Skip to main content

Packaging Technology for Devices in Autonomous Sensor Networks

  • Chapter
  • First Online:
Autonomous Sensor Networks

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 13))

  • 2597 Accesses

Abstract

Autonomous sensor network (ASN) node comprises of multiple miniaturized sensors, actuators, controller-circuitry and power source. Packaging and integration of these components play a critical role in determining the overall system performance, cost and time to market. Packaging of electronic components provides significant improvement in device characteristic performance and ensures long-term reliability. Packaging of ASN nodes and/or its components is more challenging, because of the sheer variety of components, like sensors, actuators, integrated circuit (IC) controllers, that make up the ASN nodes. Numerous packaging solutions like assembling individually packaged components on a single board (printed circuit board level packaging) or housing all components in a single package (system-in-package or system-on-chip approach) have been demonstrated. Some of the popular and commercially available chip-level packaging technologies are wire bonding, flip-chip bonding, tape automated bonding, etc. However the cost for these conventional chip-level packaging is much higher than other cost associated with device manufacturing. Thus wafer-level packaging has gained interest as it can be used as a low cost packaging technology. In this chapter, packaging of infrared (IR) sensors has been used as a case study to demonstrate the packaging constraints imposed by device performance and application requirements, followed by brief discussion on various packaging solutions available for individual IR sensor and more sophisticated IR sensor array. As future outlook, it seems possible to integrate all the components of ASN node, except for the battery power source. To tackle this technology constraint, energy harvesting technology has been investigated as an alternative power source. Thus replacing the battery by energy harvesters as power source is discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASIC:

Application-specific integrated circuit

ASN:

Autonomous sensor network

BGAs:

Ball grid arrays

C2C:

Chip-to-chip

C2W:

Chip-to-wafer

CBGAs:

Ceramic ball grid arrays

CCs:

Chip carriers

CMOS:

Complementary metal oxide semiconductor

CMP:

Chemical mechanical polishing

CPGAs:

Ceramic pin grid arrays

DIPs:

Dual in line packages

DOF:

Degree-of-freedom

DRIE:

Deep reactive-ion etching

DWB:

Direct wafer bonding

FUC:

Frequency up-converter

HMP:

High-melting point

HRF:

High-resonant frequency

IC:

Integrated circuit

ICP:

Inductively coupled plasma

IMCs:

Intermetallic compounds

IR:

Infrared

IRFPA:

Infrared focal plane array

IWB:

Intermediated wafer bonding

LDCCs:

Leaded chip carriers

LLCCs:

Leadless chip carriers

LMP:

Low melting point

LRF:

Low-resonant-frequency

LWIR:

Long-wave infrared

MCM:

Multichip modules

MCU:

Microcontroller unit

MEMS:

Microelectromechanical systems

MWIR:

Mid-wave infrared

PBGAs:

Plastic ball grid arrays

PC:

Personal computer

PCB:

Printed circuit board

PECVD:

Plasma enhanced chemical vapor deposition

PGAs:

Pin grid arrays

PPGAs:

Plastic pin grid arrays

QFPs:

Quad flat packages

RF:

Radio frequency

SiP:

System-in-a-package

SIPs:

Single in line packages

SMT:

Surface mount technology

SoB:

System-on-board

SoC:

System-on-chip

SOI:

Silicon-on-insulator

SOPs:

Small outline packages

SWIR:

Short-wave infrared

TAB:

Tape automated bonding

TFE:

Thin film encapsulation

TPGs:

Thermoelectric power generators

TSV:

Through silicon vias

USG:

Undoped silica glass

W2W:

Wafer to wafer

WBAN:

Wireless body area network

WLE:

Wafer-level encapsulation

WLP:

Wafer-level packaging

WSNs:

Wireless sensor networks

References

  1. Guo H, Lou L, Chen X, Lee C (2012) PDMS-coated piezoresistive NEMS diaphragm for chloroform vapor detection. IEEE Electron Device Lett 33(7):1078–1080

    Article  CAS  Google Scholar 

  2. Lou L, Zhang S, Park W-T, Tsai JM-L, Kwong D-L, Lee C (2012) Optimization of NEMS pressure sensors with multilayered diaphragm using silicon nanowires as piezoresistive sensing elements. J Micromech Microeng 22(5):055012

