Skip to main content

Role of IP3 Receptors in Shaping the Carotid Chemoreceptor Response to Hypoxia But Not to Hypercapnia in the Rat Carotid Body: An Evidence Review

  • Chapter
  • First Online:
Medical and Biomedical Updates

Abstract

This article addresses the disparity in the transduction pathways for hypoxic and hypercapnic stimuli in carotid body glomus cells. We investigated and reviewed the experimental evidence showing that the response to hypoxia, but not to hypercapnia, is mediated by 1,4,5-inositol triphosphate receptors (IP3R/s) regulating the intracellular calcium content [Ca2+]c in glomus cells. The rationale was based on the past observations that inhibition of oxidative phosphorylation leads to the explicit inhibition of the hypoxic chemoreflex. [Ca2+]c changes were measured using cellular Ca2+-sensitive fluorescent probes, and carotid sinus nerve (CSN) sensory discharge was recorded with bipolar electrodes in in vitro perfused-superfused rat carotid body preparations. The cell-permeant, 2-amino-ethoxy-diphenyl-borate (2-APB; 100 μM) and curcumin (50 μM) were used as the inhibitors of IP3R/s. These agents suppressed the [Ca2+]c, and CSN discharge increases in hypoxia but not in hypercapnia, leading to the conclusion that only the hypoxic effects were mediated via modulation of IP3R/s. The ATP-induced Ca2+ release from intracellular stores in a Ca2+-free medium was blocked with 2-APB, supporting this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anichkov SV, Belenkii ML (1963) Pharmacology of the carotid body chemoreceptors. Pergamon Press, Oxford

    Google Scholar 

  • Bean BP (1992) Pharmacology and electrophysiology of ATP activated ion channels. TIPS 13:87–90

    CAS  PubMed  Google Scholar 

  • Beitner Johnson D, Milhorn DE (1998) Hypoxia induces phosphorylation of the cyclic AMP response element binding protein by a novel signaling mechanism. J Biol Chem 273:19834–19839

    CAS  PubMed  Google Scholar 

  • Beitner Johnson D, Rust RT, Hsieh TC, Milhorn DE (2001) Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC-12 cells. Cell Signal 13:23–27

    CAS  PubMed  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry. Biochem J 32:1–11

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341:197–205

    CAS  PubMed  Google Scholar 

  • Bilmen JG, Wooton LL, Godfrey RE, Smart OS, Michelangeli F (2002) Inhibition of SERCA Ca2+ pumps by 2-aminoethyldiphenyl borate (2-APB) reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+ binding sites. Eur J Biochem 269:3678–3687

    CAS  PubMed  Google Scholar 

  • Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiat CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16:1145–1150

    CAS  PubMed  Google Scholar 

  • Buckler KJ, Vaughn-Jones RD (1994) Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J Physiol 478(Pt 1):157–171

    PubMed  PubMed Central  Google Scholar 

  • Buckler KJ, Vaughn-Jones RD (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type L cells. J Physiol 513:819–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conforti L, Millhorn DE (1997) Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells. J Physiol 502(Pt 2):293–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasso LL, Buckler KJ, Vaughan-Jones RD (1997) Muscarinic and nicotinic receptors raise intracellular Ca2+ levels in type I cells. J Physiol 498:327–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • De La Torre JC (1980) An improved approach to histofluorescence using SPG method for tissue monoamines. J Neurosci Methods 3:1–5

    PubMed  Google Scholar 

  • Diver JM, Sage SO, Rosado JA (2001) The inositol triphosphate receptor antagonist 2-aminoethyldiphenyl borate (2-APB) blocks Ca2+ entry channel in human platelets: caution for use in studying Ca2+ influx. Cell Calcium 30:323–329

    CAS  PubMed  Google Scholar 

  • Duchen MR (2000) Mitochondria and calcium: from cell signaling to cell death. J Physiol 529:57–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duchen MR, Biscoe JJ (1992) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from rabbit carotid body. J Physiol 450:33–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer JL, Zafar Khan S, Bilmen JG, Hawtin SR, Wheatley M, Javed MH, Michelangeli F (2002) Curcumin: a new cell-permeant inhibitor of the inositol 1,4,5-triphosphate receptor. Cell Calcium 31:45–52

    CAS  PubMed  Google Scholar 

  • Ehlrich BE, Kaftan E, Bezprozvanny S, Bezprozvanny I (1994) The pharmacology of intracellular Ca2+ release channels. Trends Pharmacol Sci 15:145–149

    Google Scholar 

  • Faff L, Kowaleski C, Pokorski M (1999) Protein kinase C – a potential modifier of carotid body function. Monaldi Arch Chest Dis 54:172–177

