Skip to main content

Design and Development of In Vivo Sensor Systems: The Long and Tortured Road to a Self-Contained, Implantable Glucose Sensor for Diabetes Management

  • Chapter
  • First Online:
Designing Receptors for the Next Generation of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARS:

Alizarin Red S; also known as 3,4-dihydroxy-9,10-dioxo-2-anthracenesulfonic acid sodium salt

DBA:

Dendrimer-boronic acid

IC50 :

Half Maximal Inhibitory Concentration

iDIOL:

Immobilized diol/saccharide analogue

Keq:

Equilibrium constant

MIP:

Moleculary imprinted polymer

NIR:

Near-infrared

PET:

Photoinduced electron transfer

pK a :

The negative logarithm of the dissociation constant

RFID:

Radio frequency identification

DBA:

A dendrimer construct that is functionalized with boronic acid receptor ligands and a fluorescent reporter moiety. The DBA is the sensing system signaling component that can competitively bind to the glucose analyte and to the 1,2- and 1,3-dihydroxy motif(s) of iDIOLs.

diol:

A saccharide analogue moiety that typically contains a 1,2- or 1,3-dihydroxy motif and a functional group that can be used for covalent immobilization of the diol on a support to create an iDIOL.

iDIOL:

An immobilized diol/saccharide analogue that contains a 1,2- or 1,3-dihydroxy moiety that is covalently attached to a support. The iDIOL competes with glucose for DBA binding, which produces a bound versus free sensing system signal.

DBA:glucose:iDIOL:

Designation of the three component competitive system where glucose and the iDIOL compete for DBA binding to produce a signal response that is proportional to glucose concentration.

References

  1. Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention (2011) Successes and opportunities for population-based prevention and control at a Glance 2011. CDC. http://www.cdc.gov/chronicdisease/resources/publications/AAG/ddt.htm. Accessed 5 Nov 2011

  3. World Health Organization (2011) Diabetes Fact Sheet Number 312. WHO. http://www.who.int/mediacentre/factsheet/fs312/en/. Accessed 5 Nov 2011

  4. World Diabetes Foundation (2011) Diabetes facts. World Diabetes Foundation. http://www.worlddiabetesfoundation.org/compositive-35.htm. Accessed 5 Nov 2011

  5. Karter AJ, Ferrara A, Darbinian JA et al (2000) Self-monitoring of blood glucose: language and financial barriers in a managed care population with diabetes. Diabetes Care 23:477–483

    Article  CAS  Google Scholar 

  6. Gold AE, MacLeod KM, Frier BM (1994) Frequency of severe hypoglycemia in patients with type I diabetes with impaired awareness of hypoglycemia. Diabetes Care 17:697–703

    Article  CAS  Google Scholar 

  7. Pickup J, McCartney L, Rolinski O et al (1999) In vivo glucose sensing for diabetes management: progress towards non-invasive monitoring. Br Med J 319:1289–1292

    Article  Google Scholar 

  8. Novak BJ, Blake DR, Meinardi S et al (2007) Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. PNAS 104:15613–15618

    Article  CAS  Google Scholar 

  9. Bindra DS, Zhang Y, Wilson GS et al (1991) Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal Chem 63:1692–1696

    Article  CAS  Google Scholar 

  10. Cronenberg C, Van Groen B, De Beer D et al (1991) Oxygen-independent glucose microsensor based on glucose oxidase. Anal Chim Acta 242:275–278

    Article  CAS  Google Scholar 

  11. Ishikawa M, Schmidtke DW, Raskin P et al (1998) Initial evaluation of a 290-μm diameter subcutaneous glucose sensor: glucose monitoring with a biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. J Diabetes Complications 12:295–301

    Article  CAS  Google Scholar 

  12. Sternberg R, Barrau MB, Gangiotti L et al (1989) Study and development of multilayer needle-type enzyme-based glucose microsensors. Biosensors 4:27–40

    Article  CAS  Google Scholar 

  13. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185

    Article  CAS  Google Scholar 

  14. McShane MJ (2002) Potential for glucose monitoring with nanoengineered fluorescent biosensors. Diabetes Technol Ther 4:533–538

