Skip to main content

Left Ventricular Assist Devices – A State of the Art Review

  • Chapter
  • First Online:
Heart Failure: From Research to Clinical Practice

Part of the book series: Advances in Experimental Medicine and Biology ((AIM,volume 1067))

Abstract

Cardiovascular diseases are the leading cause of mortality rates throughout the world. Next to an insufficient number of healthy donors, this has led to increasing numbers of patients on heart transplant waiting lists with prolonged waiting times. Innovative technological advancements have led to the production of ventricular assist devices that play an increasingly important role in end stage heart failure therapy. This review is intended to provide an overview of current implantable left ventricular assist devices, different design concepts and implantation techniques. Challenges such as infections and thromboembolic events that may occur during LVAD implantations have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aissaoui N, Morshuis M, Maoulida H, Salem JE et al (2017) Management of end-stage heart failure patients with or without ventricular assist device: an observational comparison of clinical and economic outcomes. Eur J Cardiothorac Surg 53:170–177

    Article  Google Scholar 

  • Berlin Heart [Internet]. [cited 2016 Oct 24]. Available from http://www.berlinheart.de/index.php/mp/content/produkte

  • Birks EJ (2010) The comparative use of ventricular assist devices. Tex Heart Inst J 37(5):565–567

    PubMed  PubMed Central  Google Scholar 

  • Camboni D, Zerdzitzki M, Hirt S, Tandler R, Weyand M, Schmid C (2016) Reduction of INCOR® driveline infection rate with silicone at the driveline exit site. Interact Cardiovasc Thorac Surg 24:222–228

    Google Scholar 

  • Dean D, Kallel F, Ewald GA, Tatooles A, Sheridan BC, Brewer RJ et al (2015) Reduction in driveline infection rates: results from the HeartMate II multicenter driveline silicone skin interface (SSI) registry. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 34(6):781–789

    Article  Google Scholar 

  • Der Deutsche Herzbericht [Internet]. [cited 2016 Oct 24]. Available from http://www.herzstiftung.de/herzbericht

  • Eurotransplant – Statistics [Internet]. [cited 2016 Oct 24]. Available from http://statistics.eurotransplant.org/

  • Fleissner F, Avsar M, Malehsa D, Strueber M, Haverich A, Schmitto JD (2013) Reduction of driveline infections through doubled driveline tunneling of left ventricular assist devices. Artif Organs 37(1):102–107

    Article  PubMed  Google Scholar 

  • Frazier OH, Khalil HA, Benkowski RJ, Cohn WE (2010) Optimization of axial-pump pressure sensitivity for a continuous-flow total artificial heart. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 29(6):687–691

    Article  CAS  Google Scholar 

  • Frazier OH, Baldwin ACW, Demirozu ZT, Segura AM, Hernandez R, Taegtmeyer H et al (2015) Ventricular reconditioning and pump explantation in patients supported by continuous-flow left ventricular assist devices. J Heart Lung Transplant 34(6):766–772

    Article  CAS  PubMed  Google Scholar 

  • Geidl L, Zrunek P, Deckert Z, Zimpfer D, Sandner S, Wieselthaler G et al (2009) Usability and safety of ventricular assist devices: human factors and design aspects. Artif Organs 33(9):691–695

    Article  PubMed  Google Scholar 

  • Girdhar G, Xenos M, Alemu Y, Chiu W-C, Lynch BE, Jesty J et al (2012) Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One [Internet]. [cited 2016 Oct 24]; 7(3). Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292570/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke JS, Rojas SV, Avsar M, Haverich A, Schmitto JD (2015) Minimally-invasive LVAD implantation: state of the art. Curr Cardiol Rev 11(3):246–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanke JS, Rojas SV, Poyanmehr R, Deniz E, Avsar M, Berliner D et al (2016a) Left ventricular assist device implantation with outflow graft tunneling through the transverse sinus. Artif Organs 40(6):610–612

    Article  PubMed  Google Scholar 

  • Hanke JS, ElSherbini A, Rojas SV, Avsar M, Shrestha M, Schmitto JD (2016b) Aortic outflow graft stenting in patient with left ventricular assist device outflow graft thrombosis. Artif Organs 40(4):414–416

    Article  PubMed  Google Scholar 

  • Heart Assist Devices – Texas Heart Institute [Internet]. [cited 2016 Oct 24]. Available from http://www.texasheart.org/Research/Devices/

  • Heart-Lung Machine HL 20 — Maquet [Internet]. [cited 2016 Oct 24]. Available from http://www.maquet.com/int/products/heart-lung-machine-hl-20/

  • HeartWare [Internet]. [cited 2016 Oct 24]. Available from https://www.heartware.com/

  • Jarvik Heart Inc. The Jarvik 2000 [Internet]. Jarvik Heart Inc. The Jarvik 2000. [cited 2016 Oct 24]. Available from http://www.jarvikheart.com/