    Article  Google Scholar 

  3. Zhang S, Lou L, Lee C (2012) Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl Phys Lett 100(2):023111

    Article  Google Scholar 

  4. Ryhänen T (2010) Impact of silicon MEMS—30 years after. In: Lehto A, Lindroos V, Motooka T, Tilli M (eds) Handbook of silicon based MEMS materials and technologies. William Andrew is an imprint of Elsevier, The Boulevard, Langford Lane, Oxford OX5 1GB, UK, pp xv–xxxii

    Chapter  Google Scholar 

  5. Bloss R (2012) Numerous recent shows highlight the latest in sensor innovations. Sensor Rev 32(2):101–105

    Article  Google Scholar 

  6. Sparks DR (2001) Packaging of microsystems for harsh environments. IEEE Instrum Meas Mag 4(3):30–33

    Article  Google Scholar 

  7. Lau JH, Lee C, Premachandran CS, Aibin Y (2009) Advanced MEMS packaging. McGraw-Hill, New York

    Book  Google Scholar 

  8. Reichl H, Aschenbrenner R, Töpper M, Pötter H (2009) Heterogeneous integration: building the foundation for innovative products. In: Zhang GQ, Roosmalen A (eds) More than Moore: creating high value micro/nanoelectronics systems. Springer, New York, pp 279–303

    Chapter  Google Scholar 

  9. Lau JH (1996) Flip chip technologies. McGraw-Hill, New York

    Google Scholar 

  10. Brand O (2008) Packaging. In: Gianchandani YB, Tabata O (eds) Comprehensive microsystems, vol 1. Elsevier B.V., Amsterdam, pp 435–463 (Chapter 1.15)

    Google Scholar 

  11. Zhong ZW, Tee TY, Luan J-E (2007) Recent advances in wire bonding, flip chip and lead-free solder for advanced microelectronics packaging. Microelectron Int 24(3):18–26

    Article  CAS  Google Scholar 

  12. Goldstein H (2001) Packages go vertical. IEEE Spectrum 38(8):46–51

    Article  Google Scholar 

  13. Yole Development (2012) MEMS packaging—market & technology trends. In: SEMICON West 2012, San Francisco

    Google Scholar 

  14. Lau JH, Lee C, Premachandran CS, Aibin Y (2009) Advanced MEMS wafer-level packaging. In: Advanced MEMS packaging, McGraw-Hill, New York, pp 157–207 (Chapter 4)

    Google Scholar 

  15. Ko C-T, Chen K-N (2010) Wafer-level bonding/stacking technology for 3D integration. Microelectron Reliab 50(4):481–488

    Article  CAS  Google Scholar 

  16. Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18:073001

    Article  Google Scholar 

  17. Yole Development (2011) 2010–2016 Permanent wafer bonders applications & markets. A Yole 2011 report on technologies & markets trends for permanent bonding

    Google Scholar 

  18. Najafi K, Harpster TJ, Kim H, Mitchell JS, Welch WC III (2008) Wafer bonding. In: Gianchandani YB, Tabata O (eds) Comprehensive microsystems, vol 1. Elsevier B.V., Amsterdam, pp 235–270

    Chapter  Google Scholar 

  19. Schmidt MA (1998) Wafer-to-wafer bonding for microstructure formation. Proc IEEE 86(8):1575–1585

    Article  CAS  Google Scholar 

  20. Knechtel R (2010) Glass frit bonding. In: Lindroos V, Tilli M, Lehto A (eds) Handbook of silicon based MEMS materials and technologies, 1st edn. Elsevier, Amsterdam, pp 521–531 (Chapter 33)

    Chapter  Google Scholar 

  21. Reinert W, Merz P (2010) Metallic alloy seal bonding. In: Lindroos V, Tilli M, Lehto A (eds) Handbook of silicon based MEMS materials and technologies, 1st edn. Elsevier, Amsterdam, pp 533–542

    Chapter  Google Scholar 

  22. Niklaus F, Stemme G, Lu J-Q, Gutmann RJ (2006) Adhesive wafer bonding. J Appl Phys 99(3):031101–031101

    Article  Google Scholar 

  23. Yu D-Q, Lee C, Yan LL, Choi WK, Yu A, Lau JH (2009) The role of Ni buffer layer on high yield low temperature hermetic wafer bonding using In/Sn/Cu metallization. Appl Phys Lett 94:034105

    Article  Google Scholar 

  24. Henttinen K (2010) Via technologies for MEMS. In: Lindroos V, Tilli M, Lehto A (eds) Handbook of silicon based MEMS materials and technologies, 1st edn. Elsevier, Amsterdam, pp 575–583

