Skip to main content

Interleukin-36: Structure, Signaling and Function

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 21))

Abstract

The IL-36 family belongs to a larger IL-1 superfamily and consists of three agonists (IL-36α/β/γ), one antagonist (IL-36Ra), one cognate receptor (IL-36R) and one accessory protein (IL-1RAcP). The receptor activation follows a two-step mechanism in that the agonist first binds to IL-36R and the resulting binary complex recruits IL-1RAcP. Assembled ternary complex brings together intracellular TIR domains of receptors which activate downstream NF-κB and MAPK signaling. Antagonist IL-36Ra inhibits the signaling by binding to IL-36R and preventing recruitment of IL-1RAcP. Members of IL-36 are normally expressed at low levels. Upon stimulation, they are inducted and act on a variety of cells including epithelial and immune cells. Protease mediated N-terminal processing is needed for cytokine activation. In the skin, the functional role of IL-36 is to contribute to host defense through inflammatory response. However, when dysregulated, IL-36 stimulates keratinocyte and immune cells to enhance the Th17/Th23 axis and induces psoriatic-like skin disorder. Genetic mutations of the antagonist IL-36Ra are associated with occurrence of generalized pustular psoriasis, a rare but life-threatening skin disease. Anti-IL-36 antibodies attenuate IMQ or IL-23 induced skin inflammation in mice, illustrating IL-36’s involvement in mouse model of psoriasis. Other organs such as the lungs, the intestine, the joints and the brain also express IL-36 family members upon stimulation. The physiological and pathological roles of IL-36 are less well defined in these organs than in the skin. In this chapter, current progress on IL-36 protein and biology is reviewed with a discussion on investigative tools for this novel target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonina IS et al (2011) Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1alpha. Mol Cell 44(2):265–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agerstam H et al (2015) Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci U S A 112(34):10786–10791

    PubMed  PubMed Central  Google Scholar 

  • Agerstam H et al (2016) IL1RAP antibodies block IL-1-induced expansion of candidate CML stem cells and mediate cell killing in xenograft models. Blood 128(23):2683–2693

    PubMed  Google Scholar 

  • Ainscough JS et al (2017) Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36gamma. Proc Natl Acad Sci U S A 114(13):E2748–E2757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aksentijevich I et al (2009) An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 360(23):2426–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alsahebfosoul F et al (2018) Serum level of interleukin 36 in patients with multiple sclerosis. J Immunoassay Immunochem 39(5):558–564

    CAS  PubMed  Google Scholar 

  • Aoyagi T et al (2017a) IL-36 receptor deletion attenuates lung injury and decreases mortality in murine influenza pneumonia. Mucosal Immunol 10(4):1043–1055

    CAS  PubMed  Google Scholar 

  • Aoyagi T et al (2017b) Interleukin-36gamma and IL-36 receptor signaling mediate impaired host immunity and lung injury in cytotoxic Pseudomonas aeruginosa pulmonary infection: role of prostaglandin E2. PLoS Pathog 13(11):e1006737

    PubMed  PubMed Central  Google Scholar 

  • Arkin MR et al (2003) Binding of small molecules to an adaptive protein-protein interface. Proc Natl Acad Sci U S A 100(4):1603–1608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Askmyr M et al (2013) Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 121(18):3709–3713

    CAS  PubMed  Google Scholar 

  • Bachelez H et al (2019) Inhibition of the interleukin-36 pathway for the treatment of generalized pustular psoriasis. N Engl J Med 380(10):981–983

    PubMed  Google Scholar 

  • Bal E et al (2017) Mutation in IL36RN impairs the processing and regulatory function of the interleukin-36-receptor antagonist and is associated with DITRA syndrome. Exp Dermatol

    Google Scholar 

  • Barton JL et al (2000) A tissue specific IL-1 receptor antagonist homolog from the IL-1 cluster lacks IL-1, IL-1ra, IL-18 and IL-18 antagonist activities. Eur J Immunol 30(11):3299–3308

