Skip to main content

Learning from Proteins and Drugs: Receptors That Mimic Biomedically Important Binding Motifs

  • Chapter
  • First Online:
Designing Receptors for the Next Generation of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

  • 1480 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrin CL, Nielson JB (1997) “Strong” hydrogen bonds in chemistry and biology. Annu Rev Phys Chem 48(1):511–544

    Article  CAS  Google Scholar 

  2. Xu D, Tsai CJ, Nussinov R (1997) Hydrogen bonds and salt bridges across protein–protein interfaces. Protein Eng 10(9):999–1012

    Article  CAS  Google Scholar 

  3. Wahl MC, Sundaralingam M (1997) C–H…O hydrogen bonding in biology. Trends Biochem Sci 22(3):97–102

    Article  CAS  Google Scholar 

  4. Resnati G (2002) Book review: the weak hydrogen bond—in structural chemistry and biology. Gautam Desiraju and Thomas steiner. ChemPhysChem 3(2):225–226

    Article  CAS  Google Scholar 

  5. Gao J, Bosco DA, Powers ET, Kelly JW (2009) Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nat Struct Mol Biol 16(7):684–690

    Article  CAS  Google Scholar 

  6. Alkorta I, Elguero J (1998) Non-conventional hydrogen bonds. Chem Soc Rev 27(2):163–170

    Article  CAS  Google Scholar 

  7. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415(6869):287–294

    Article  CAS  Google Scholar 

  8. Thiyagarajan N, Smith BD, Raines RT, Acharya KR (2011) Functional and structural analyses of N-acylsulfonamide-linked dinucleoside inhibitors of rnase a. FEBS J 278(3):541–549

    Article  CAS  Google Scholar 

  9. Serrano L, Bycroft M, Fersht AR (1991) Aromatic-aromatic interactions and protein stability: investigation by double-mutant cycles. J Mol Biol 218(2):465–475

    Article  CAS  Google Scholar 

  10. Bhattacharyya R, Samanta U, Chakrabarti P (2002) Aromatic-aromatic interactions in and around α-helices. Protein Eng 15(2):91–100

    Article  CAS  Google Scholar 

  11. Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) Aromatic interactions. J Chem Soc Perkin Trans 2 (5):651–669

    Google Scholar 

  12. Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132(8):2719–2728

    Article  CAS  Google Scholar 

  13. Spolar RS, Ha JH, Record MT (1989) Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc Natl Acad Sci USA 86(21):8382–8385

    Article  CAS  Google Scholar 

  14. Lins L, Brasseur R (1995) The hydrophobic effect in protein folding. FASEB J 9(7):535–540

    CAS  Google Scholar 

  15. Southall NT, Dill KA, Haymet ADJ (2001) A view of the hydrophobic effect. J Phys Chem B 106(3):521–533

    Article  Google Scholar 

  16. Tsai C-J, Lin SL, Wolfson HJ, Nussinov R (1997) Studies of protein–protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 6(1):53–64

    Article  CAS  Google Scholar 

  17. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Or S, Haukaas SA, Salvesen HB, Otte AP, Akslen LA (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24(2):268–273

    Article  CAS  Google Scholar 

  18. Eckerle S, Brune V, Doring C, Tiacci E, Bohle V, Sundstrom C, Kodet R, Paulli M, Falini B, Klapper W, Chaubert AB, Willenbrock K, Metzler D, Brauninger A, Kuppers R, Hansmann ML (2009) Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia 23(11):2129–2138

    Article  CAS  Google Scholar 

  19. Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, Balusu R, Koul S, Atadja P, Marquez VE, Bhalla KN (2009) Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114(13):2733–2743

    Article  CAS  Google Scholar 

  20. Basak SK, Veena MS, Oh S, Huang G, Srivatsan E, Huang M, Sharma S, Batra RK (2009) The malignant pleural effusion as a model to investigate intratumoral heterogeneity in lung cancer. PLoS One 4(6):e5884

    Article  Google Scholar 

  21. Kaustov L, Ouyang H, Amaya M, Lemak A, Nady N, Duan S, Wasney GA, Li Z, Vedadi M, Schapira M, Min J, Arrowsmith CH (2011) Recognition and specificity determinants of the human CBX chromodomains. J Biol Chem 286(1):521–529

    Article  CAS  Google Scholar 

  22. Gribkoff VK, Champigny G, Barbry P, Dworetzky SI, Meanwell NA, Lazdunski M (1994) The substituted benzimidazolone NS004 is an opener of the cystic fibrosis chloride channel. J Biol Chem 269(15):10983–10986