    CAS  PubMed  Google Scholar 

  • Ferris CD, Huganir RL, Snyder SH (1990) Calcium flux mediated by purified inositol 1,4,5-triphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotide. Proc Nat Acad Sci U S A 87:2147–2151

    CAS  Google Scholar 

  • Fitzgerald RS (2000) Oxygen and carotid body chemotransduction: the cholinergic hypothesis-a brief history and new evaluation. Respir Physiol 120:89–104

    CAS  PubMed  Google Scholar 

  • Ghosh TK, Eis PS, Millaney JM, Ebert CL, Gill DL (1988) Competitive, reversible and potent antagonism of inositol 1,4,5-triphosphate – activated calcium release by heparin. J Biol Chem 263:11075–11079

    CAS  PubMed  Google Scholar 

  • Gonzalez C, Lopez-Lopez JR, Obeso A, Perez-Garcia MT, Rocher A (1995) Cellular mechanisms in the carotid body. Respir Physiol 102:137–147

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescent properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Guillemin K, Krasnow MA (1997) The hypoxic response: huffing and HIFing. Cell 89:9–12

    CAS  PubMed  Google Scholar 

  • Hain J, Onoue H, Maryleitner M, Fleischer S, Schindler H (1995) Phosphorylation modulates the function of calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270:2074–2081

    CAS  PubMed  Google Scholar 

  • Hisatsune C, Nakamura K, Kuroda Y, Nakamura T, Mikoshiba K (2005) Amplification of Ca2+ signaling by diacylglycerol-mediated inositol 1,4,5-trisphosphate production. J Biol Chem 280(12):11723–11730

    CAS  PubMed  Google Scholar 

  • Holda JR, Klishin A, Sedova M, Huser J, Blatter LA (1998) Capacitative calcium entry. NIPS 13:157–163

    CAS  PubMed  Google Scholar 

  • Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127

    CAS  PubMed  Google Scholar 

  • Kaplin AL, Snyder SH, Linden DL (1996) Reduced nicotinamide adenine dinucleotide selective stimulation of inositol 1,4,5-triphosphate receptors mediate hypoxic mobilization of calcium. J Neurosci 16:2002–2011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kostyuk PG, Shmigol AV, Voitenko N, Svichar NV, Kostyuk EP (2000) The endoplasmic reticulum and mitochondria as elements of the mechanism of intracellular signaling in the nerve cell. Neurosci Behav Physiol 30:15–18

    CAS  PubMed  Google Scholar 

  • Kukkonen JP, Lund PE, Akerman KE (2001) 2-aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated (Ca2+) discharge and store-operated influx. Cell Calcium 30:117–129

    CAS  PubMed  Google Scholar 

  • Kumar GK, Overholt JL, Bright JR, Hui KY, Lu H, Prabhakar NR (1998) Release of dopamine and norepinephrine by hypoxia from PC12 cells. Am J Phys 274:1592–1600

    Google Scholar 

  • Lahiri S, Mokashi A, Huang WX, Di Giulio C, Iturriaga R (1990) Role of protein kinase C in the carotid body signal transduction. In: Eyzaguirre C, Fidone SJ, Fitzgerald RS, Lahiri S, DM MD (eds) Arterial chemoreception. Springer-Verlag, New York

    Google Scholar 

  • Lahiri S, Osanai S, Buerk DG, Mokashi A, Chugh DK (1996) Thapsigargin enhances carotid body chemosensory discharge in response to hypoxia in zero [Ca2+]e: evidence for intracellular Ca2+ release. Brain Res 709:141–144

    CAS  PubMed  Google Scholar 

  • Lahiri S, Rozanov C, Roy A, Storey B, Buerk DG (2001) Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int J Biochem Cell Biol 33:755–774

    CAS  PubMed  Google Scholar 

  • Lahiri S, Roy A, Li J, Mokashi A, Baby SM (2003) Ca2+ responses to hypoxia are mediated by IP3-R on Ca2+ store depletion. Adv Exp Med Biol 536:25–32

    CAS  PubMed  Google Scholar 

  • Levin R, Baiman A, Priel Z (1997) Protein kinase C induced calcium influx and sustained enhancement of ciliary beating by extracellular ATP. Cell Calcium 21:103–113

    CAS  PubMed  Google Scholar 

  • Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K+ current modulated by Po2 in type I chemoreceptor cells. Science 241:580–582

    CAS  PubMed  Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(l,4,5)P3-induced Ca2+ release. J Biochem 122:498–505

    CAS  PubMed  Google Scholar 

  • Michikawa T, Miyawaki A, Fruichi T, Mikoshiba K (1996) Inositol 1,4,5-triphosphate receptors and calcium signaling. Crit Rev Neurobiol 10:39–55

