chem A 4:17686–17693

    Article  CAS  Google Scholar 

  45. Feng C-H, Li F-B, Mai H-J, Li X-Z (2010) Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44:1875–1880

    Article  CAS  Google Scholar 

  46. Yong X-Y, Gu D-Y, Wu Y-D et al (2017) Bio-electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation. J Hazard Mater 324:178–183

    Article  CAS  Google Scholar 

  47. Birjandi N, Younesi H, Ghoreyshi AA, Rahimnejad M (2016) Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system. J Environ Manage 180:390–400

    Article  CAS  Google Scholar 

  48. Wang X-Q, Liu C-P, Yuan Y, Li F (2014) Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. J Hazard Mater 275:200–209

    Article  CAS  Google Scholar 

  49. Ferrag-Siagh F, Fourcade F, Soutrel I et al (2014) Electro-Fenton pretreatment for the improvement of tylosin biodegradability. Environ Sci Pollut Res 21:8534–8542

    Article  CAS  Google Scholar 

  50. Gong Y, Li J, Zhang Y et al (2016) Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode. J Hazard Mater 304:320–328

    Article  CAS  Google Scholar 

  51. Mansour D, Fourcade F, Soutrel I et al (2015) Relevance of a combined process coupling electro-Fenton and biological treatment for the remediation of sulfamethazine solutions – application to an industrial pharmaceutical effluent. Comptes Rendus Chim 18:39–44

    Article  CAS  Google Scholar 

  52. Ledezma Estrada A, Li Y-Y, Wang A (2012) Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process. J Hazard Mater 227:41–48

    Article  Google Scholar 

  53. Moussavi G, Bagheri A, Khavanin A (2012) The investigation of degradation and mineralization of high concentrations of formaldehyde in an electro-Fenton process combined with the biodegradation. J Hazard Mater 237:147–152

    Article  Google Scholar 

  54. Vidal J, Huiliñir C, Salazar R (2016) Removal of organic matter contained in slaughterhouse wastewater using a combination of anaerobic digestion and solar photoelectro-Fenton processes. Electrochim Acta 210:163–170

    Article  CAS  Google Scholar 

  55. Cañizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manage 90:410–420

    Article  Google Scholar 

  56. Garcia-Segura S, Brillas E (2014) Advances in solar photoelectro-Fenton: decolorization and mineralization of the direct yellow 4 diazo dye using an autonomous solar pre-pilot plant. Electrochim Acta 140:384–395

    Article  CAS  Google Scholar 

  57. Mook WT, Aroua MK, Issabayeva G (2014) Prospective applications of renewable energy based electrochemical systems in wastewater treatment: a review. Renew Sustain Energy Rev 38:36–46

    Article  CAS  Google Scholar 

  58. Wang L, Cao M, Ai Z, Zhang L (2015) Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex. Environ Sci Technol 49:3032–3039

    Article  CAS  Google Scholar 

  59. Zhang C, Zhou M, Yu X et al (2015) Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: characterization, degradation activity and stability. Electrochim Acta 160:254–262

    Article  CAS  Google Scholar 

  60. Le TXH, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet A. Oturan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Olvera-Vargas, H., Trellu, C., Oturan, N., Oturan, M.A. (2017). Bio-electro-Fenton: A New Combined Process – Principles and Applications. In: Zhou, M., Oturan, M., Sirés, I. (eds) Electro-Fenton Process. The Handbook of Environmental Chemistry, vol 61. Springer, Singapore. https://doi.org/10.1007/698_2017_53

Download citation

Publish with us

Policies and ethics