    Chapter  Google Scholar 

  25. Chen K, Premachandran C, Choi K, Ong C, Ling X, Ratmin A, Pa M, Lau JH (2008) C2W low temperature bonding method for MEMS applications. In: IEEE proceedings of electronics packaging technology conference, Singapore, December 2008, pp 1–7

    Google Scholar 

  26. Lau JH, Lee C, Premachandran CS, Aibin Y (2009) Advanced MEMS packaging. In: Advanced MEMS packaging, McGraw-Hill, New York, pp 47–79 (Chapter 2)

    Google Scholar 

  27. Kuhmann JF et al (1999) Through wafer interconnects and flip-chip bonding: a toolbox for advanced hybrid technologies for MEMS. In: Proceedings of the 13th European conference on solid-state transducers, Eurosensors XIII, The Hague, Netherlands, 12–15 September 1999, pp 265–272

    Google Scholar 

  28. Shiv L, Heschel M, Korth H, Weichel S, Hauffe R, Kilian A, Semak B, Houlberg M, Egginton P, Hase A, Kuhmann J (2006) Ultra thin hermetic wafer level, chip scale package. In: IEEE proceedings of the electronic components & technology conference (ECTC 2006), San Diego, 30 May 30–2 June 2006, pp 1122–1128

    Google Scholar 

  29. Stark BH, Najafi K (2004) A low temperature thin-film electroplated metal vacuum package. IEEE J MEMS 13:147–157

    Article  CAS  Google Scholar 

  30. Kohin M, Buttler N (2004) Performance limits of uncooled VOx microbolometer focal plane arrays. In: Proceedings of SPIE, vol 5406, Orlando, pp 447–453

    Google Scholar 

  31. Chou BCS, Shic J-S, Chen Y-M (1995) A highly sensitive Pirani vacuum gauge. In: The 8th international conference on solid-state sensors and actuators, Stockholm, Sweden, vol 2, pp 167–170

    Google Scholar 

  32. Liddiard KC (1984) Thin film resistance bolometer IR detector. Infrared Phys 24(1):57–64

    Article  CAS  Google Scholar 

  33. Yole Development (2011) Uncooled infrared imaging market: commercial & military applications

    Google Scholar 

  34. Xu D, Jing E, Xiong B, Wang Y (2010) Wafer-level vacuum packaging of micromachined thermoelectric IR sensors. IEEE Trans Adv Packaging 33(4):904–911

    Article  CAS  Google Scholar 

  35. Du C-H, Lee C (2002) Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Jpn J Appl Phys 41(6B Pt 1):4340–4345

    Article  CAS  Google Scholar 

  36. Feiertag G, Winter M, Leidl A (2009) Packaging of MEMS microphones. In: Smart sensors, actuators, and MEMS IV, Proceedings of SPIE, vol 7362

    Google Scholar 

  37. Capper P, Elliott CT (2001) Infrared detectors and emitters: materials and devices. Kluwer Academic, Norwell

    Book  Google Scholar 

  38. Hunter SR, Maurer GS, Simelgor G, Radhakrishnan S, Gray J, Bachir K, Pennell T, Bauer M, Jagadish U (2008) Development and optimization of microcantilever based IR imaging arrays. In: Infrared technology and applications XXXIV, Proceedings of SPIE, vol 6940, p 694013

    Google Scholar 

  39. Xu D, Xiong B, Wang Y (2011) Micromachined thermopile IR detector module with high performance. IEEE Photon Technol Lett 23(3):149–151

    Article  CAS  Google Scholar 

  40. Gooch R, Schimert T (2003) Low-cost wafer-level vacuum packaging for MEMS. MRS Bull 28(1):55–59

    Article  Google Scholar 

  41. Xie J, Lee C, Wang M-F, Feng H (2011) Seal and encapsulate cavities for complementary metal-oxide-semiconductor microelectromechanical system thermoelectric power generators. J Vac Sci Technol B 29:2

    Article  Google Scholar 

  42. Xie J, Lee C, Wang M-F, Liu Y, Feng H (2009) Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. J Micromech Microeng 19:125029 (8 pp)

    Article  Google Scholar 

  43. Mathuna CO, O’Donnell T, Martinez-Catala RV, Rohan J, O’Flynn B (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3):613–623

    Article  CAS  Google Scholar 

  44. Raghunathan V, Ganeriwal S, Srivastava M (2006) Emerging techniques for long lived wireless sensor networks. IEEE Commun Mag 44(4):108–114

    Article  Google Scholar 

  45. Niyato D, Hossain E, Rashid MM, Bhargava VK (2007) Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management. IEEE Wireless Commun 14(4):90–96

