Skip to main content

The Design and Application of an Appropriate Parkinson’s Disease Animal Model in Regenerative Medicine

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 13

Abstract

Objectives: Aging as an inevitable and complex physiological process occurs through a progressive decrease in the potential of tissue regeneration. Given the increasing global outbreak of aging and age-related disorders, it is important to control this phenomenon. Parkinson’s disease (one of the age-related neurodegenerative and progressive disorders) resulted from predominant dopaminergic neurons deficiency. Usual Parkinson’s disease treatments just can lead to symptomatically relieving. Recently, cell therapy and regenerative medicine a great promise in the treatment of several types of disorders including Parkinson’s disease. Herein, before starting clinical trials, preclinical studies should be performed to answer some fundamental questions about the safety and efficacy of various treatments. Additionally, developing a well-designed and approved study is required to provide an appropriate animal model with strongly reliable validation methods. Hereupon, this review will discuss about the design and application of an appropriate Parkinson’s disease animal model in regenerative medicine.

Evidence acquisition: In order to conduct the present review, numbers of Parkinson’s disease preclinical studies, as well as literatures related to the animal modeling, were considered.

Results: Appropriate animal models which approved by related authorize committees should have a high similarity to humans from anatomical, physiological, behavioral, and genetic characteristics view of point.

Conclusion: It is concluded that animal studies before starting clinical trials have an important role in answering the crucial questions about the various treatments safety and efficacy. Therein, it is recommended that all of animal modeling stages be assessed by animal ethics and welfare guidelines and also evaluated by different validation tests. However, it is better to find some alternatives to replacement, refinement, and, reduction of animals. Nowadays, some novel technologies such as using imaging methods have been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-Hydroxydopamine

APDM:

Mobility Lab System

BBB:

Blood-Brain Barrier

CSF:

Cerebrospinal Fluid

DA:

Dopaminergic

DBS:

Deep Brain Stimulation

dMRI:

diffusion-weighted MRI

ICLAS:

International Council on Laboratory Animal Science

L-DOPA:

3, 4-Dihydroxy-L-Phenylalanine

ML:

Magnetic Resonance Imaging

MPTP:

1-Methyl-4-Phenyl-1, 2,3,6-Tetrahydropyridine

OIE:

World Organization for Animal Health

PD:

Parkinson’s disease

PET:

Positron Emission Tomography

PQ:

Paraquat

RM:

Regenerative Medicine

SAM:

StepWatch3

SN:

Substantia Nigra

TBM:

Tensor-Based Morphometry

VBM:

Voxel-Based Morphometry

WHO:

World Health Organization

References

  • Ai J et al (2014) Polymeric scaffolds in neural tissue engineering: a review. Arch Neurosci 1(1):15–20

    Article  Google Scholar 

  • Aich S et al (2018) A validation study of freezing of gait (FoG) detection and machine-learning-based FoG prediction using estimated gait characteristics with a wearable accelerometer. Sensors 18(10):3287

    Article  PubMed Central  Google Scholar 

  • Albus U (2012) Guide for the care and use of laboratory animals, 8th edn. SAGE Publications Sage UK, London

    Google Scholar 

  • Arking R, Arking B (2006) Biology of aging: observations and principles. Oxford University Press, Oxford

    Google Scholar 

  • Association, A.P (1986) Guidelines for ethical conduct in the care and use of animals. J Exp Anal Behav 45(2):127

    Article  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2(5):325

    Article  CAS  PubMed  Google Scholar 

  • Ben-Hur T et al (2004) Transplantation of human embryonic stem cell–derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells 22(7):1246–1255

    Article  PubMed  Google Scholar 

  • Bennett A (2010) The use of human tissues and cells in biomedical research: the unusual suspects. Altern Lab Anim 38(1_suppl):5–9

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Przedborski S (2011) A tale on animal models of Parkinson’s disease. Mov Disord 26(6):993–1002

    Article  PubMed  Google Scholar 

  • Blandini F, Armentero M-T (2014) Dopamine receptor agonists for Parkinson’s disease. Expert Opin Investig Drugs 23(3):387–410

    Article  CAS  PubMed  Google Scholar 

  • Blesa J et al (2012) Classic and new animal models of Parkinson’s disease. Biomed Res Int 2012:845618

    Google Scholar 

  • Blesa J et al (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  • Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26(6):857–864

    Article  CAS  PubMed  Google Scholar 

  • Broichhausen C et al (2014) In question: the scientific value of preclinical safety pharmacology and toxicology studies with cell-based therapies. Mol Ther Methods Clin Dev 1:14026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brumberg J et al (2019) PET imaging of noradrenaline transporters in Parkinson’s disease: focus on scan time. Ann Nucl Med 33(2):69–77