  • johan.van.der.heide[at]itea3.org J van der H. 14003 Medolution [Internet]. itea3.org. [cited 2016 Oct 24]. Available from https://itea3.org/project/medolution.html

  • Khvilivitzky K, Mountis MM, Gonzalez-Stawinski GV (2012) Heartmate II outflow graft ligation and driveline excision without pump removal for left ventricular recovery. Proc Bayl Univ Med Cent 25(4):344–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 34(12):1495–1504

    Article  Google Scholar 

  • Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, Simone GD et al (2010) Heart disease and stroke statistics—2010 update. Circulation 121(7):e46–215

    Article  PubMed  Google Scholar 

  • Loree HM, Bourque K, Gernes DB, Richardson JS, Poirier VL, Barletta N et al (2001) The Heartmate III: design and in vivo studies of a maglev centrifugal left ventricular assist device. Artif Organs 25(5):386–391

    Article  CAS  PubMed  Google Scholar 

  • Mancini D, Colombo PC (2015) Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol 65(23):2542–2555

    Article  PubMed  Google Scholar 

  • Mehta SM, Pae WE, Rosenberg G, Snyder AJ, Weiss WJ, Lewis JP et al (2001) The LionHeart LVD-2000: a completely implanted left ventricular assist device for chronic circulatory support. Ann Thorac Surg 71(3 Suppl):S156–S161. discussion S183–184

    Article  CAS  PubMed  Google Scholar 

  • Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54(4):312–321

    Article  PubMed  Google Scholar 

  • Reul HM, Akdis M (2000) Blood pumps for circulatory support. Perfusion 15(4):295–311

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez LE, Suarez EE, Loebe M, Bruckner BA (2013) Ventricular assist devices (VAD) therapy: new technology, new hope? Methodist Debakey Cardiovasc J 9(1):32–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabashnikov A, Högerle BA, Mohite PN, Popov A-F, Sáez DG, Fatullayev J et al (2013) Successful bridge to recovery using two-stage HeartWare LVAD explantation approach after embolic stroke. J Cardiothorac Surg 8:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitto JD, Rojas SV, Hanke JS, Avsar M, Haverich A (2014) Minimally invasive left ventricular assist device explantation after cardiac recovery: surgical technical considerations. Artif Organs 38(6):507–510

    Article  PubMed  Google Scholar 

  • Schmitto JD, Hanke JS, Rojas S, Avsar M, Malehsa D, Bara C et al (2015) Circulatory support exceeding five years with a continuous-flow left ventricular assist device for advanced heart failure patients. J Cardiothorac Surg 10:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitto JD, Pya Y, Zimpfer D, Krabatsch T, Garbade J, Rao V, et al. (2017) HeartMate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure - CE mark study 2-year results. J Heart Lung Transplant 36(4):S66

    Article  Google Scholar 

  • Seco M, Zhao DF, Byrom MJ, Wilson MK, Vallely MP, Fraser JF, Bannon PG (2017) Long-term prognosis and cost-effectiveness of left ventricular assist device as bridge to transplantation: a systematic review. Int J Cardiol 235:22–32

    Article  PubMed  Google Scholar 

  • Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 29(4 Suppl):S1–39

    Article  Google Scholar 

  • Tang DG, Oyer PE, Mallidi HR (2009) Ventricular assist devices: history, patient selection, and timing of therapy. J Cardiovasc Transl Res 2(2):159–167

    Article  PubMed  Google Scholar 

  • Thoratec – Innovative Therapies for Advanced Heart Failure [Internet]. [cited 2016 Oct 24]. Available from http://www.thoratec.com/

  • U S Food and Drug Administration Home Page [Internet]. [cited 2016 Oct 24]. Available from http://www.fda.gov/

  • Welcome to Reliant Heart [Internet]. [cited 2016 Oct 24]. Available from http://reliantheart.com/

  • WHO|NCD mortality and morbidity [Internet]. WHO. [cited 2016 Oct 24]. Available from http://www.who.int/gho/ncd/mortality_morbidity/en/

  • Wieselthaler GM, O Driscoll G, Jansz P, Khaghani A, Strueber M, HVAD Clinical Investigators (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant Off Publ Int Soc Heart Transplant 29(11):1218–1225

    Article  Google Scholar 

  • Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, Burns R, Rayner M, Townsend N (2017) European cardiovascular disease statistics 2017. European Heart Network, Brussels

    Google Scholar 

  • Zucchetta F, Tarzia V, Bottio T, Gerosa G (2014) The Jarvik-2000 ventricular assist device implantation: how we do it. Ann Cardiothorac Surg 3(5):525–531

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan D. Schmitto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feldmann, C., Chatterjee, A., Haverich, A., Schmitto, J.D. (2018). Left Ventricular Assist Devices – A State of the Art Review. In: Islam, M. (eds) Heart Failure: From Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1067. Springer, Cham. https://doi.org/10.1007/5584_2018_145

Download citation

  • DOI: https://doi.org/10.1007/5584_2018_145

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78279-9

  • Online ISBN: 978-3-319-78280-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics