Skip to main content

Selection of Lactic Acid Bacteria with Probiotic Potential Isolated from the Fermentation Process of “Cupuaçu” (Theobroma grandiflorum)

  • Chapter
  • First Online:
Advances in Microbiology, Infectious Diseases and Public Health

Abstract

In the present study, nine lactic acid bacteria isolated from the fermentation process of “cupuaçu” (Theobroma grandiflorum) were selected for probiotic use. In vitro (resistance to gastrointestinal environment, in vitro antagonism and co-aggregation with pathogens) and in vivo (intestinal colonization and ex vivo antagonism in germ-free mice, cumulative mortality, translocation to liver and spleen, histopathological examination of liver and ileum and mRNA cytokine gene expression during an experimental infection with S. Typhimurium) assays were used. Among the nine Lactobacillus strains isolated from the “cupuaçu” fermentation, L. plantarum 81 and L. plantarum 90 were selected as potential probiotics based on better results obtained in in vitro evaluations (production of diffusible inhibitory compounds and co-aggregation) as well as in vivo experiments (resistance to gastrointestinal environment, ex vivo antagonism, higher survival after enteropathogen challenge, lower hepatic translocation of enteropathogen, lower histopathological lesions in ileum and liver and anti-inflammatory pattern of immunological response). Concluding, L. plantarum 81 and L. plantarum 90 showed in vitro and in vivo capacities for probiotic use through different mechanisms of protection and its origin would allow an easier adaptation in an alimentary matrix for its administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvim LB, Sandes SHC, Silva BC, Steinberg RS, Campos MHA, Acurcio LB, Arantes RME, Nicoli JR, Neumann E, Nunes AC (2016) Weissella paramesenteroides WpK4 reduces gene expression of intestinal cytokines, and hepatic and splenic injuries in a murine model of typhoid fever. Benefic Microbes 7:61–73

    Article  CAS  Google Scholar 

  • Bambirra FHS, Lima KGC, Franco BDGM, Carmona DCM, Nardi RMD, Barbosa FHF, Nicoli JR (2007) Protective effect of Lactobacillus sakei 2a against experimental challenge with Listeria monocytogenes in gnotobiotic mice. Lett Appl Microbiol 45:663–667

    Article  CAS  PubMed  Google Scholar 

  • Castillo NA, Moreno Leblanc A, Galdeano CM, Perdigón G (2013) Comparative study of the protective capacity against Salmonella infection between probiotic and non probiotic lactobacilli. J Appl Microbiol 114:861–876

    Article  CAS  PubMed  Google Scholar 

  • Coburn B, Grassl GA, Finlay BB (2007) Salmonella, the host and disease: a brief review. Immunol Cell Biol 85:112–118

    Article  PubMed  Google Scholar 

  • Colégio Brasileiro de Experimentação Animal (COBEA) (2006) Legislação e Ética. Available at http://www.cobea.org.br/

  • Dougan G, John V, Palmer S, Mastroeni P (2011) Immunity to salmonellosis. Immunol Rev 240:196–210

    Article  CAS  PubMed  Google Scholar 

  • Duval-Iflah Y, Raibaud P, Rousseau M (1981) Antagonisms among isogenic strains of Escherichia coli in the digestive tracts of gnotobiotic mice. Infect Immun 34:957–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckmann L, Smith JR, Housley MP, Dwinell MB, Kagnoff MF (2000) Analysis by high density cDNA arrays of altered gene expression in human intestinal epithelial cells in response to infection with the invasive enteric bacteria Salmonella. J Biol Chem 275:14084–14094

    Article  CAS  PubMed  Google Scholar 

  • Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401

    Article  CAS  PubMed  Google Scholar 

  • Guiney DG (2005) The role of host cell death in Salmonella infections. Curr Top Microbiol Immunol 289:131–150

    CAS  PubMed  Google Scholar 

  • Huang FC (2009) Upregulation of Salmonella-induced IL-6 production in Caco-2 cells by PJ-34, PARP-1 inhibitor: involvement of PI3K, p38, MAPK, ERK, JNK, and NF-kB. Mediators Inflamm 2009:103890

    Article  PubMed  Google Scholar 

  • Hütt P, Shchepetova J, Lōivukene K, Kullisaar T, Mikelsaar M (2006) Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J Appl Microbiol 100:1324–1332

    Article  PubMed  Google Scholar 

  • Martins FS, Nardi RMD, Arantes RME, Rosa CA, Neves MJ, Nicoli JR (2005) Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. J Gen Appl Microbiol 51:83–92

    Article  CAS  PubMed  Google Scholar 

  • Martins FS, Andrade SDE, Vieira AT, Tiago FCP, Martins AKS, Silva FCP, Souza ELS, Sousa LP, Araujo HRC, Pimenta PF, Bonjardim CA, Arantes RME, Teixeira MM, Nicoli JR (2011) Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int J Med Microbiol 301:359–364

    Article  PubMed  Google Scholar 

  • Martins FS, Vieira AT, Elian SDA, Arantes RME, Tiago FCP, Sousa LP, Araújo HRC, Pimenta PF, Bonjardim CA, Nicoli JR, Teixeira MM (2013) Inhibition of tissue inflammation and bacterial translocation as ones of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect 15:270–279