    Article  CAS  PubMed  Google Scholar 

  • Buczak-Stec EW, König H-H, Hajek A (2018) Impact of incident Parkinson’s disease on satisfaction with life. Front Neurol 9:589

    Article  PubMed  PubMed Central  Google Scholar 

  • Burciu RG, Vaillancourt DE (2018) Imaging of motor cortex physiology in Parkinson’s disease. Mov Disord 33(11):1688–1699

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai J et al (2009) Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 19(7):1017–1023

    Article  PubMed Central  CAS  Google Scholar 

  • Cannon JR, Greenamyre JT (2010) Neurotoxic in vivo models of Parkinson’s disease: recent advances. In: Progress in brain research. Elsevier, Amsterdam, pp 17–33

    Google Scholar 

  • Carlsson A (2002) Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 109(5):777–787

    Article  CAS  PubMed  Google Scholar 

  • Chiorazzi A et al (2018) Animal models & translational medicine: quality and reproducibility of experimental design. Comp Med 68(1):84–94

    Google Scholar 

  • Cordes D et al (2018) Advances in functional magnetic resonance imaging data analysis methods using empirical mode decomposition to investigate temporal changes in early Parkinson’s disease. Alzheimers Dement Transl Res Clin Interv 4:372–386

    Article  Google Scholar 

  • Council, N.R (2010) Guide for the care and use of laboratory animals. National Academies Press, Bethesda

    Google Scholar 

  • Cuadrado-Godia E et al (2018) Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies. J Stroke 20(3):302

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  • De Micco R, Russo A, Tessitore A (2018) Structural MRI in idiopathic Parkinson’s disease. In: Imaging in movement disorders: imaging methodology and applications in parkinson’s disease, vol 141. Academic, Cambridge, MA, pp 405–438

    Chapter  Google Scholar 

  • de Natale ER et al (2018) Molecular imaging of the dopaminergic system in idiopathic Parkinson’s disease. In: Imaging in movement disorders: imaging methodology and applications in Parkinson’s disease, vol 141. Academic, Cambridge, MA, pp 131–172

    Chapter  Google Scholar 

  • Dickson DW (2018) Neuropathology of Parkinson disease. Parkinsonism Relat Disord 46:S30–S33

    Article  PubMed  Google Scholar 

  • Fenwick N, Griffin G, Gauthier C (2009) The welfare of animals used in science: how the “three Rs” ethic guides improvements. Can Vet J 50(5):523

    PubMed  PubMed Central  Google Scholar 

  • Festing S, Wilkinson R (2007) The ethics of animal research: talking point on the use of animals in scientific research. EMBO Rep 8(6):526–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox SH et al (2011) The Movement Disorder Society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord 26(S3):S2–S41

    Article  PubMed  Google Scholar 

  • Garcia-Ruiz PJ, Espay AJ (2017) Parkinson disease: an evolutionary perspective. Front Neurol 8:157

    Article  PubMed  PubMed Central  Google Scholar 

  • George B (2011) Regulations and guidelines governing stem cell based products: clinical considerations. Perspect Clin Res 2(3):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghodsi M et al (2012) The effect of fetal liver-derived cell suspension allotransplantation on patients with diabetes: first year of follow-up. Acta Med Iran 50:541–546

    PubMed  Google Scholar 

  • Gilany K et al (2018) Metabolic fingerprinting of seminal plasma from non-obstructive Azoospermia patients: positive versus negative sperm retrieval. J Reprod Infertil 19(2):109

    PubMed  PubMed Central  Google Scholar 

  • Giles AR (1987) Guidelines for the use of animals in biomedical research. Thromb Haemost 58(04):1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Godinho C et al (2016) A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil 13(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodarzi P et al (2014a) Stem cell therapy for treatment of epilepsy. Acta Med Iran 52(9):651–655

    PubMed  Google Scholar 

  • Goodarzi P et al (2014b) Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture. Acta Med Iran 52(4):241–245

    PubMed  Google Scholar 

  • Goodarzi P et al (2015) Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islam Repub Iran 29:168

    PubMed  PubMed Central  Google Scholar 

  • Grafström RC et al (2015) Toward the replacement of animal experiments through the bioinformatics-driven analysis of ‘omics’ data from human cell cultures. Altern Lab Anim 43(5):325–332

    Article  PubMed  Google Scholar 

  • Green RM (2019) Ethical considerations. In: Principles of regenerative medicine. Elsevier, Amsterdam, pp 1331–1343

