Skip to main content

Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 1

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1079))

Abstract

Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells’ intrinsic properties to serve as the host brain regenerative catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PD:

Parkinson’s Disease

hNSCs:

human neural stem cells

SVZ:

Subventricular zone

SGZ:

Subgranular zone

6-OHDA:

6-hydroxydopamine

References

  • Acosta SA, Tajiri N, de la Pena I, Bastawrous M, Sanberg PR, Kaneko Y, Borlongan CV (2015a) Alpha-synuclein as a pathological link between chronic traumatic brain injury and Parkinson’s disease. J Cell Physiol 230(5):1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CV (2015b) Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke 46(9):2616–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog Neurobiol 60(5):409–470

    Article  CAS  PubMed  Google Scholar 

  • Bagetta V et al (2011) Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: implications for Parkinson’s disease. J Neurosci 31(35):12513–12522

    Article  CAS  PubMed  Google Scholar 

  • Borlongan CV (2000) Transplantation therapy for Parkinson’s disease. Expert Opin Investig Drugs 9(10):2319–2330

    Article  CAS  PubMed  Google Scholar 

  • Borlongan CV (2016a) Age of PISCES: stem-cell clinical trials in stroke. Lancet 388(10046):736–738

    Article  PubMed  Google Scholar 

  • Borlongan CV (2016b) Preliminary reports of stereotaxic stem cell transplants in chronic stroke patients. Mol Ther 24(10):1710–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borlongan CV, Sanberg PR, Freeman TB (1999) Neural transplantation for neurodegenerative disorders. Lancet 353(Suppl 1):SI29–SI30

    Article  PubMed  Google Scholar 

  • Brundin P, Bjorklund A (1998) Survival of expanded dopaminergic precursors is critical for clinical trials. Nat Neurosci 1(7):537

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Castrioto A, Di Filippo M, Picconi B (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 12(8):811–821

    Article  CAS  PubMed  Google Scholar 

  • Costa C et al (2012) Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain 135(Pt 6):1884–1899

    Article  PubMed  Google Scholar 

  • Cox CS Jr et al (2011) Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 68(3):588–600

    Article  PubMed  Google Scholar 

  • Crowley MG, Liska MG, Borlongan CV (2017) Stem cell therapy for sequestering neuroinflammation in traumatic brain injury: an update on exosome-targeting to the spleen. J Neurosurg Sci 61(3):291–302

    PubMed  Google Scholar 

  • Dunnett SB, Bjorklund A, Lindvall O (2001) Cell therapy in Parkinson’s disease – stop or go? Nat Rev Neurosci 2(5):365–369

    Article  CAS  PubMed  Google Scholar 

  • Freed CR et al (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327(22):1549–1555

    Article  CAS  PubMed  Google Scholar 

  • Freed CR et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344(10):710–719

    Article  CAS  PubMed  Google Scholar 

  • Freeman TB et al (1995) Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 38(3):379–388

    Article  CAS  PubMed  Google Scholar 

  • Freeman TB et al (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 97(25):13877–13882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagell P et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5(7):627–628

    Article  CAS  PubMed  Google Scholar 

  • Hall H et al (2014) Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 137(Pt 9):2493–2508

    Google Scholar 

  • Herrera-Marschitz M, Arbuthnott G, Ungerstedt U (2010) The rotational model and microdialysis: significance for dopamine signalling, clinical studies, and beyond. Prog Neurobiol 90(2):176–189

    Article  CAS  PubMed  Google Scholar 

  • Kalladka D et al (2016) Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet 388(10046):787–796

    Article  PubMed  Google Scholar 

  • Kefalopoulou Z et al (2014) Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 71(1):83–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura T et al (2017) Engrams and circuits crucial for systems consolidation of a memory. Science 356(6333):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondziolka D et al (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55(4):565–569

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH et al (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 332(17):1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci U S A 113(23):6544–6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall O et al (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol 46(6):615–631

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247(4942):574–577

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O et al (1992) Transplantation of fetal dopamine neurons in Parkinson’s disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann Neurol 31(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Napoli E, Borlongan CV (2016) Recent advances in stem cell-based therapeutics for stroke. Transl Stroke Res 7(6):452–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Napoli E, Borlongan CV (2017a) Cell therapy in Parkinson’s disease: host brain repair machinery gets a boost from stem cell grafts. Stem Cells 35(6):1443–1445

    Article  PubMed  Google Scholar 

  • Napoli E, Borlongan CV (2017b) Stem cell recipes of bone marrow and fish: just what the stroke doctors ordered. Stem Cell Rev 13(2):192–197

    Article  PubMed  Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204(4393):643–647

    Article  CAS  PubMed  Google Scholar 

  • Redmond DE Jr et al (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104(29):12175–12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513(7518):426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajiri N et al (2013) Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 8(9):e74857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajiri N et al (2014a) Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 34(1):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajiri N et al (2014b) Stem cell-paved biobridge facilitates neural repair in traumatic brain injury. Front Syst Neurosci 8:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24(3):485–493

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U, Ljungberg T, Steg G (1974) Behavioral, physiological, and neurochemical changes after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine neurons. Adv Neurol 5:421–426

    PubMed  CAS  Google Scholar 

  • Wenning GK et al (1997) Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 42(1):95–107

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara T et al (2006) Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J Neurosci 26(48):12497–12511

    Article  CAS  PubMed  Google Scholar 

  • Zuo F, Xiong F, Wang X, Li X, Wang R, Ge W, Bao X (2017) Intrastriatal transplantation of human neural stem cells restores the impaired subventricular zone in parkinsonian mice. Stem Cells 35(6):1519–1531

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest Disclosure

CVB receives grant support from SanBio, Inc., Saneron CCEL Inc., Astellas Institute of Regenerative Medicine, International Stem Cell Corp., and royalties from Athersys, Inc.

Funding Source

CVB is funded by NIH R01NS071956, NIH R01 NS090962, NIH R21NS089851, NIH R21 NS094087, DOD W81XWH-11-1-0634, and VA Merit Review I01 BX001407.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleonora Napoli or Cesar V. Borlongan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Napoli, E., Lippert, T., Borlongan, C.V. (2018). Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 1. Advances in Experimental Medicine and Biology(), vol 1079. Springer, Cham. https://doi.org/10.1007/5584_2018_174

Download citation

Publish with us

Policies and ethics