    Article  Google Scholar 

  15. Meadows D, Schultz JS (1988) Fiber-optic biosensors based on fluorescence energy transfer. Talanta 35:145–150

    Article  CAS  Google Scholar 

  16. Moschou EA, Sharma BV, Deo SK et al (2004) Fluorescence glucose detection: advances toward the ideal in vivo biosensor. J Fluoresc 14:535–547

    Article  CAS  Google Scholar 

  17. Pickup JC, Hussain F, Evans ND et al (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565

    Article  CAS  Google Scholar 

  18. Russell RJ, Pishko MV, Gefrides CC et al (1999) A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel. Anal Chem 71:3126–3132

    Article  CAS  Google Scholar 

  19. Arnold MA, Small GW (1990) Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra. Anal Chem 62:1457–1464

    Article  CAS  Google Scholar 

  20. Gabriely I, Wozniak R, Mevorach M et al (1999) Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia. Diabetes Care 22:2026–2032

    Article  CAS  Google Scholar 

  21. Haaland DM, Robinson MR, Koepp GW et al (1992) Reagentless near-infrared determination of glucose in whole blood using multivariate calibration. Appl Spectrosc 46:1575–1578

    Article  CAS  Google Scholar 

  22. Heise HM, Marbach R, Koschinsky T et al (1994) Noninvasive blood glucose sensors based on near-infrared spectroscopy. Artif Organs 18:439–447

    Article  CAS  Google Scholar 

  23. Stuart DA, Yonzon CR, Zhang X et al (2005) Glucose sensing using near-infrared surface-enhanced raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. Anal Chem 77:4013–4019

    Google Scholar 

  24. Cook A, Laughlin D, Moore M et al (2009) Differences in glucose values obtained from point-of-care glucose meters and laboratory analysis in critically ill patients. Am J Crit Care 18:65–71

    Article  Google Scholar 

  25. Lacara T, Domagtoy C, Lickliter D et al (2007) Comparison of point-of-care and laboratory glucose analysis in critically ill patients. Am J Crit Care 16:336–346

    Google Scholar 

  26. Siegrist J, Kazarian T, Ensor C et al (2010) Continuous glucose sensor using novel genetically-engineered binding polypeptides towards in vivo applications. Sens Actuators B 149:51–58

    Article  Google Scholar 

  27. Heo YJ, Shibata H, Okitsu T et al (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci USA 108:13399–13403

    Article  CAS  Google Scholar 

  28. Cote GL, McShane MJ, Pishko MV (2009) Fluorescence-based glucose biosensors. In: Tuchin VV (ed) Handbook of optical sensing of glucose in biological fluids and tissues. Taylor and Francis, New York

    Google Scholar 

  29. Oliver NS, Toumazou C, Cass AE et al (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26:197–210

    Article  CAS  Google Scholar 

  30. Abadal G, Davis ZJ, Helbo B et al (2001) Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection. Nanotechnology 12:100–104

    Article  CAS  Google Scholar 

  31. Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64

    Article  CAS  Google Scholar 

  32. Sepaniak M, Datskos P, Lavrik N et al (2002) Microcantilever transducers: a new approach in sensor technology. Anal Chem 74:568A–575A

    Article  Google Scholar 

  33. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959

    CAS  Google Scholar 

  34. Chung W-Y, Yang C-H, Wang Y-F et al (2004) A signal processing ASIC for ISFET-based chemical sensors. Microelectron J 35:667–675

    Article  Google Scholar 

  35. Liu X, Zheng YJ, Phyu MW et al (2010) A miniature on-chip multi-functional ECG signal processor with 30 μW ultra-low power consumption. Conf Proc IEEE Eng Med Biol Soc 2010:2577–2580

    Google Scholar 

  36. Ahn CH, Choi J-W, Beaucage G et al (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173

    Article  CAS  Google Scholar 

  37. Soin RS, Maloberti F, Franca J (1991) Analogue-digital ASICS: circuit techniques, design tools and applications. Peter Peregrinus Ltd, London