    CAS  Google Scholar 

  23. Cox JPD, Yamamoto K, Christie PT, Wooding C, Feest T, Flinter FA, Goodyer PR, Leumann E, Neuhaus T, Reid C, Williams PF, Wrong O, Thakker RV (1999) Renal chloride channel, CLCN5, mutations in Dent’s disease. J Bone Miner Res 14(9):1536–1542

    Article  CAS  Google Scholar 

  24. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HrW, Waldegger S (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350(13):1314–1319

    Article  CAS  Google Scholar 

  25. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40(3):486–516

    Article  CAS  Google Scholar 

  26. Gale PA, Quesada R (2006) Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord Chem Rev 250(23–24):3219–3244

    Article  CAS  Google Scholar 

  27. Lavigne JJ, Anslyn EV (2001) Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angew Chem Int Ed 40(17):3118–3130

    Article  CAS  Google Scholar 

  28. Herr RJ (2002) 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10(11):3379–3393

    Article  CAS  Google Scholar 

  29. Patani GA, LaVoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96(8):3147–3176

    Article  CAS  Google Scholar 

  30. Olesen PH (2001) The use of bioisosteric groups in lead optimization. Curr Opin Drug Discov Devel 4:471–478

    CAS  Google Scholar 

  31. Myznikov LV, Hrabalek A, Koldobskii GI (2007) Drugs in the tetrazole series. Chem Heterocycl Compd 43(1):1–9

    Article  CAS  Google Scholar 

  32. Nattel S (2005) Can losartan prevent new-onset atrial fibrillation in hypertensive patients more effectively than atenolol? Nat Clin Pract Cardiovasc Med 2(7):332–333

    Article  Google Scholar 

  33. Skulnick HI, Johnson PD, Aristoff PA, Morris JK, Lovasz KD, Howe WJ, Watenpaugh KD, Janakiraman MN, Anderson DJ, Reischer RJ, Schwartz TM, Banitt LS, Tomich PK, Lynn JC, Horng M-M, Chong K-T, Hinshaw RR, Dolak LA, Seest EP, Schwende FJ, Rush BD, Howard GM, Toth LN, Wilkinson KR, Kakuk TJ, Johnson CW, Cole SL, Zaya RM, Zipp GL, Possert PL, Dalga RJ, Zhong W-Z, Williams MG, Romines KR (1997) Structure-based design of nonpeptidic HIV protease inhibitors: the sulfonamide-substituted cyclooctylpyranones. J Med Chem 40(7):1149–1164

    Article  CAS  Google Scholar 

  34. Reddy NS, Mallireddigari MR, Cosenza S, Gumireddy K, Bell SC, Reddy EP, Reddy MVR (2004) Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg Med Chem Lett 14(15):4093–4097

    Article  CAS  Google Scholar 

  35. Lobb KL, Hipskind PA, Aikins JA, Alvarez E, Cheung Y-Y, Considine EL, De Dios A, Durst GL, Ferritto R, Grossman CS, Giera DD, Hollister BA, Huang Z, Iversen PW, Law KL, Li T, Lin H-S, Lopez B, Lopez JE, Cabrejas LMM, McCann DJ, Molero V, Reilly JE, Richett ME, Shih C, Teicher B, Wikel JH, White WT, Mader MM (2004) Acyl sulfonamide anti-proliferatives: benzene substituent structure‚ activity relationships for a novel class of antitumor agents. J Med Chem 47(22):5367–5380

    Article  CAS  Google Scholar 

  36. Stansfield I, Pompei M, Conte I, Ercolani C, Migliaccio G, Jairaj M, Giuliano C, Rowley M, Narjes F (2007) Development of carboxylic acid replacements in indole-N-acetamide inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem Lett 17(18):5143–5149

    Article  CAS  Google Scholar 

  37. Hu X, Sun J, Wang H-G, Manetsch R (2008) Bcl-xl-templated assembly of its own protein-protein interaction modulator from fragments decorated with thio acids and sulfonyl azides. J Am Chem Soc 130(42):13820–13821

    Article  CAS  Google Scholar 

  38. Mahnke DJ, McDonald R, Hof F (2007) A shape-dependent hydrophobic effect for tetrazoles. Chem Commun (36):3738–3740

    Google Scholar 

  39. Tominey A, Andrew D, Oliphant L, Rosair GM, Dupre J, Kraft A (2006) Supramolecular binding of protonated amines to a receptor microgel in aqueous medium. Chem Commun (23):2492–2494

    Google Scholar 

  40. Peters L, Froehlich R, Boyd ASF, Kraft A (2001) Noncovalent interactions between tetrazole and an N, N-diethyl-substituted benzamidine. J Org Chem 66(10):3291–3298

