Skip to main content

Surface-Modified Photocatalysts

  • Chapter
  • First Online:
Environmental Photochemistry Part III

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 35))

Abstract

The surface properties of TiO2 play a very important role in determining photocatalytic reaction efficiencies because heterogeneous photocatalytic reactions take place on the surface. Various parameters such as composition, phase structures, surface hydroxyl group, particle size, crystallinity, surface defects, and adsorbates or surface complexes play a key role. TiO2 surfaces have been actively modified through manipulating the above parameters to enhance the photocatalytic performance. Here the main effects that influence the surface electron transfer are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watanabe M, Hayashi T (2005) J Lumin 112:88–91

    Article  CAS  Google Scholar 

  2. Berger T, Sterrer M, Diwald O, Knözinger E, Panayotov D, Thompson TL, Yates JT Jr (2005) J Phys Chem B 109:6061–6068

    Article  CAS  Google Scholar 

  3. Emeline AV, Frolov AV, Ryabchuk VK, Serpone N (2003) J Phys Chem B 107:7109–7119

    Article  CAS  Google Scholar 

  4. Fu Y, Cao WH (2006) J Appl Phys 100:084324

    Article  Google Scholar 

  5. Planelles J, Movilla JL (2006) Phys Rev B 73:235350

    Article  Google Scholar 

  6. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2007) Phys Chem Chem Phys 9:1453–1460

    Article  CAS  Google Scholar 

  7. Rabani J, Yamashita K, Ushida K, Stark J, Kira A (1998) J Phys Chem B 102:1689–1695

    Article  CAS  Google Scholar 

  8. Katoh R, Murai M, Furbe A (2008) Chem Phys Lett 461:238–241

    Article  CAS  Google Scholar 

  9. Tamaki Y, Hara K, Katoh R, Tachiya M, Furube A (2009) J Phys Chem C 113:11741–11746

    Article  CAS  Google Scholar 

  10. Bahnemann DW, Hilgendorff M, Memming R (1997) J Phys Chem B 101:4265–4275

    Article  CAS  Google Scholar 

  11. Corrent S, Cosa G, Scaiano JC, Galletero MS, Alvaro M, Garcia H (2001) Chem Mater 13:715–722

    Article  CAS  Google Scholar 

  12. Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:2922–2927

    Article  CAS  Google Scholar 

  13. Peiro AM, Colombo C, Doyle G, Nelson J, Mills A, Durrant JR (2006) J Phys Chem B 110:23255–23263

    Article  CAS  Google Scholar 

  14. Ikeda S, Sugiyama N, Muratami S, Kominami H, Kera Y, Noguchi H, Uosaki K, Torimoto T, Ohtani B (2003) Phys Chem Chem Phys 5:778–783

    Article  CAS  Google Scholar 

  15. Szczepankiewicz SH, Colussi AJ, Hoffmann MR (2000) J Phys Chem B 104:9842–9850

    Article  CAS  Google Scholar 

  16. Henderson MA (2011) Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  17. Warren DS, Mcquillan AJ (2004) J Phys Chem B 108:19373–19379

    Article  CAS  Google Scholar 

  18. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  19. Micic OI, Zhang YN, Cromack KR, Trifunac AD, Thurnauer MC (1993) J Phys Chem 97:7277–7283

    Article  CAS  Google Scholar 

  20. Serpone N, Lawless D, Khairutdinov R, Pelizzetti E (1995) J Phys Chem 99:16655–16661

    Article  CAS  Google Scholar 

  21. Ke SC, Wang TC, Wong MS, Gopal NO (2006) J Phys Chem B 110:11628–11634

    Article  CAS  Google Scholar 

  22. Deskins NA, Dupuis M (2009) J Phys Chem C 113:346–358

    Article  CAS  Google Scholar 

  23. Hurum D C, Gray K A, Rajh T, Thurnauer M C (2005) J Phys Chem B 109:977–980, erratum 5388

    Google Scholar 

  24. Dimitrijevic NM, Saponjic ZV, Rabatic BM, Poluektov OG, Rajh T (2007) J Phys Chem C 111:14597–14601

    Article  CAS  Google Scholar 

  25. Berger T, Sterrer M, Diwald O, Knozinger E, Panayotov D, Thompson TL, Yates JT Jr (2005) J Phys Chem B 109:6061–6068

    Article  CAS  Google Scholar 

  26. Yoshihara T, Tamaki Y, Furube A, Murai M, Hara K, Katoh R (2007) Chem Phys Lett 438:268–273

    Article  CAS  Google Scholar 

  27. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2006) J Am Chem Soc 128:416–417