    Book  Google Scholar 

  38. Abad E, Zampolli S, Marco S et al (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens Actuators B 127:2–7

    Article  Google Scholar 

  39. Opasjumruskit K, Thanthipwan T, Sathusen O et al (2006) Self-powered wireless temperature sensors exploit RFID technology. IEEE Pervasive Comput 5:54–61

    Article  Google Scholar 

  40. Sample AP, Yeager DJ, Powledge PS et al (2008) Design of an RFID-based battery-free programmable sensing platform. IEEE Trans Instrum Meas 57:2608–2615

    Article  Google Scholar 

  41. Leoni L, Desai T (2004) Micromachined biocapsules for cell-based sensing and delivery. Adv Drug Deliv Rev 56:211–229

    Article  CAS  Google Scholar 

  42. Voskerician G, Shive MS, Shawgo RS et al (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24:1959–1967

    Article  CAS  Google Scholar 

  43. Lieberzeit PA, Dickert FL (2008) Rapid bioanalysis with chemical sensors: novel strategies for devices and artificial recognition membranes. Anal Bioanal Chem 391:1629–1639

    Article  CAS  Google Scholar 

  44. Sheehan AD, Quinn J, Daly S et al (2003) The development of novel miniaturized immuno-sensing devices: a review of a small technology with a large future. Anal Lett 36:511–537

    Article  CAS  Google Scholar 

  45. Yi C, Li CW, Ji S et al (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23

    Article  CAS  Google Scholar 

  46. Baldrich E, O’Sullivan CK (2005) Ability of thrombin to act as molecular chaperone, inducing formation of quadruplex structure of thrombin-binding aptamer. Anal Biochem 341:194–197

    Article  CAS  Google Scholar 

  47. Baldrich E, Acero JL, Reekmans G et al (2005) Displacement enzyme linked aptamer assay. Anal Chem 77:4774–4784

    Article  CAS  Google Scholar 

  48. Baldrich E, Restrepo A, O’Sullivan CK (2004) Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal Chem 76:7053–7063

    Article  CAS  Google Scholar 

  49. Haupt K (2001) Molecularly imprinted polymers in analytical chemistry. Analyst 126:747–756

    Article  CAS  Google Scholar 

  50. Jenkins AL, Yin R, Jensen JL (2001) Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst 126:798–802

    Article  CAS  Google Scholar 

  51. Moreno-Bondi M, Navarro-Villoslada F, Benito-Pena E et al (2008) Molecularly imprinted polymers as selective recognition elements in optical sensing. Curr Anal Chem 4:316–340

    Article  CAS  Google Scholar 

  52. Kuhns WJ, Fernandez-Busquets X, Burger MM et al (1998) Hyaluronic acid-receptor binding demonstrated by synthetic adhesive proteoglycan peptide constructs and by cell receptors on the marine sponge microciona prolifera. Biol Bull 195:216–218

    Article  CAS  Google Scholar 

  53. Schrader T, Hamilton AD (2005) Functional synthetic receptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  54. Edwards NY, Sager TW, McDevitt JT et al (2007) Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. J Am Chem Soc 129:13575–13583

    Article  CAS  Google Scholar 

  55. Gamsey S, Suri JT, Wessling RA et al (2006) Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics. Langmuir 22:9067–9074

    Article  CAS  Google Scholar 

  56. Horgan AM, Marshall AJ, Kew SJ et al (2006) Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. Biosens Bioelectron 21:1838–1845

    Article  CAS  Google Scholar 

  57. James TD, Shinkai S (2002) Artificial receptors as chemosensors for carbohydrates. Top Curr Chem 218:159–200

    Article  CAS  Google Scholar 

  58. Shoji E, Freund MS (2002) Potentiometric saccharide detection based on the pK a changes of poly(aniline boronic acid). J Am Chem Soc 124:12486–12493

    Article  CAS  Google Scholar 

  59. James TD, Shinmori H, Takeuchi M et al (1996) A saccharide ‘sponge’. Synthesis and properties of a dendritic boronic acid. Chem Commun 6:705–706