    CAS  PubMed  Google Scholar 

  • Belaaouaj A, Kim KS, Shapiro SD (2000) Degradation of outer membrane protein a in Escherichia coli killing by neutrophil elastase. Science 289(5482):1185–1188

    CAS  PubMed  Google Scholar 

  • Bensen JT et al (2001) Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12–14. J Interf Cytokine Res 21(11):899–904

    CAS  Google Scholar 

  • Berglof E et al (2003) IL-1Rrp2 expression and IL-1F9 (IL-1H1) actions in brain cells. J Neuroimmunol 139(1–2):36–43

    CAS  PubMed  Google Scholar 

  • Blumberg H et al (2007) Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med 204(11):2603–2614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blumberg H et al (2010) IL-1RL2 and its ligands contribute to the cytokine network in psoriasis. J Immunol 185(7):4354–4362

    CAS  PubMed  Google Scholar 

  • Boutet MA et al (2016) Distinct expression of interleukin (IL)-36alpha, beta and gamma, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol 184(2):159–173

    CAS  PubMed  Google Scholar 

  • Bozoyan L et al (2015) Interleukin-36gamma is expressed by neutrophils and can activate microglia, but has no role in experimental autoimmune encephalomyelitis. J Neuroinflammation 12:173

    PubMed  PubMed Central  Google Scholar 

  • Brunner PM et al (2018) Early-onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. J Allergy Clin Immunol 141(6):2094–2106

    CAS  PubMed  Google Scholar 

  • Buhl AL, Wenzel J (2019) Interleukin-36 in infectious and inflammatory skin diseases. Front Immunol 10:1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busfield SJ et al (2000) Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. Genomics 66(2):213–216

    CAS  PubMed  Google Scholar 

  • Carrier Y et al (2011) Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol 131(12):2428–2437

    CAS  PubMed  Google Scholar 

  • Chen Z et al (2016) Increased concentrations of soluble B7-H3 and interleukin 36 in bronchoalveolar lavage fluid of children with mycoplasma pneumoniae pneumonia. BMC Infect Dis 16:212

    PubMed  PubMed Central  Google Scholar 

  • Clancy DM et al (2017) Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J 284(11):1712–1725

    CAS  PubMed  Google Scholar 

  • Clancy DM et al (2018) Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep 22(11):2937–2950

    CAS  PubMed  Google Scholar 

  • Dale M, Nicklin MJ (1999) Interleukin-1 receptor cluster: gene organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on human chromosome 2q. Genomics 57(1):177–179

    CAS  PubMed  Google Scholar 

  • Debets R et al (2001) Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2. J Immunol 167(3):1440–1446

    CAS  PubMed  Google Scholar 

  • Derer A et al (2014) Blockade of IL-36 receptor signaling does not prevent from TNF-induced arthritis. PLoS One 9(8):e101954

    PubMed  PubMed Central  Google Scholar 

  • Dietrich D, Gabay C (2014) Inflammation: IL-36 has proinflammatory effects in skin but not in joints. Nat Rev Rheumatol 10(11):639–640

    CAS  PubMed  Google Scholar 

  • Dunn EF et al (2003) High-resolution structure of murine interleukin 1 homologue IL-1F5 reveals unique loop conformations for receptor binding specificity. Biochemistry 42(37):10938–10944

    CAS  PubMed  Google Scholar 

  • Dunne A, O'Neill LA (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003(171):re3

    PubMed  Google Scholar 

  • Farooq M et al (2013) Mutation analysis of the IL36RN gene in 14 Japanese patients with generalized pustular psoriasis. Hum Mutat 34(1):176–183

    CAS  PubMed  Google Scholar 

  • Fields JK, Gunther S, Sundberg EJ (2019) Structural basis of IL-1 family cytokine Signaling. Front Immunol 10:1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca-Camarillo G et al (2018) Differential expression of IL-36 family members and IL-38 by immune and nonimmune cells in patients with active inflammatory bowel disease. Biomed Res Int 2018:5140691

