Skip to main content

Identification of Small Molecules That Enhance the Expansion of Mesenchymal Stem Cells Originating from Bone Marrow

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 16

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1387))

Abstract

Mesenchymal stem cells (MSCs) have been shown to be promising for regenerative medicines with their immunomodulatory characteristics. They may be obtained from a variety of tissue types, including umbilical cord, adipose tissue, dental tissue, and bone marrow (BM). BM-MSCs are challenging in terms of their ex vivo expansion capability. Thus, we aimed to improve the expansion of BM-MSCs with small molecule treatments. We tested about forty small molecules that are potent quiescence modulators, and determined their efficacy by analysis of cell viability, cell cycle, and apoptosis in BM-MSCs. We also examined gene expression for selected small molecules to explore essential molecular pathways. We observed that treatment with SB203580 increased BM-MSCs expansion up to two fold when used for 5 days. SB203580 decreased the proportion of cells in the G1 phase of the cell cycle and substantially increased the ratio of cells in the S-G2-M phase. Enhanced MSC expansion with SB203580 therapy was associated with the lower expression of CDKIs like p15, p18, p19, p21, p27, and p57. In conclusion, we have developed a new approach to facilitate the expansion of BM-MSCs. These results could enhance autologous and immunomodulation therapy involving BM-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BM:

Bone marrow

BM-MSCs:

Bone Marrow Mesenchymal Stem Cells

CFU-F assay:

Colony forming unit – fibroblast assay

DMSO:

Dimethyl sulfoxide

MS:

Muscle dystrophy

MSCs:

Mesenchymal stem cells

References

  • Abdelrazik H, Spaggiari GM, Chiossone L, Moretta L (2011) Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function. Eur J Immunol 41:3281–3290

    Article  CAS  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  Google Scholar 

  • Ahmad H, Thambiratnam K, Zulkifli A, Lawrence A, Jasim A, Kunasekaran W, Musa S, Gnanasegaran N, Vasanthan P, Jayaraman P et al (2013) Quantification of mesenchymal stem cell growth rates through secretory and excretory biomolecules in conditioned media via Fresnel reflection. Sensors 13:13276–13288

    Article  CAS  Google Scholar 

  • Bonab M, Alimoghaddam K, Talebian F, Ghaffari S, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14

    Article  Google Scholar 

  • Boztas AO, Karakuzu O, Galante G, Ugur Z, Kocabas F, Altuntas CZ, Yazaydin AO (2013) Synergistic interaction of paclitaxel and curcumin with Cyclodextrin polymer complexation in human cancer cells. Mol Pharm 10:2676–2683

    Article  CAS  Google Scholar 

  • Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001) Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J 81:675–684

    Article  CAS  Google Scholar 

  • Clerk A, Sugden PH (1998) The p38-MAPK inhibitor, SB203580, inhibits cardiac stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). FEBS Lett 426:93–96

    Article  CAS  Google Scholar 

  • Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207:331–339

    Article  CAS  Google Scholar 

  • Hawkins KE, Sharp TV, McKay TR (2013) The role of hypoxia in stem cell potency and differentiation. Regen Med 8:771–782

    Article  CAS  Google Scholar 

  • Huber KVM, Superti-Furga G (2016) Profiling of small molecules by chemical proteomics. Methods Mol Biol 1394:211–218

    Article  CAS  Google Scholar 

  • Jing Z, Sui X, Yao J, Xie J, Jiang L, Zhou Y, Pan H, Han W (2016) SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett 372:226–238

    Article  CAS  Google Scholar 

  • Kalkan BM, Akgol S, Ak D, Yucel D, Guney Esken G, Kocabas F (2020) CASIN and AMD3100 enhance endothelial cell proliferation, tube formation and sprouting. Microvasc Res 130:104001

    Article  CAS  Google Scholar 

  • Laube M, Stolzing A, Thome UH, Fabian C (2016) Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 74:18–32

    Article  CAS  Google Scholar 

  • Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation. Blood 103:4619–4621

    Article  CAS  Google Scholar 

  • Polchert D, Sobinsky J, Douglas GW, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B et al (2008) IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38:1745–1755

    Article  CAS  Google Scholar 

  • Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, Marschall H-U, Dlugosz A, Szakos A, Hassan Z et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397

    Article  Google Scholar 

  • Shabbir A, Zisa D, Leiker M, Johnston C, Lin H, Lee T (2009) Muscular dystrophy therapy by nonautologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation 87:1275–1282

    Article  CAS  Google Scholar 

  • Sidal H, Colakoglu Erkan P, Uslu M, Kocabas F (2020) Development of small-molecule-induced fibroblast expansion technologies. J Tissue Eng Regen Med 14:1476–1487

    Article  CAS  Google Scholar 

  • Singh A, Hildebrand ME, Garcia E, Snutch TP (2010) The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol 160:1464–1475

    Article  CAS  Google Scholar 

  • Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333

    Article  CAS  Google Scholar 

  • Turan RD, Albayrak E, Uslu M, Siyah P, Alyazici LY, Kalkan BM, Aslan GS, Yucel D, Aksoz M, Tuysuz EC et al (2020) Development of small molecule MEIS inhibitors that modulate HSC activity. Sci Rep 10:7994

    Article  CAS  Google Scholar 

  • Underwood DC, Osborn RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, Romanic AM, Adams JL, Hay DWP, Griswold DE (2000) SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Phys Lung Cell Mol Phys 279:L895–L902

    CAS  Google Scholar 

  • Uslu M, Albayrak E, Kocabaş F (2020) Temporal modulation of calcium sensing in hematopoietic stem cells is crucial for proper stem cell expansion and engraftment. J Cell Physiol 235:9644–9666

    Article  CAS  Google Scholar 

  • Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19:667–679

    Article  Google Scholar 

Download references

DeclarationsFunding:

FK was supported by Yeditepe University.

Conflicts of Interest/Competing interests:

All authors declare no conflict of interest.

Availability of Data and Material:

Supporting data is provided in the supporting materials. Further data is available upon request.

Code Availability:

Not applicable.

Authors’ Contributions:

LYA planned the experiments, collected and analyzed data, and wrote the manuscript. FK designed the studies and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Kocabas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alyazici, L.Y., Kocabas, F. (2021). Identification of Small Molecules That Enhance the Expansion of Mesenchymal Stem Cells Originating from Bone Marrow. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 16. Advances in Experimental Medicine and Biology(), vol 1387. Springer, Cham. https://doi.org/10.1007/5584_2021_677

Download citation

Publish with us

Policies and ethics