    Article  Google Scholar 

  60. Hall DG (2005) Boronic acids: preparation and applications in organic synthesis and medicine. Wiley-VCH, Weinheim

    Book  Google Scholar 

  61. Yang W, Yan J, Springsteen G et al (2003) A novel type of fluorescent boronic acid that shows large fluorescence intensity changes upon binding with a carbohydrate in aqueous solution at physiological pH. Bioorg Med Chem 13:1019–1022

    Article  CAS  Google Scholar 

  62. Adhikiri DP, Heagy MD (1999) Fluorescent chemosensor for carbohydrates which shows large change in chelation-enhanced quenching. Tetrahedron Lett 40:7893–7896

    Article  CAS  Google Scholar 

  63. Arimori S, Ward CJ, James TD (2001) The first fluorescent sensor for boronic and boric acids with sensitivity at sub-micromolar concentrations—a cautionary tale. Chem Commun 2001:2018–2019

    Article  Google Scholar 

  64. Cabell LA, Monahan M-K, Ansyln EV (1999) A competition assay for determining glucose-6-phosphate concentration with a tris-boronic acid receptor. Tetrahedron Lett 40:7753–7756

    Article  CAS  Google Scholar 

  65. Eggert H, Frederiksen J, Morin C et al (1999) A new glucose-selective fluorescent bisboronic acid. First report of strong α-furanose complexation in aqueous solution at physiological pH. J Org Chem 64:3846–3852

    Article  CAS  Google Scholar 

  66. James TD, Sandanayake KRAS, Iguchi R et al (1995) Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. J Am Chem Soc 117:8982–8987

    Article  CAS  Google Scholar 

  67. James TD, Sandanayake KRAS, Shinkai S (1996) Saccharide sensing with molecular receptors based on boronic acid. Angew Chem Int Ed Engl 35:1910–1922

    Article  Google Scholar 

  68. Wang W, Gao S, Wang B (1999) Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for d-fructose. Org Lett 1:1209–1212

    Article  CAS  Google Scholar 

  69. Wang W, Gao X, Wang B (2002) Boronic acid-based sensors. Curr Org Chem 6:1285–1317

    Article  CAS  Google Scholar 

  70. Yang W, He H, Drueckhammer DG (2001) Computer-guided design in molecular recognition: design and synthesis of a glucopyranose receptor. Angew Chem Int Ed Engl 40:1714–1718

    Article  CAS  Google Scholar 

  71. Yoon J, Czarnik AW (1992) Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J Am Chem Soc 114:5874–5875

    Article  CAS  Google Scholar 

  72. Fang H, Kaur G, Wang B (2004) Progress in boronic acid-based fluorescent glucose sensors. J Fluoresc 14:481–489

    Article  CAS  Google Scholar 

  73. Springsteen G, Wang B (2002) A detailed examination of boronic acid-diol complexation. Tetrahedron 58:5291–5300

    Article  CAS  Google Scholar 

  74. Yan J, Springsteen G, Deeter S et al (2004) The relationship among pK a, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears. Tetrahedron 60:11205–11209

    Article  CAS  Google Scholar 

  75. Badugu R, Lakowicz JR, Geddes CD (2005) Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methyoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring. Bioorg Med Chem 13:113–119

    Article  CAS  Google Scholar 

  76. Cao H, McGill T, Heagy MD (2004) Substituent effects on monoboronic acid sensors for saccharides based on N-phenyl-1,8-naphthalenedicarboximides. J Org Chem 69:2959–2966

    Article  CAS  Google Scholar 

  77. Gamsey S, Miller A, Olmstead MM et al (2007) Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and α-hydroxycarboxylates. J Am Chem Soc 129:1278–1286

    Article  CAS  Google Scholar 

  78. Alexeev VL, Das S, Finegold DN et al (2004) Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem 50:2353–2360

    Article  CAS  Google Scholar 

  79. DiCesare N, Lakowicz JR (2002) Charge transfer fluorescent probes using boronic acids for monosaccharide signaling. J Biomed Opt 7:538–545

    Article  CAS  Google Scholar 

  80. Thoniyot P, Cappuccio FE, Gamsey S et al (2006) Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing. Diabetes Technol Ther 8:279–287