    Chapter  Google Scholar 

  • Group, P.M.C (2014) Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 384(9949):1196–1205

    Article  CAS  Google Scholar 

  • Guillén J et al (2018) The European framework on research animal welfare regulations and guidelines. In: Laboratory animals regulations and recommendations for the care and use of animals in research, 2nd ed. Elsevier, San Diego, pp 117–202. https://doi.org/10.1016/B978-0-12-849880-4.00005-2

  • Guimarães RP et al (2018) Is diffusion tensor imaging a good biomarker for early Parkinson’s disease? Front Neurol 9:626

    Article  PubMed  PubMed Central  Google Scholar 

  • Halbach OVBU (2006) Modeling neurodegenerative diseases in vivo review. Neurodegener Dis 2(6):313

    Article  CAS  Google Scholar 

  • Halme DG, Kessler DA (2006) FDA regulation of stem-cell–based therapies. Massachusetts Medical Society, Waltham

    Book  Google Scholar 

  • Hammes J, Drzezga A, van Eimeren T (2018) The role of tau imaging in Parkinsonian disorders. Curr Neurol Neurosci Rep 18(12):86

    Article  PubMed  Google Scholar 

  • Harriss D, MacSween A, Atkinson G (2017) Standards for ethics in sport and exercise science research: 2018 update. Int J Sports Med 38(14):1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Heldman DA et al (2017) Telehealth management of Parkinson’s disease using wearable sensors: an exploratory study. Digit Biomark 1(1):43–51

    PubMed  PubMed Central  Google Scholar 

  • Jackson-Lewis V, Blesa J, Przedborski S (2012) Animal models of Parkinson’s disease. Parkinsonism Relat Disord 18:S183–S185

    Article  PubMed  Google Scholar 

  • Jankovic J, Poewe W (2012) Therapies in Parkinson’s disease. Curr Opin Neurol 25(4):433–447

    Article  CAS  PubMed  Google Scholar 

  • Katako A et al (2018) Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia. Sci Rep 8(1):13236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katunina E et al (2015) Dopamine receptor agonists: new forms and new possibilities in the treatment of Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 115(5):34–40

    Article  CAS  PubMed  Google Scholar 

  • Kielar C et al (2012) Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse. PLoS One 7(2):e32636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ et al (2009) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57(1):13–23

    Article  PubMed  Google Scholar 

  • Kim HK et al (2019) A subset of paracrine factors as efficient biomarkers for predicting vascular regenerative efficacy of mesenchymal stromal/stem cells. Stem Cells 37(1):77–88

    Article  CAS  PubMed  Google Scholar 

  • Knoepfler PS (2015) From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Adv Drug Deliv Rev 82:192–196

    Article  PubMed  CAS  Google Scholar 

  • Lahman MK et al (2011) Culturally responsive relational reflexive ethics in research: the three Rs. Qual Quant 45(6):1397–1414

    Article  Google Scholar 

  • Lane EL (2019) L-DOPA for Parkinson’s disease—a bittersweet pill. Eur J Neurosci 49(3):384–398

    Article  PubMed  Google Scholar 

  • Lennernas H et al (2017) In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation: future use of modern approaches and methodologies in a regulatory context. Mol Pharm 14(4):1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Lim K-L, Ng C-H (2009) Genetic models of Parkinson disease. Biochim Biophys Acta Mol Basis Dis 1792(7):604–615

    Article  CAS  Google Scholar 

  • Lopane G et al (2018) Supervised versus unsupervised technology-based levodopa monitoring in Parkinson’s disease: an intrasubject comparison. J Neurol 265(6):1343–1352

    Article  PubMed  Google Scholar 

  • Mateos-Pérez JM et al (2018) Structural neuroimaging as clinical predictor: a review of machine learning applications. NeuroImage Clin 20:506–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller DB, O’Callaghan JP (2015) Biomarkers of Parkinson’s disease: present and future. Metabolism 64(3):S40–S46

    Article  CAS  PubMed  Google Scholar 

  • Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82(3):252–264

    Article  CAS  PubMed  Google Scholar 

  • N Prasad K (2017) Oxidative stress, pro-inflammatory cytokines, and antioxidants regulate expression levels of MicroRNAs in Parkinson’s disease. Curr Aging Sci 10(3):177–184

    Article  CAS  Google Scholar 

  • Okano H et al (2012) The common marmoset as a novel animal model system for biomedical and neuroscience research applications. In: Seminars in fetal and neonatal medicine 17(2012):336–340

    Google Scholar 

  • Okura H, Matsuyama A (2016) Regulatory aspect of pre-clinical studies for regenerative medicine. Transl Med (Sunnyvale) 6:182. https://doi.org/10.4172/2161-1025.1000182