    PubMed  PubMed Central  Google Scholar 

  • Frey S et al (2013) The novel cytokine interleukin-36alpha is expressed in psoriatic and rheumatoid arthritis synovium. Ann Rheum Dis 72(9):1569–1574

    CAS  PubMed  Google Scholar 

  • Gabay C, Towne JE (2015) Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol 97(4):645–652

    CAS  PubMed  Google Scholar 

  • Ganesan R et al (2017) Generation and functional characterization of anti-human and anti-mouse IL-36R antagonist monoclonal antibodies. MAbs 9(7):1143–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner JK, Herbst-Kralovetz MM (2018) IL-36gamma induces a transient HSV-2 resistant environment that protects against genital disease and pathogenesis. Cytokine 111:63–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghayur T et al (1997) Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386(6625):619–623

    CAS  PubMed  Google Scholar 

  • Gresnigt MS et al (2013) The IL-36 receptor pathway regulates Aspergillus fumigatus-induced Th1 and Th17 responses. Eur J Immunol 43(2):416–426

    CAS  PubMed  Google Scholar 

  • Gunther S, Sundberg EJ (2014) Molecular determinants of agonist and antagonist signaling through the IL-36 receptor. J Immunol 193(2):921–930

    PubMed  Google Scholar 

  • Gunther S et al (2017) IL-1 family cytokines use distinct molecular mechanisms to signal through their shared co-receptor. Immunity 47(3):510–523.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J et al (2019) Cathepsin G cleaves and activates IL-36gamma and promotes the inflammation of psoriasis. Drug Des Devel Ther 13:581–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harusato A et al (2017) IL-36gamma signaling controls the induced regulatory T cell-Th9 cell balance via NFkappaB activation and STAT transcription factors. Mucosal Immunol 10(6):1455–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • He WT et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25(12):1285–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry CM et al (2016) Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep 14(4):708–722

    CAS  PubMed  Google Scholar 

  • Højen JF et al (2019) IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nat Immunol

    Google Scholar 

  • Irina Khanskaya, J.P., Margaret H Marino, Traci Savall, Jie Li, Marco Londei (2018) A phase 1 study of ANB019, an anti-IL-36 receptor monoclonal antibody, in healthy volunteers. Available from https://www2.anaptysbio.com/wp-content/uploads/ANB019-Phase-1-Study-Poster-EAACI-2018.pdf

  • Jaras M et al (2010) Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A 107(37):16280–16285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston A et al (2011) IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J Immunol 186(4):2613–2622

    CAS  PubMed  Google Scholar 

  • Kanda T et al (2015) Interleukin(IL)-36alpha and IL-36gamma induce proinflammatory mediators from human colonic subepithelial myofibroblasts. Front Med (Lausanne) 2:69

    Google Scholar 

  • Kayagaki N et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671

    CAS  PubMed  Google Scholar 

  • Klementiev B et al (2014) Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist. J Neuroinflammation 11:27

    PubMed  PubMed Central  Google Scholar 

  • Kovach MA et al (2016) IL-36gamma is secreted in microparticles and exosomes by lung macrophages in response to bacteria and bacterial components. J Leukoc Biol 100(2):413–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovach MA et al (2017) IL-36gamma is a crucial proximal component of protective type-1-mediated lung mucosal immunity in gram-positive and -negative bacterial pneumonia. Mucosal Immunol 10(5):1320–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S et al (2000) Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem 275(14):10308–10314

    CAS  PubMed  Google Scholar 

  • Lamacchia C et al (2013) The severity of experimental arthritis is independent of IL-36 receptor signaling. Arthritis Res Ther 15(2):R38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N et al (2014) Alarmin function of cathelicidin antimicrobial peptide LL37 through IL-36gamma induction in human epidermal keratinocytes. J Immunol 193(10):5140–5148

    CAS  PubMed  Google Scholar 

  • Li T et al (2019) TGF-beta type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci Transl Med 11(491)

    Google Scholar 

  • Lian LH et al (2012) The double-stranded RNA analogue polyinosinic-polycytidylic acid induces keratinocyte pyroptosis and release of IL-36gamma. J Invest Dermatol 132(5):1346–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H et al (2001) Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem 276(23):20597–20602