    CAS  PubMed  Google Scholar 

  • Mokashi A, Roy A, Rozanov C, Daudu P, Di Giulio C, Lahiri S (2001) Ryanodine receptor-mediated [Ca2+]i release in glomus cells is independent of natural stimuli and does not participate in the chemosensory responses of the rat carotid body. Brain Res 916:32–40

    CAS  PubMed  Google Scholar 

  • Mokashi A, Li J, Roy A, Baby SM, Lahiri S (2003) ATP causes glomus cell [Ca2+]c increases without corresponding increases in CSN activity. Respir Physiol Neurobiol 138:1–18

    CAS  PubMed  Google Scholar 

  • Mulligan E, Lahiri S, Storey BT (1981) Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J Appl Physiol 519:438–446

    Google Scholar 

  • Parekh AB (2003) Mitochondrial regulation of intracellular Ca2+ signaling: more than just simple Ca2+ buffers. NIPS 18:252–256

    CAS  PubMed  Google Scholar 

  • Peers C (1990) Selective effect of lowered extracellular pH on Ca2+-dependent K+ currents in type I cells isolated from neonatal rat carotid body. J Physiol 422:381–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peers C, Carpenter F (1998) Inhibition of Ca2+-dependent K+ channels in rat carotid body type I cells by protein kinase C. J Physiol 512:743–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pokorski M (2000) The phosphoinositide signaling pathway in the carotid body mechanism. Bratisl Lek Listy 101(3):176

    CAS  PubMed  Google Scholar 

  • Pokorski M, Faff L (1999) Protein kinase C in the carotid body. Acta Neurobiol Exp (Wars) 59(2):159

    CAS  Google Scholar 

  • Pokorski M, Strosznajder R (1992) Phosphoinositides and signal transduction in the cat carotid body. In: Honda Y, Miyamoto Y, Konno K, Widdicombe JG (eds) Control of breathing and its modeling perspective. Plenum, New York, pp 367–370

    Google Scholar 

  • Pokorski M, Strosznajder R (1993) PO2-dependence of phospholipase C in the cat carotid body. Adv Exp Med Biol 337:191–195

    CAS  PubMed  Google Scholar 

  • Pokorski M, Strosznajder R (1997) ATP activates phospholipase C in the cat carotid body in vitro. J Physiol Pharmacol 48:443–450

    CAS  PubMed  Google Scholar 

  • Pokorski M, Walski M, Matysiak Z (1996) A phospholipase C inhibitor impedes the hypoxic ventilatory response in the cat. Adv Exp Med Biol 410:397–403

    CAS  PubMed  Google Scholar 

  • Pokorski M, Sakagami H, Kondo H (2000) Classical protein kinase C and its hypoxic stimulus-induced translocation in the cat and rat carotid body. Eur Respir J 16(3):459–463

    CAS  PubMed  Google Scholar 

  • Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536:3–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putney JW (1997) Type 3 inositol 1,4,5-trisphophate receptor and capacitative calcium entry. Cell Calcium 21:257–261

    CAS  PubMed  Google Scholar 

  • Restrepo D, Teeter JH, Honda E, Boyle AG, Marecek JF, Prestwich GD, Kalinoski DL (1992) Evidence for an InsP3-gated channel protein in isolated rat olfactory cilia. Am J Physiol 263:667–673

    Google Scholar 

  • Rigual R, Cachero MT, Rocher R, Gonzalez C (1999) Hypoxia inhibits the synthesis of phosphoinositides in the rabbit carotid body. Pflugers Arch 437:839–845

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Pinton P, Bin M, Chisea A, Flippin L, Pozzan T (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–199

    CAS  PubMed  Google Scholar 

  • Ross CA, Meldolesi J, Milner TA, Satoh T, Supattapone S, Snyder SH (1989) Inositol 1,4,5-triphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339:468–470

    CAS  PubMed  Google Scholar 

  • Roth MG (2004) Phosphoinositides in constitutive membrane traffic. Physiol Rev 84(3):699–730

    CAS  PubMed  Google Scholar 

  • Roy A, Rozanov C, Mokashi A, Lahiri S (2000) PO2-PCO2 stimulus interaction in [Ca2+]i and CSN activity in the adult rat carotid body. Respir Physiol 122:15–26

    CAS  PubMed  Google Scholar 

  • Roy A, Li J, Al-Mehdi A, Mokashi A, Lahiri S (2002) Effect of acute hypoxia on glomus cell Em and Psi M as measured by fluorescence imaging. J Appl Physiol 93:1987–1988