    Article  CAS  Google Scholar 

  41. Khazaei A, Manesh AA (2006) Selective oxidation of oximes to carbonyl compounds using n-bromo-n-benzoyl-4-toluenesulfonamide. Mendeleev Commun 16(2):109–111

    Article  Google Scholar 

  42. Chen Y-J, Chung W-S (2009) Tetrazoles and para-substituted phenylazo-coupled calix[4]arenes as highly sensitive chromogenic sensors for ca2+. Eur J Org Chem 2009(28):4770–4776

    Article  Google Scholar 

  43. Boyko V, Rodik R, Danylyuk O, Tsymbal L, Lampeka Y, Suwinska K, Lipkowski J, Kalchenko V (2005) Tetrazolecalix[4]arenes as new ligands for palladium(ii). Tetrahedron 61(52):12282–12287

    Article  CAS  Google Scholar 

  44. Starnes SD, Arungundram S, Saunders CH (2002) Anion sensors based on β, β′-disubstituted porphyrin derivatives. Tetrahedron Lett 43(43):7785–7788

    Article  CAS  Google Scholar 

  45. Chung YM, Raman B, Kim D-S, Ahn KH (2006) Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host-guest adducts. Chem Commun (2):186–188

    Google Scholar 

  46. Carroll CN, Naleway JJ, Haley MM, Johnson DW (2010) Arylethynyl receptors for neutral molecules and anions: emerging applications in cellular imaging. Chem Soc Rev 39(10):3875–3888

    Article  CAS  Google Scholar 

  47. Berryman OB, Johnson CA, Zakharov LN, Haley MM, Johnson DW (2008) Water and hydrogen halides serve the same structural role in a series of 2+2 hydrogen-bonded dimers based on 2,6-bis(2-anilinoethynyl)pyridine sulfonamide receptors. Angew Chem Int Ed 47(1):117–120

    Article  CAS  Google Scholar 

  48. Kavallieratos K, Bertao CM, Crabtree RH (1999) Hydrogen bonding in anion recognition: a family of versatile, nonpreorganized neutral and acyclic receptors. J Org Chem 64(5):1675–1683

    Article  CAS  Google Scholar 

  49. Shchipanov VP, Krashina KI, Skachilova AA (1973) Tetrazole derivatives. Chem Heterocycl Compd 9(11):1423–1426

    Article  Google Scholar 

  50. Seydel JK (1968) Sulfonamides, structure-activity relationship, and mode of action. Structural problems of the antibacterial action of 4-aminobenzoic acid (paba) antagonists. J Pharm Sci 57(9):1455–1478

    Article  CAS  Google Scholar 

  51. Hof F, Schütz A, Fäh C, Meyer S, Bur D, Liu J, Goldberg DE, Diederich F (2006) Starving the malaria parasite: inhibitors active against the aspartic proteases plasmepsins I, II, and IV. Angew Chem Int Ed 45(13):2138–2141

    Article  CAS  Google Scholar 

  52. McKie AH, Friedland S, Hof F (2008) Tetrazoles are potent anion recognition elements that emulate the disfavored anti conformations of carboxylic acids. Org Lett 10(20):4653–4655

    Article  CAS  Google Scholar 

  53. Wallace KJ, Belcher WJ, Turner DR, Syed KF, Steed JW (2003) Slow anion exchange, conformational equilibria, and fluorescent sensing in venus flytrap aminopyridinium-based anion hosts. J Am Chem Soc 125(32):9699–9715

    Article  CAS  Google Scholar 

  54. Davis J (2010) Anion binding and transport by prodigiosin and its analogs anion recognition in supramolecular chemistry. In: Gale PA, Dehaen W (eds) Topics in heterocyclic chemistry, vol 24. Springer, Berlin, pp 145–176

    Google Scholar 

  55. Courtemanche RJM, Pinter T, Hof F (2011) Just add tetrazole: 5-(2-Pyrrolo)tetrazoles are simple, highly potent anion recognition elements. Chem Commun 47 (47):12688–12690

    Article  CAS  Google Scholar 

  56. Gale PA, Camiolo S, Tizzard GJ, Chapman CP, Light ME, Coles SJ, Hursthouse MB (2001) 2-Amidopyrroles and 2,5-diamidopyrroles as simple anion binding agents. J Org Chem 66(23):7849–7853

    Article  CAS  Google Scholar 

  57. Campagna-Slater V, Schapira M (2010) Finding inspiration in the Protein Data Bank to chemically antagonize readers of the histone code. Mol Inform 29(4):322–331