    CAS  PubMed  Google Scholar 

  • Liu X et al (2013) Structural insights into the interaction of IL-33 with its receptors. Proc Natl Acad Sci U S A 110(37):14918–14923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H et al (2017) Staphylococcus aureus Epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe 22(5):653–666. e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovenberg TW et al (1996) Cloning of a cDNA encoding a novel interleukin-1 receptor related protein (IL 1R-rp2). J Neuroimmunol 70(2):113–122

    CAS  PubMed  Google Scholar 

  • Macleod T et al (2016) Neutrophil elastase-mediated proteolysis activates the anti-inflammatory cytokine IL-36 receptor antagonist. Sci Rep 6:24880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magne D et al (2006) The new IL-1 family member IL-1F8 stimulates production of inflammatory mediators by synovial fibroblasts and articular chondrocytes. Arthritis Res Ther 8(3):R80

    PubMed  PubMed Central  Google Scholar 

  • Mahil SK et al (2017) An analysis of IL-36 signature genes and individuals with IL1RL2 knockout mutations validates IL-36 as a psoriasis therapeutic target. Sci Transl Med 9(411)

    Google Scholar 

  • Malik K et al (2019) Ichthyosis molecular fingerprinting shows profound TH17 skewing and a unique barrier genomic signature. J Allergy Clin Immunol 143(2):604–618

    CAS  PubMed  Google Scholar 

  • Marrakchi S et al (2011) Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med 365(7):620–628

    CAS  PubMed  Google Scholar 

  • Martin U et al (2009) Externalization of the leaderless cytokine IL-1F6 occurs in response to lipopolysaccharide/ATP activation of transduced bone marrow macrophages. J Immunol 183(6):4021–4030

    CAS  PubMed  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    CAS  PubMed  Google Scholar 

  • Mattii M et al (2013) The balance between pro- and anti-inflammatory cytokines is crucial in human allergic contact dermatitis pathogenesis: the role of IL-1 family members. Exp Dermatol 22(12):813–819

    CAS  PubMed  Google Scholar 

  • Medina-Contreras O et al (2016) Cutting edge: IL-36 receptor promotes resolution of intestinal damage. J Immunol 196(1):34–38

    CAS  PubMed  Google Scholar 

  • Medzhitov R et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2(2):253–258

    CAS  PubMed  Google Scholar 

  • Mercurio L et al (2018) IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death Dis 9(11):1104

    PubMed  PubMed Central  Google Scholar 

  • Miller LS et al (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24(1):79–91

    CAS  PubMed  Google Scholar 

  • Milora KA et al (2017) Interleukin-36beta provides protection against HSV-1 infection, but does not modulate initiation of adaptive immune responses. Sci Rep 7(1):5799

    PubMed  PubMed Central  Google Scholar 

  • Mulero JJ et al (1999) IL1HY1: a novel interleukin-1 receptor antagonist gene. Biochem Biophys Res Commun 263(3):702–706

    CAS  PubMed  Google Scholar 

  • Mutamba S et al (2012) Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9. Eur J Immunol 42(3):607–617

    CAS  PubMed  Google Scholar 

  • Nakagawa S et al (2017) Staphylococcus aureus virulent PSMalpha peptides induce keratinocyte Alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe 22(5):667–677. e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanjo Y et al (2019) Overlapping roles for interleukin-36 cytokines in protective host defense against murine Legionella pneumophila pneumonia. Infect Immun 87(1)

    Google Scholar 

  • Ngo VL et al (2018) A cytokine network involving IL-36gamma, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc Natl Acad Sci U S A 115(22):E5076–E5085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicklin MJ et al (2002) A sequence-based map of the nine genes of the human interleukin-1 cluster. Genomics 79(5):718–725

    CAS  PubMed  Google Scholar 

  • Nishida A et al (2016) Increased expression of Interleukin-36, a member of the interleukin-1 cytokine family, in inflammatory bowel disease. Inflamm Bowel Dis 22(2):303–314