    Article  Google Scholar 

  81. Hansen JS, Christensen JB, Solling TI et al (2011) Ortho-substituted aryl monoboronic acids have improved selectivity for d-glucose relative to d-fructose and l-lactate. Tetrahedron 67:1334–1340

    Article  CAS  Google Scholar 

  82. Mulla HR, Agard NJ, Basu A (2004) 3-Methoxycarbonyl-5-nitrophenyl boronic: high affinity diol recognition at neutral pH. Bioorg Med Chem Lett 14:25–27

    Article  CAS  Google Scholar 

  83. Tony JD, Phillips MD, Shinkai S (2006) Boronic acids in saccharide recognition. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  84. Yang X, Lee M-C, Sartain F et al (2006) Designed boronate ligands for glucose-selective holographic sensors. Chem-Eur J 12:8491–8497

    Article  CAS  Google Scholar 

  85. Jiang S, Escobedo JO, Kim KK et al (2006) Stereochemical and regiochemical trends in the selective detection of saccharides. J Am Chem Soc 128:12221–12228

    Article  CAS  Google Scholar 

  86. Soundararajan S, Badawi M, Kohlrust CM et al (1989) Boronic acids for affinity chromatography: spectral methods for determinations of ionization and diol-binding constants. Anal Biochem 178:125–134

    Article  Google Scholar 

  87. Kitano S, Hisamitsu I, Koyama Y et al (1991) Effect of the incorporation of amino groups in a glucose-responsive polymer complex having phenylboronic acid moieties. Polym Adv Technol 2:261–264

    Article  Google Scholar 

  88. Linnane P, James TD, Shinkai S (1995) The synthesis and properties of a calixarene-based ‘sugar bowl’. J Chem Soc Chem Commun 1995:1997–1998

    Article  Google Scholar 

  89. Shiino D, Murata Y, Kubo A et al (1995) Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. J Control Release 37:269–276

    Article  CAS  Google Scholar 

  90. Bosch LI, Fyles TM, James TD (2004) Binary and ternary phenylboronic acid complexes with saccharides and lewis bases. Tetrahedron 60:11175–11190

    Article  CAS  Google Scholar 

  91. Islam MT, Shi X, Balogh L (2005) HPLC separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. Anal Chem 77:2063–2070

    Article  CAS  Google Scholar 

  92. Hong S, Bielinska AU, Mecke A et al (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782

    Article  CAS  Google Scholar 

  93. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  94. Majoros IJ, Thomas TP, Mehta CB et al (2005) Poly(amidoamine) dendrimer-based multifunctional engineered nanodevices for cancer therapy. J Med Chem 48:5892–5899

    Article  CAS  Google Scholar 

  95. Kukowska-Latallo J, Candido KA, Cao Z et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    Article  CAS  Google Scholar 

  96. Majoros IJ, Keszler B, Woehler S et al (2003) Acetylation of poly(amidoamine) dendrimers. Macromolecules 36:5526–5529

    Article  CAS  Google Scholar 

  97. Arimori S, Ward CJ, James TD (2002) A d-glucose selective fluorescent assay. Tetrahedron Lett 43:303–305

    Article  CAS  Google Scholar 

  98. Arimori S, Bosch AI, Ward CJ (2001) Fluorescent internal charge transfer (ICT) saccharide sensor. Tetrahedron Lett 42:4553–4555

    Article  CAS  Google Scholar 

  99. Boduroglu S, El Khoury JM, Reddy V et al (2005) A colorimetric titration method for quantification of millimolar glucose in a pH 7.4 aqueous phosphate buffer. Bioorg Med Chem Lett 15:3974–3977

    Article  CAS  Google Scholar 

  100. Musto CJ, Suslick KS (2010) Differential sensing of sugars by colorimetric arrays. Curr Opin Chem Biol 14:758–766

    Article  Google Scholar 

Download references

Acknowledgments

We thank PositiveID Corporation for their partial financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Carlson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas, C., Roska, R.W., Carlson, R.E. (2012). Design and Development of In Vivo Sensor Systems: The Long and Tortured Road to a Self-Contained, Implantable Glucose Sensor for Diabetes Management. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_23

Download citation

Publish with us

Policies and ethics