    Article  CAS  Google Scholar 

  28. Minero C (1999) Catal Today 54:205–216

    Article  CAS  Google Scholar 

  29. Minero C, Vione D (2006) Appl Catal B Environ 67:257–269

    Article  CAS  Google Scholar 

  30. Gao R, Safrany A, Rabani J (2003) Radiat Phys Chem 67:25–39

    Article  CAS  Google Scholar 

  31. Berger T, Lana-Villarreal T, Monllor-Satoca D, Gómez R (2007) J Phys Chem C 111:9936–9942

    Article  CAS  Google Scholar 

  32. Minella M, Faga MG, Maurino V, Minero C, Pelizzetti E, Cosuccia S, Martra G (2010) Langmuir 26:2521–2527

    Article  CAS  Google Scholar 

  33. Primet M, Pichat P, Mathieu M-V (1971) J Phys Chem 75:1216–1220; 75:1221–1226

    Google Scholar 

  34. Connor PA, Dobson KD, McQuillan AJ (1999) Langmuir 15:2402–2408

    Article  CAS  Google Scholar 

  35. Hiemstra T, Van Riemsdijk WH (2006) J Colloid Interface Sci 301:1–18

    Article  CAS  Google Scholar 

  36. Machesky ML, Wesolowski DJ, Palmer DA, Ridley MK (2001) J Colloid Interface Sci 239:314–327

    Article  CAS  Google Scholar 

  37. Fitts JP, Machesky ML, Wesolowski DJ, Shang XM, Kubicki JD, Flynn GW, Heinz TF, Eisenthal KB (2005) Chem Phys Lett 411:399–403

    Article  CAS  Google Scholar 

  38. Ambrus Z, Mogyorósi K, Szalai A, Alapi T, Demeter K, Dombi A, Sipos P (2008) Appl Catal A Gen 340:153–161

    Article  CAS  Google Scholar 

  39. Gomathi DL, Narasimha MB, Girish KS (2009) Chemosphere 76:1163–1166

    Article  Google Scholar 

  40. Vargas R, Núñez O (2009) J Mol Catal A Chem 300:65–71

    Article  CAS  Google Scholar 

  41. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  42. Kimmel GA, Petrik NG (2008) Phys Rev Lett 100:196102

    Article  Google Scholar 

  43. Imanishi A, Okamura T, Ohashi N, Nakamura R, Nakato Y (2007) J Am Chem Soc 129:11569–11578

    Article  CAS  Google Scholar 

  44. Cornu CJG, Colussi AJ, Hoffmann MR (2003) J Phys Chem B 107:3156–3160

    Article  CAS  Google Scholar 

  45. Liang H-C, Li X-Z, Yang Y-H, Sze K-H, (2008) Chemosphere 73:805–812

    Google Scholar 

  46. López-Muñoz MJ, Aguado J, Arencibia A, Pascual R (2011) Appl Catal B Environ 104:220–228

    Article  Google Scholar 

  47. Ohno T, Sarukawa K, Matsumura M (2002) J Chem 26:1167–1170

    CAS  Google Scholar 

  48. Petrik NG, Zhang Z, Du Y, Dohnálek Z, Lyubinetsky I, Kimmel GA (2009) J Phys Chem C 113:12407–12411

    Article  CAS  Google Scholar 

  49. Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) J Phys Chem B 107:534–545