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni P, Grant AJ (2011) Spread of Salmonella enterica in the body during systemic infection: unravelling host and pathogen determinants. Expert Rev Mol Med 13:e12

    Article  PubMed  Google Scholar 

  • Pérez-Sotelo LS, Talavera-Rojas M, Monroy-Salazar HG, Lagunas-Bernabé S, Cuarón-Ibargu Engoytia JA, Jimenez RM, Vázquez-Chagoyán JC (2005) In vitro evaluation of the binding capacity of Saccharomyces cerevisiae Sc47 to adhere to the wall of Salmonella spp. Rev Latinoam Microbiol 47:70–75

    PubMed  Google Scholar 

  • Ramaré F, Nicoli J, Dabard J, Corring T, Ladiré M, Gueugneau AM, Raibaud P (1993) Trypsin-dependent production of an antibacterial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro. Appl Environ Microbiol 59:2876–2883

    PubMed  PubMed Central  Google Scholar 

  • Saito VST, Santos TF, Vinderola CG, Romano CC, Nicoli JR, Araujo LS, Costa MM, Andrioli JL, Uetanabaro APT (2014) Viability and resistance of lactobacilli isolated from cocoa fermentation to simulated gastrointestinal digestive steps in soy yogurt. J Food Sci 79:208–213

    Article  Google Scholar 

  • Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Baümler AJ (2001) Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Silva AM, Bambirra EA, Oliveira AL, Souza PP, Gomes DA, Nicoli JR (1999) Protective effect of bifidus milk on the experimental infection with Salmonella typhimurium in conventional and gnotobiotic mice. J Appl Microbiol 86:331–336

    Article  CAS  PubMed  Google Scholar 

  • Somplang P, Piyadeatsoontorn S (2016) Probiotic isolates from unconventional sources: a review. J Anim Sci Technol 58:26

    Article  Google Scholar 

  • Sougioultzis S, Simeonidis S, Bhaskar KR, Chen X, Anton PM, Keates S, Pothoulakis C, Kelly CP (2006) Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kB mediated IL-8 gene expression. Biochem Biophys Res Commun 343:69–76

    Article  CAS  PubMed  Google Scholar 

  • Steinberg RS, Silva LCS, Souza TC, Lima MT, Oliveira NLG, Vieira LQ, Arantes RME, Miyoshi A, Nicoli JR, Neumann E, Nunes AC (2014) Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. Int J Environ Res Public Health 11:8755–8776

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira GS, Carvalho FP, Arantes RME, Nunes AC, Moreira JL, Mendonça M, Almeida RB, Farias LM, Carvalho MAR, Nicoli JR (2012) Characteristics of Lactobacillus and Gardnerella vaginalis from women with or without bacterial vaginosis and their relationships in gnotobiotic mice. J Med Microbiol 61:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Teles T, Ornella R, Acurcio LB, Messias M, Nicoli JR, Villeladias C, Uetanabaro APT, Vinderola GC (2016) Characterization of lactobacilli strains derived from cocoa fermentation in the south of Bahia for the development of probiotic cultures. LWT Food Sci Technol 73:259–266

    Article  Google Scholar 

  • Todorov SD, Dicks LMT (2005) Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzym Microb Technol 36:318–326

    Article  CAS  Google Scholar 

  • Vasconcelos ALS, Nicoli JR, Nardi RMD (2003) Antagonistic and protective effects against Salmonella enterica serovar Typhimurium by Lactobacillus murinus in the digestive tract of gnotobiotic mice. Braz J Microbiol 34:21–24

    Article  Google Scholar 

  • Venturieri GA, Aguiar JP (1988) Composição do chocolate de amêndoas de cupuaçu (Theobroma grandiflorum). Acta Amaz 18:3–8

    Article  Google Scholar 

  • Venturieri GA, Alves MB, Nogueira MD (1985) O cultivo do cupuazeiro. Inf Soc Bras Frutas 4:15–17

    Google Scholar 

  • Vinderola G, Céspedes M, Mateolli D, Cárdenas P, Lescano M, Aimaretti N, Reinheimer J (2011) Changes in gastric resistance of Lactobacillus casei in flavoured commercial fermented milks during cold storage. Int J Dairy Technol 64:269–275

    Article  Google Scholar 

  • Whichard JM, Gay K, Stevenson JE, Joyce KJ, Cooper KL, Omondi M, Medalla F, Jacoby GA, Barrett TJ (2007) Human Salmonella and concurrent decreased susceptibility to quinolones and extended spectrum cephalosporins. Emerg Infect Dis 13:1681–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO/FAO. Joint World Health Organization/Food and Agricultural Organization Working Group (2002) Guidelines for the evaluation of probiotics in food. WHO/FAO. Joint World Health Organization/Food and Agricultural Organization Working Group, London/Ontario

    Google Scholar 

  • Zanirati DF, Abatemarco M Jr, Sandes SHC, Nicoli JR, Nunes AC, Neumann E (2015) Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anaerobe 32:70–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Clélia N. Silva for valuable technical help. This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Robert Nicoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ornellas, R.M.S. et al. (2017). Selection of Lactic Acid Bacteria with Probiotic Potential Isolated from the Fermentation Process of “Cupuaçu” (Theobroma grandiflorum). In: Donelli, G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology(), vol 973. Springer, Cham. https://doi.org/10.1007/5584_2017_5

Download citation

Publish with us

Policies and ethics