    PubMed  Google Scholar 

  • Onoufriadis A et al (2011) Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet 89(3):432–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki K, Leonard WJ (2002) Cytokine and cytokine receptor pleiotropy and redundancy. J Biol Chem 277(33):29355–29358

    CAS  PubMed  Google Scholar 

  • Qin J et al (2005) SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms. J Biol Chem 280(26):25233–25241

    CAS  PubMed  Google Scholar 

  • Quiniou C et al (2008) Development of a novel noncompetitive antagonist of IL-1 receptor. J Immunol 180(10):6977–6987

    CAS  PubMed  Google Scholar 

  • Ramadas RA et al (2011) Interleukin-1 family member 9 stimulates chemokine production and neutrophil influx in mouse lungs. Am J Respir Cell Mol Biol 44(2):134–145

    CAS  PubMed  Google Scholar 

  • Ramadas RA et al (2012) IL-36alpha exerts pro-inflammatory effects in the lungs of mice. PLoS One 7(9):e45784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivers-Auty J et al (2018) Redefining the ancestral origins of the interleukin-1 superfamily. Nat Commun 9(1):1156

    PubMed  PubMed Central  Google Scholar 

  • Russell SE et al (2016) IL-36alpha expression is elevated in ulcerative colitis and promotes colonic inflammation. Mucosal Immunol 9(5):1193–1204

    CAS  PubMed  Google Scholar 

  • Saha SS et al (2015) Signal transduction and intracellular trafficking by the interleukin 36 receptor. J Biol Chem 290(39):23997–24006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheibe K et al (2017) IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut 66(5):823–838

    CAS  PubMed  Google Scholar 

  • Scheibe K et al (2019) Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology 156(4):1082–1097. e11

    CAS  PubMed  Google Scholar 

  • Segueni N et al (2015) Limited contribution of IL-36 versus IL-1 and TNF pathways in host response to mycobacterial infection. PLoS One 10(5):e0126058

    PubMed  PubMed Central  Google Scholar 

  • Sehat M et al (2018) Evaluating serum levels of IL-33, IL-36, IL-37 and gene expression of IL-37 in patients with psoriasis vulgaris. Iran J Allergy Asthma Immunol 17(2):179–187

    PubMed  Google Scholar 

  • Shi J et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    CAS  PubMed  Google Scholar 

  • Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DE et al (2000) Four new members expand the interleukin-1 superfamily. J Biol Chem 275(2):1169–1175

    CAS  PubMed  Google Scholar 

  • Song Y et al (2019) Interleukin-36 alpha levels are elevated in the serum and cerebrospinal fluid of patients with neuromyelitis optica spectrum disorder and correlate with disease activity. Immunobiology

    Google Scholar 

  • Spangler JB et al (2015) Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 33:139–167

    CAS  PubMed  Google Scholar 

  • Su Z et al (2019) IL-36 receptor antagonistic antibodies inhibit inflammatory responses in preclinical models of psoriasiform dermatitis. Exp Dermatol 28(2):113–120

    CAS  PubMed  Google Scholar 

  • Sullivan GP et al (2018) Identification of small-molecule elastase inhibitors as antagonists of IL-36 cytokine activation. FEBS Open Bio 8(5):751–763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg TB et al (2014) Small-molecule control of cytokine function: new opportunities for treating immune disorders. Curr Opin Chem Biol 23:23–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swindell WR et al (2018) RNA-Seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front Immunol 9:80

    PubMed  PubMed Central  Google Scholar 

  • Taylor SL et al (2002) Genomic organization of the interleukin-1 locus. Genomics 79(5):726–733

    CAS  PubMed  Google Scholar 

  • Thomas C, Bazan JF, Garcia KC (2012) Structure of the activating IL-1 receptor signaling complex. Nat Struct Mol Biol 19(4):455–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari RL et al (2011) IL-1R-associated kinase-1 mediates protein kinase Cdelta-induced IL-1beta production in monocytes. J Immunol 187(5):2632–2645