    Article  CAS  Google Scholar 

  50. Nakamura R, Imanishi A, Murakoshi K, Nakato Y (2003) J Am Chem Soc 125:7443–7450

    Article  CAS  Google Scholar 

  51. Maurino V, Minero C, Mariella G, Pelizzetti E (2005) Chem Commun (20):2627–2629

    Google Scholar 

  52. Haick H, Paz Y (2003) ChemPhysChem 4:617–620

    Article  CAS  Google Scholar 

  53. Tachikawa T, Majima T (2010) Chem Soc Rev 39:4802–4819

    Article  CAS  Google Scholar 

  54. Thiebaud J, Thévenet F, Fittschen C (2010) J Phys Chem C 114:3082–3088

    Article  CAS  Google Scholar 

  55. Anpo M, Shima T, Kubokawa Y (1985) Chem Lett (12):1799–1805

    Google Scholar 

  56. Henderson MA (2002) Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  57. Di Valentin C, Pacchioni G, Selloni A (2006) Phys Rev Lett 97:166803

    Article  Google Scholar 

  58. Nosaka Y, Komori S, Yawata K, Hirakawa T, Nosaka YA (2003) Phys Chem Chem Phys 5:4731–4739

    Article  CAS  Google Scholar 

  59. Howe RF, Graetzel M (1987) J Phys Chem 91:3906–3911

    Article  CAS  Google Scholar 

  60. Micic OI, Zhang Y, Cromack KR, Trifunac AD, Thurnauer MC (1993) J Phys Chem 97:13284–13289

    Article  CAS  Google Scholar 

  61. Lawless D, Sermone N, Meisel D (1991) J Phys Chem 95:5166–5170

    Article  CAS  Google Scholar 

  62. Minero C, Catozzo F, Pelizzetti E (1992) Langmuir 8:481–486

    Article  CAS  Google Scholar 

  63. Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Langmuir 16:2632–2641

    Article  CAS  Google Scholar 

  64. Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Langmuir 16:8964–8972

    Article  CAS  Google Scholar 

  65. Pang CL, Lindsay R, Thornton G (2008) Chem Soc Rev 37:2328–2353

    Article  CAS  Google Scholar 

  66. Byrne JA, Eggins BR, Linquette-Mailley S, Dunlop PSM (1998) Analyst 123:2007–2012

    Article  Google Scholar 

  67. Berger T, Rodes A, Gómez R (2010) Phys Chem Chem Phys 12:10503–10511

    Article  CAS  Google Scholar 

  68. Bedini A, Maurino V, Minella M, Minero C, Rubertelli F (2008) J Adv Oxid Technol 11:184–192

    Google Scholar 

  69. Wen B, Li Y, Chen C, Ma W, Zhao J (2010) Chem Eur J 16:11859–11866

    Article  CAS  Google Scholar 

  70. Nelson BP, Candal R, Corn RM, Anderson MA (2000) Langmuir 16:6094–6101

    Article  CAS  Google Scholar 

  71. Kormann C, Bahnemann DW, Hoffmann MR (1991) Environ Sci Technol 25:494–500

    Article  CAS  Google Scholar 

  72. Murakami N, Chiyoya T, Tsubota T, Ohno T (2008) Appl Catal A General 348:148–152

    Article  CAS  Google Scholar 

  73. Liu L, Zhao C, Li Y (2012) J Phys Chem C 116:7904–7912

    Article  CAS  Google Scholar 

  74. Franch MI, Ayllon JA, Peral J, Domenech X (2005) Catal Today 101:245–252

    Article  CAS  Google Scholar 

  75. Wu JCS, Cheng Y-T (2006) J Catal 237:393–404

    Article  CAS  Google Scholar 

  76. Chen CC, Li XZ, Ma WH, Zhao JC, Hidaka H, Serpone N (2002) J Phys Chem B 106:318–324

    Article  CAS  Google Scholar 

  77. Pelet S, Moser JE, Grätzel M (2000) J Phys Chem B 104:1791–1795

    Article  CAS  Google Scholar 

  78. Minero C, Maurino V, Pelizzetti E (1997) Mar Chem 58:361–372

    Article  CAS  Google Scholar 

  79. Franch MI, Peral J, Domenech X, Ayllon JA (2005) Chem Commun 14:1851–1853

    Article  Google Scholar 