    Article  Google Scholar 

  46. Thomas JP, Qidwai MA, Kellogg JC (2006) Energy scavenging for small-scale unmanned systems. J Power Sources 159(2):1494–1509

    Article  CAS  Google Scholar 

  47. Tan YK (2010) Analysis, design and implementation of energy harvesting systems for wireless sensor nodes. Ph.D. Thesis, National University of Singapore

    Google Scholar 

  48. Lee JB, Chen Z, Allen MG, Rohatgi A, Arya R (1994) A high voltage solar cell array as an electrostatic MEMS power supply. In: Proceedings of IEEE workshop on micro electro mechanical systems, Oiso, Japan, pp 331–336

    Google Scholar 

  49. Randall JF (2003) On the use of photovoltaic ambient energy sources for powering indoor electronic devices. Ph.D. Thesis, Swiss Federal Institute of Technology

    Google Scholar 

  50. Stordeur M, Stark I (1997) Low power thermoelectric generator—self-sufficient energy supply for micro systems. In: 16th international conference on thermoelectrics, Dresden, Germany, pp 575–577

    Google Scholar 

  51. Böttner H (2002) Thermoelectric micro devices: current state, recent developments and future aspects for technological progress and applications. In: Proceedings of the 21st international conference on thermoelectrics, Long Beach, California, USA, pp 511–518

    Google Scholar 

  52. Xie J, Lee C, Feng H (2010) Design, fabrication and characterization of CMOS MEMS-based thermoelectric power generators. J Microelectromech Syst 19(2):317–324

    Article  CAS  Google Scholar 

  53. Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radio frequency power conversion. J Appl Phys 103(10):101301

    Article  Google Scholar 

  54. Rabaey JM, Ammer MJ, da Silva JL (2000) PicoRadio supports ad hoc ultra-low power wireless networking. Computer 33(7):42–48

    Article  Google Scholar 

  55. Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. In: ASME international mechanical engineering congress and exposition, New Orleans, Louisiana, USA, pp 487–496

    Google Scholar 

  56. Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. J Microelectromech Syst 13(3):429–440

    Article  Google Scholar 

  57. Schenck N, Paradiso J (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3):30–42

    Article  Google Scholar 

  58. Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):175–195

    Article  Google Scholar 

  59. Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Investigation of MEMS piezoelectric energy harvester system with frequency-widen-bandwidth mechanism introduced by mechanical stoppers. Smart Mater Struct 21(3):035005

    Article  Google Scholar 

  60. Yang B, Lee C, Ho GW, Ong WL, Liu J, Yang C (2012) Modeling and experimental study of a low frequency vibration based power generator using ZnO nanowires arrays. IEEE/ASME J Microelectromech Syst Letts 21(4):776–778

    Article  CAS  Google Scholar 

  61. Liu H, Zhang S, Kathiresan R, Kobayashi T, Lee C (2012) Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Appl Phys Lett 100(22):223905

    Article  Google Scholar 

  62. Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. IEEE/ASME J Microelectromech Syst 20(5):1131–1142

    Article  Google Scholar 

  63. Yang B, Lee C, Kee WL, Lim SP (2010) A hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. SPIE J Micro/Nanolithogr MEMS MOEMS (JM3) 9(2):023002

    Google Scholar 

  64. Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors. Microsyst Technol 17(12):1747–1754

    Article  Google Scholar 

  65. Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18(4):497–506

    Article  Google Scholar 

  66. Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens Actuators A: Phys 186:242–248

    Google Scholar 

  67. Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001

    Article  Google Scholar 

  68. Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16(6):961–966

    Article  CAS  Google Scholar 

  69. Yang B, Lee C (2009) A wideband electromagnetic energy harvester for random vibration sources. Adv Mater Res 74:165–168

    Article  Google Scholar 

  70. Yang B, Lee C, Kotlanka RK, Xie J, Piang Lim S (2010) MEMS rotary comb mechanism for harvesting kinetic energy of planar vibrations. J Micromech Microeng 20:065017

    Article  Google Scholar 

  71. Lee C, Lim YM, Yang B, Kotlanka RK, Heng C-H, He JH, Tang M, Xie J, Feng H (2009) Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect. Sens Actuators A 156(1):208–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkuo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, C., Pitchappa, P. (2012). Packaging Technology for Devices in Autonomous Sensor Networks. In: Filippini, D. (eds) Autonomous Sensor Networks. Springer Series on Chemical Sensors and Biosensors, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_45

Download citation

Publish with us

Policies and ethics