    Article  CAS  Google Scholar 

  58. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040

    Article  CAS  Google Scholar 

  59. Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97(5):1303–1324

    Article  CAS  Google Scholar 

  60. Schärer K, Morgenthaler M, Paulini R, Obst-Sander U, Banner DW, Schlatter D, Benz J, Stihle M, Diederich F (2005) Quantification of cation–π interactions in protein–ligand complexes: crystal-structure analysis of Factor Xa bound to a quaternary ammonium ion ligand. Angew Chem Int Ed 44(28):4400–4404

    Article  Google Scholar 

  61. Hughes RM, Wiggins KR, Khorasanizadeh S, Waters ML (2007) Recognition of trimethyllysine by a chromodomain is not driven by the hydrophobic effect. Proc Natl Acad Sci USA 104(27):11184–11188

    Article  CAS  Google Scholar 

  62. Cashin AL, Petersson EJ, Lester HA, Dougherty DA (2004) Using physical chemistry to differentiate nicotinic from cholinergic agonists at the nicotinic acetylcholine receptor. J Am Chem Soc 127(1):350–356

    Article  Google Scholar 

  63. Gallivan JP, Dougherty DA (1999) Cation-π interactions in structural biology. Proc Natl Acad Sci USA 96(17):9459–9464

    Article  CAS  Google Scholar 

  64. Beshara CS, Hof F (2010) Modular incorporation of 1-benzyltryptophan into dipeptide hosts that bind acetylcholine in pure water. Can J Chem 88(10):1009–1016

    Article  CAS  Google Scholar 

  65. Whiting AL, Neufeld NM, Hof F (2009) A tryptophan-analog host whose interactions with ammonium ions in water are dominated by the hydrophobic effect. Tetrahedron Lett 50(50):7035–7037

    Article  CAS  Google Scholar 

  66. Koh KN, Araki K, Ikeda A, Otsuka H, Shinkai S (1996) Reinvestigation of calixarene-based artificial-signaling acetylcholine receptors useful in neutral aqueous (water/methanol) solution. J Am Chem Soc 118(4):755–758

    Article  CAS  Google Scholar 

  67. Guo D-S, Uzunova VD, Su X, Liu Y, Nau WM (2011) Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem Sci 2(9):1722–1734

    Article  CAS  Google Scholar 

  68. Perret F, Lazar AN, Coleman AW (2006) Biochemistry of the para-sulfonato-calix[n]arenes. Chem Commun (23):2425–2438

    Google Scholar 

  69. Coleman A, Perret F, Moussa A, Dupin M, Guo Y, Perron H (2007) Calix[n]arenes as protein sensors. Creative chemical sensor systems. In: Schrader T (ed) Topics in current chemistry, vol 277. Springer, Berlin, pp 31–88

    Google Scholar 

  70. Arena G, Casnati A, Contino A, Magri A, Sansone F, Sciotto D, Ungaro R (2006) Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling. Org Biomol Chem 4(2):243–249

    Article  CAS  Google Scholar 

  71. Douteau-Guevel N, Coleman AW, Morel J-P, Morel-Desrosiers N (1999) Complexation of the basic amino acids lysine and arginine by three sulfonatocalix[n]arenes (n=4, 6 and 8) in water: microcalorimetric determination of the Gibbs energies, enthalpies and entropies of complexation. J Chem Soc Perkin Trans 2 (3):629–634

    Google Scholar 

  72. Beshara CS, Jones CE, Daze KD, Lilgert BJ, Hof F (2010) A simple calixarene recognizes post-translationally methylated lysine. Chembiochem 11(1):63–66

    Article  CAS  Google Scholar 

  73. Selkti M, Coleman AW, Nicolis I, Douteau-Guevel N, Villain F, Tomas A, de Rango C (2000) The first example of a substrate spanning the calix[4]arene bilayer: the solid state complex of p-sulfonatocalix[4]arene with -lysine. Chem Commun (2):161–162

    Google Scholar 

  74. Ingerman LA, Cuellar ME, Waters ML (2010) A small molecule receptor that selectively recognizes trimethyl lysine in a histone peptide with native protein-like affinity. Chem Commun 46(11):1839–1841

    Article  CAS  Google Scholar 

  75. Wang K, Guo D-S, Zhang H-Q, Li D, Zheng X-L, Liu Y (2009) Highly effective binding of viologens by p-sulfonatocalixarenes for the treatment of viologen poisoning. J Med Chem 52(20):6402–6412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank NSERC for funding. FH is a Career Scholar of the Michael Smith Foundation for Health Research and Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fraser Hof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hof, F., Pinter, T. (2012). Learning from Proteins and Drugs: Receptors That Mimic Biomedically Important Binding Motifs. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_15

Download citation

Publish with us

Policies and ethics