  80. Maurino V, Minero C, Pelizzetti E, Mariella G, Arbezzano A, Rubertelli F (2007) Res Chem Intermed 33:319–332

    Article  CAS  Google Scholar 

  81. Connor PA, McQuillan AJ (1999) Langmuir 15:2916–2921

    Article  CAS  Google Scholar 

  82. Kataoka S, Gurau MC, Albertorio F, Holden MA, Lim S-M, Lim S-M, Yang RD, Cremer PS (2004) Langmuir 20:1662–1666

    Article  CAS  Google Scholar 

  83. Stone AT (1996) Environ Sci Technol 30:1604–1613

    Article  Google Scholar 

  84. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Campbell Smith S, Cheng HM, Lu GQ (2008) Nature 453:638–642

    Google Scholar 

  85. Park H, Choi WJ (2004) J Phys Chem B 108:4086–4093

    Article  CAS  Google Scholar 

  86. Vohra MS, Kim S, Choi WJ (2003) J Photochem Photobiol A 160:55–60

    Article  CAS  Google Scholar 

  87. Vione D, Minero C, Maurino V, Carlotti ME, Picatonotto T, Pelizzetti E (2005) Appl Catal B Environ 58:81–90

    Article  Google Scholar 

  88. Mrowetz M, Selli E (2006) J Chem 30:108–114

    CAS  Google Scholar 

  89. Park H, Choi W (2005) Catal Today 101:291–297

    Article  CAS  Google Scholar 

  90. Chiang K, Amal R, Tran TJ (2003) Mol Catal 193:285–297

    Article  CAS  Google Scholar 

  91. Lee J, Choi W, Yoon J (2005) Environ Sci Technol 39:6800–6807

    Article  CAS  Google Scholar 

  92. Yu J, Zhang J (2010) Dalton Trans 39:5860–5867

    Article  CAS  Google Scholar 

  93. Dozzi MV, Schiavello GL, Selli E (2010) J Adv Oxid Technol 13:305–312

    CAS  Google Scholar 

  94. Chen Y, Chen F, Zhang J (2009) Appl Surf Sci 255:6290–6296

    Article  CAS  Google Scholar 

  95. Chen KT, Lu CS, Chang TH, Lai YY, Chang TH, Wu CW, Chen CCJ (2010) Hazard Mater 174:598–609

    Article  CAS  Google Scholar 

  96. Lv K, Li X, Deng K, Sun J, Li X, Li M (2010) Appl Catal B Environ 95:383–392

    Article  CAS  Google Scholar 

  97. Mrowetz M, Selli E (2005) Phys Chem Chem Phys 7:1100–1102

    Article  CAS  Google Scholar 

  98. Park JS, Choi W (2004) Langmuir 20:11523–11527

    Article  CAS  Google Scholar 

  99. Lv K, Xu Y (2006) J Phys Chem B 110:6204–6212

    Article  CAS  Google Scholar 

  100. Monllor-Satoca D, Gomez R, Gonzalez-Hidalgo M, Salvador P (2007) Catal Today 129:247–255

    Article  CAS  Google Scholar 

  101. Xu Y, Lv K, Xiong Z, Leng W, Du W, Liu D, Xue X (2007) J Phys Chem C 111:19024–19032

    Article  CAS  Google Scholar 

  102. Monllor-Satoca D, Gomez R (2008) J Phys Chem C 112:139–147

    Article  CAS  Google Scholar 

  103. Monllor-Satoca D, Lana-Villarreal T, Gómez R (2011) Langmuir 27:15312–15321

    Article  CAS  Google Scholar 

  104. Montoya JF, Salvador P (2010) Appl Catal B Environ 94:97–107

    Article  CAS  Google Scholar 

  105. Minero C, Bedini A, Maurino V (2012) Appl Catal B Environ 128:135–143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University of Torino support by Ricerca Locale 2012 is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Minero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minero, C. (2013). Surface-Modified Photocatalysts. In: Bahnemann, D., Robertson, P. (eds) Environmental Photochemistry Part III. The Handbook of Environmental Chemistry, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2013_250

Download citation

Publish with us

Policies and ethics