    PubMed  Google Scholar 

  • Rutter GA, Rizzuto R (2000) Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. TIBS 25:215–220

    CAS  PubMed  Google Scholar 

  • Sharp AH, McPherson PS, Dawson TM, Akoi C, Campbell KP, Snyder SH (1993) Differential immunohistochemical localization of inositol 1,4,5-triphosphate and ryanodine-sensitive Ca2+ release channels in the rat brain. J Neurosci 13:3051–3063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ (1999) What drives calcium entry during [Ca2+]i oscillations? – challenging the capacitative model. Cell Calcium 25(3):237–246

    CAS  PubMed  Google Scholar 

  • Sweeney M, McDaniel SS, Platoshyn O, Zhang S, Yu Y, Lapp BR, Zhao Y, Thistlethwaite PA, Yuan JXJ (2002) Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J Appl Physiol 92(4):1594–1602

    CAS  PubMed  Google Scholar 

  • Swope SL, Moss SJ, Raymond LA, Huganir RL (1999) Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotein Res 33:49–78

    CAS  PubMed  Google Scholar 

  • Tanimura A, Tojyo Y, James R (2000) Evidence that type I, Il, and III inositol 1,4,5 triphosphate receptors can occur as integral cell membrane proteins. J Biol Chem 35:27488–27493

    Google Scholar 

  • Thompson CH, Kemp CJ, Radda GK (1992) Changes in high energy phosphates in rat skeletal muscle during acute respiratory acidosis. Acta Physiol Scand 146:15–19

    CAS  PubMed  Google Scholar 

  • Vicario I, Obeso A, Rocher A, Lopez-Barneo J, Gonzalez C (2000) Intracellular Ca2+ stores in chemoreceptor cells of the rabbit carotid body: significance for chemoreception. Am J Phys 279:51–61

    Google Scholar 

  • Wang ZZ, He L, Dinger CJ, Stensas L, Fidone S (1999) Protein phosphorylation signaling mechanism in carotid body chemoreception. Biol Signals Recept 8:366–374

    PubMed  Google Scholar 

  • Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH (1987) Characterization of inositol triphosphate receptor binding in brain. J Biol Chem 262:12132–12140

    CAS  PubMed  Google Scholar 

  • Wu J, Kamimura N, Takeo T, Suga S, Wakui M, Maruyama T, Mikoshiba K (2000) 2-aminoethoxydiphenyl borate modulates kinetics of intracellular Ca2+ signals mediated by inositol 1,4,5-triphosphate-sensitive Ca2+ stores in single pancreatic acinar cells of mouse. Mol Pharmacol 58:1368–1374

    CAS  PubMed  Google Scholar 

  • Wyatt CN, Buckler KJ (2004) The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol 556:175–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YX, Pindolia KR, Janakiraman N, Noth CJ, Chapman RA, Gautam SC (1997) Curcumin, a compound with anti-inflammatory and antioxidant properties, downregulates chemokine expression in bone marrow stromal cells. Exp Hematol 25:413–422

    CAS  PubMed  Google Scholar 

  • Yoshioko H, Miyake H, Smith DS, Chance B, Sawada T, Nioka S (1995) Effect of hypercapnia on ECOG and oxidative metabolism in neonatal dog brain. J Appl Physiol 78:272–2278

    Google Scholar 

  • Zaccheti D, Cleminti E, Fasoloto C, Lorenzon P, Zottin M, Govaz F, Fumagalli G, Pozzan T, Meldolesi J (1991) Intracellular Ca2+ pools in PC-12 cells. J Biol Chem 266:20152–20158

    Google Scholar 

Download references

Acknowledgments

Supported by grants R-37-HL-43413-14, ROI-HL-50180-10, T-32-07027-29, and ONR-N-00014-01-0948. This article is a tribute to the late Professor Sukhamay Lahiri, one of the most distinguished figures of carotid body research in the second half of the twentieth century. The authors, coming from various corners of the world, had the fortune to be alumni at Prof. Lahiri’s Lab at the Department of Physiology of the University of Pennsylvania in Philadelphia over the years past and to share his research passion and undaunted efforts to get to the kernels of carotid body chemosensing mechanisms.

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accord with the ethical standards of the institutions and practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieczyslaw Pokorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mokashi, A. et al. (2020). Role of IP3 Receptors in Shaping the Carotid Chemoreceptor Response to Hypoxia But Not to Hypercapnia in the Rat Carotid Body: An Evidence Review. In: Pokorski, M. (eds) Medical and Biomedical Updates. Advances in Experimental Medicine and Biology(), vol 1289. Springer, Cham. https://doi.org/10.1007/5584_2020_561

Download citation

Publish with us

Policies and ethics