    CAS  PubMed  Google Scholar 

  • Todorovic V et al (2019) Small molecule IL-36gamma antagonist as a novel therapeutic approach for plaque psoriasis. Sci Rep 9(1):9089

    PubMed  PubMed Central  Google Scholar 

  • Tomuschat C et al (2017) Altered expression of IL36gamma and IL36 receptor (IL1RL2) in the colon of patients with Hirschsprung's disease. Pediatr Surg Int 33(2):181–186

    PubMed  Google Scholar 

  • Tortola L et al (2012) Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest 122(11):3965–3976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Towne JE et al (2004) Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J Biol Chem 279(14):13677–13688

    CAS  PubMed  Google Scholar 

  • Towne JE et al (2011) Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. J Biol Chem 286(49):42594–42602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi N et al (2014) The structural basis for receptor recognition of human interleukin-18. Nat Commun 5:5340

    CAS  PubMed  Google Scholar 

  • van de Veerdonk FL et al (2012) IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci U S A 109(8):3001–3005

    PubMed  PubMed Central  Google Scholar 

  • van de Veerdonk FL et al (2018) Biology of IL-38 and its role in disease. Immunol Rev 281(1):191–196

    PubMed  Google Scholar 

  • Vigne S et al (2011) IL-36R ligands are potent regulators of dendritic and T cells. Blood 118(22):5813–5823

    CAS  PubMed  Google Scholar 

  • Wang P et al (2005) The interleukin-1-related cytokine IL-1F8 is expressed in glial cells, but fails to induce IL-1beta signalling responses. Cytokine 29(6):245–250

    PubMed  Google Scholar 

  • Wang D et al (2010) Structural insights into the assembly and activation of IL-1beta with its receptors. Nat Immunol 11(10):905–911

    CAS  PubMed  Google Scholar 

  • Weinrauch Y et al (2002) Neutrophil elastase targets virulence factors of enterobacteria. Nature 417(6884):91–94

    CAS  PubMed  Google Scholar 

  • Whitty A, Zhou L (2015) Horses for courses: reaching outside drug-like chemical space for inhibitors of challenging drug targets. Future Med Chem 7(9):1093–1095

    CAS  PubMed  Google Scholar 

  • Yang CY (2015) Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method. PLoS One 10(2):e0118671

    PubMed  PubMed Central  Google Scholar 

  • Yi G et al (2016) Structural and functional attributes of the Interleukin-36 receptor. J Biol Chem 291(32):16597–16609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon DY, Dinarello CA (1998) Antibodies to domains II and III of the IL-1 receptor accessory protein inhibit IL-1 beta activity but not binding: regulation of IL-1 responses is via type I receptor, not the accessory protein. J Immunol 160(7):3170–3179

    CAS  PubMed  Google Scholar 

  • Zhang J et al (2017) IL-36 induces cytokine IL-6 and chemokine CXCL8 expression in human lung tissue cells: implications for pulmonary inflammatory responses. Cytokine 99:114–123

    CAS  PubMed  Google Scholar 

  • Zheng P et al (2018) Synthetic human monoclonal antibody targets hIL1 receptor accessory protein chain with therapeutic potential in triple-negative breast cancer. Biomed Pharmacother 107:1064–1073

    CAS  PubMed  Google Scholar 

  • Zhou L et al (2018) Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation. J Biol Chem 293(2):403–411

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. W. Blaine Stine, Dr. Ivan R. Correia and Dr. Yao Fan for their feedbacks on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhou .

Editor information

Editors and Affiliations

Additional information

All authors are employees of AbbVie. The design, study conduct, and financial support for this research were provided by AbbVie. AbbVie participated in the interpretation of data, review, and approval of the publication.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, L., Todorovic, V. (2020). Interleukin-36: Structure, Signaling and Function. In: Atassi, M.Z. (eds) Protein Reviews . Advances in Experimental Medicine and Biology(), vol 21. Springer, Cham. https://doi.org/10.1007/5584_2020_488

Download citation

Publish with us

Policies and ethics