    Article  Google Scholar 

  • Pahwa R, Lyons KE (2014) Treatment of early Parkinson’s disease. Curr Opin Neurol 27(4):442–449

    Article  CAS  PubMed  Google Scholar 

  • Payab M et al (2018a) Stem cell and obesity: current state and future perspective. In: Cell biology and translational medicine, vol 2. Springer, Cham, pp 1–22

    Google Scholar 

  • Payab M et al (2018b) An overview of ethical issues in tissue engineering. J Appl Tissue Eng 5(1):12–20

    Google Scholar 

  • Politis M et al (2010) Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2(38):38ra46–38ra46

    Article  PubMed  CAS  Google Scholar 

  • Potashkin J, Blume S, Runkle N (2011) Limitations of animal models of Parkinson’s disease. Park Dis 2011:658083

    Google Scholar 

  • Rahim F et al (2018a) Stem cells treatment to combat Cancer and genetic disease: from stem cell therapy to gene-editing correction. In: Stem cells for cancer and genetic disease treatment. Springer, Cham, pp 29–59

    Google Scholar 

  • Rahim F et al (2018b) Stem cell therapy for patients with diabetes: a systematic review and meta-analysis of metabolomics-based risks and benefits. Stem Cell Invest 5:40

    CAS  Google Scholar 

  • Ramonet D et al (2011) Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6(4):e18568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saberi H et al (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443(1):46–50

    Article  CAS  PubMed  Google Scholar 

  • Saberi H et al (2011) Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 15(5):515–525

    Article  PubMed  Google Scholar 

  • Sardi SP, Cedarbaum JM, Brundin P (2018) Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov Disord 33(5):684–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkaki A et al (2008) Postmenopausal effects of intrastriatal estrogen on catalepsy and pallidal electroencephalogram in an animal model of Parkinson’s disease. Neuroscience 154(3):940–945

    Article  CAS  PubMed  Google Scholar 

  • Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318(1):215–224

    Article  PubMed  Google Scholar 

  • Sharma S, Ebadi M (2014) Significance of metallothioneins in aging brain. Neurochem Int 65:40–48

    Article  CAS  PubMed  Google Scholar 

  • Shi M et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69(3):570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder BJ, Olanow CW (2005) Stem cell treatment for Parkinson’s disease: an update for 2005. Curr Opin Neurol 18(4):376–385

    Article  CAS  PubMed  Google Scholar 

  • Sonntag KC et al (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25(2):411–418

    Article  CAS  PubMed  Google Scholar 

  • Sonntag K-C et al (2018) Pluripotent stem cell-based therapy for Parkinson’s disease: current status and future prospects. Prog Neurobiol 168:1–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Szűcs E et al (2012) Animal welfare in different human cultures, traditions and religious faiths. Asian Australas J Anim Sci 25(11):1499

    Article  PubMed  PubMed Central  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518

    Article  CAS  PubMed  Google Scholar 

  • Terzioglu M, Galter D (2008) Parkinson’s disease: genetic versus toxin-induced rodent models. FEBS J 275(7):1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Tieu K (2011) A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 1(1):a009316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Touitou Y et al (2004) Ethical principles and standards for the conduct of human and animal biological rhythm research. Chronobiol Int 21(1):161–170

    Article  PubMed  Google Scholar 

  • Turksen K (2018) Cell biology and translational medicine, volume 3: stem cells, bio-materials and tissue engineering, vol 1107. Springer, Cham

    Book  Google Scholar 

  • van der Staay FJ, Arndt SS, Nordquist RE (2009) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan KR et al (2019) A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease. Clin Neurophysiol 130(1):145–154

    Article  PubMed  Google Scholar 

  • Xiong Y, Dawson TM, Dawson VL (2017) Models of LRRK2-associated Parkinson’s disease. In: Leucine-Rich repeat kinase 2 (LRRK2). Springer, Cham, pp 163–191

    Chapter  Google Scholar 

  • Yang D et al (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Burciu RG, Vaillancourt DE (2018) Longitudinal progression markers of Parkinson’s disease: current view on structural imaging. Curr Neurol Neurosci Rep 18(12):83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Sepideh Alavi-Moghadam, Dr. Mohsen Khorshidi and Shokouh Salimi for their kind support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larijani, B. et al. (2019). The Design and Application of an Appropriate Parkinson’s Disease Animal Model in Regenerative Medicine. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 13. Advances in Experimental Medicine and Biology(), vol 1341. Springer, Cham. https://doi.org/10.1007/5584_2019_422

Download citation

Publish with us

Policies and ethics