Skip to main content

Personal Historical Perspective on the Development of Electron Counting Rules for Boranes and Clusters and Ken Wade’s Contribution

  • Chapter
  • First Online:
50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules

Part of the book series: Structure and Bonding ((STRUCTURE,volume 187))

Abstract

2021 marks the 50th Anniversary of the publication by Ken Wade’s “The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition metal carbonyl cluster compounds” in Chemical Communications. This paper played an important role in the development of cluster and polyhedral main group chemistry and through the isolobal analogy encouraged imaginative interconnections between main group, transition metal and organic chemistry. It has been cited more than 500 times and the rules which developed from this and related papers are introduced in all modern undergraduate inorganic textbooks. It is therefore appropriate to publish a set of reviews which illustrate the influence of these generalisations on modern inorganic chemistry and give those newer to the field an insight into how the ideas which Wade introduced evolved. The chapters also give a critical account of the limitations of the approach and suggest how the subject may develop in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EHMO:

Extended Hückel molecular orbital theory

homo-lumo:

Highest occupied and lowest unoccupied molecular orbitals

MO:

Molecular orbital

PSEPT:

Polyhedral skeletal electron pair theory

sep:

Skeletal electron pair

VSEPR:

Valence shell electron pair repulsion theory

References

  1. Sidgwick NV (1927) The chemical elements and their compounds. Clarendon Press, Oxford

    Google Scholar 

  2. Stock A (1933) Hydrides of boron and silicon, the George Fisher Baker non-resident lectureship in chemistry at Cornell University Press, Ithaca, NY

    Google Scholar 

  3. Kasper JS, Lucht CM, Harker D (1950) The crystal structure of decaborane, B10H14. Acta Crystallogr 3:436–455

    Article  CAS  Google Scholar 

  4. Natta G, Farina M (1972) Stereochemistry. Longmann Publishers, London

    Google Scholar 

  5. Kekulé FA (1850) Ueber die Constitution und die Metamorpheser der Chemischen Verbindingen und über die Chemische Natur der Kohlenstoffs Annalen 106:129–159:104:129–30

    Google Scholar 

  6. Le Bel JA (1874) On the relations which exist between the atomic formulas of organic compounds and the rotatory power of their solutions. Bull Soc Chem Fr 22:337–367

    Google Scholar 

  7. Van’t Hoff JH (1874) A suggestion looking to the extension into space of the structural formulae at present used in chemistry. And a note upon the relation between the optical activity and the chemical constitution of organic compounds. Arch Neerl Sci Exactes Nat 9:445–454

    Google Scholar 

  8. Bauer SH (1937) The structure of diborane. J Am Chem Soc 59:1096–1103.

    Google Scholar 

  9. Hedberg K, Schomaker V (1951) Reinvestigation of the structures of diborane and ethane by electron diffraction. J Am Chem Soc 73:1482–1487

    Article  CAS  Google Scholar 

  10. Dilthey W (1921) Chemische Gesellschaft Erlangen. Z Angew Chem 34:596–599

    Google Scholar 

  11. Core AF (1927) Chemical combination and the constitution of boron hydride. J Soc Chem Ind 46:642–643

    Google Scholar 

  12. Hnyk D, Rankin DWH (2009) Stereochemistry of free boranes and heteroboranes from electron scattering and model chemistries. J Chem Soc Dalton Trans:585–599

    Google Scholar 

  13. Abrahams C, Collin RL, Lipscomb WN, Reed TB (1950) Further techniques in single-crystal X-ray diffraction studies at low temperatures. Rev Sci Instrum 21:396–398

    Article  Google Scholar 

  14. Kaufman HS, Fankuchen I (1949) A low temperature single crystal X-ray diffraction technique. Rev Sci Instrum 20:733–734

    Article  CAS  PubMed  Google Scholar 

  15. Eriks K, Lipscomb WN, Schaefler R (1954) The boron arrangement in a B6 boron hydride. J Chem Phys 22:754–755

    Article  CAS  Google Scholar 

  16. Hirshfeld L, Eriks K, Dickerson RE, Lippert Jr EL, Lipscomb WN (1953) Molecular and crystal structure of boron hydrides. J Chem Phys 28:56–61

    Article  Google Scholar 

  17. Lipscomb WN (1963) Boron hydrides. W A Benjamin & Sons, Reading

    Google Scholar 

  18. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  19. Lewis GN (1923) Valence and the structures of atoms and molecule. The Chemical Catalog, New York, USA

    Google Scholar 

  20. Kossel W (1916) Formation of molecules and its dependence on atomic structure. Ann Phys 49:229–362

    Article  CAS  Google Scholar 

  21. Langmuir I (1919) The arrangement of electrons in atoms and molecules. J Am Chem Soc 41:868–934

    Article  CAS  Google Scholar 

  22. Langmuir I (1919) The structure of atoms and octet theory of valence. Proc Nat Acad Sci 5:252–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmuir I (1921) Types of valence. Science 54:59–67

    Article  CAS  PubMed  Google Scholar 

  24. Mingos DMP (2019) Development of bonding models based on the periodic table. Chimia 73:152–164

    Article  CAS  PubMed  Google Scholar 

  25. Mingos DMP (2016) The chemical bond: Lewis and Kosell’s landmark contribution in 100 years of the chemical bond I (Ed Mingos DMP). Struct Bond 169:1–56

    Article  CAS  Google Scholar 

  26. Kermach WO, Robinson R (1922) Explanation of the property of induced polarity of atoms and an interpretation of the theory of partial valence on an electronic basis. J Chem Soc Trans 121:427–440

    Article  Google Scholar 

  27. Ingold CK (1925) The nature of the alternating effect in carbon chains part 1. The directive effect of the nitroso group. J Chem Soc 127:513–518

    Google Scholar 

  28. Sidgwick NV (1927) The electronic theory of valency. Clarendon Press, Oxford

    Google Scholar 

  29. Halland A (2008) Molecules and models. Oxford University Press, Oxford

    Book  Google Scholar 

  30. Halland A, Tilset H (2016) Lewis and Kossel’s legacy: structure and bonding on main group compounds in 100 years of the chemical bond II Ed Mingos DMP. Struct Bond 170:1–70

    Article  Google Scholar 

  31. Pauling L (1938) The nature of the chemical bond, The George Fisher Baker non-resident lectureship in chemistry at Cornell University Press, Ithaca, NY, USA, 2nd edn, 1940, 3rd edn, 1960

    Google Scholar 

  32. Stitt F (1940) The gaseous heat capacity and restricted internal rotation of diborane. J Chem Phys 8:981–986

    Article  CAS  Google Scholar 

  33. Stitt F (1941) Infra-red and Raman spectra of polyatomic molecules, XV diborane. J Chem Phys 9:780–785

    Article  CAS  Google Scholar 

  34. Longuet-Higgins HC, Bell RP (1943) The structure of the boron hydrides. J Chem Soc:250–255

    Google Scholar 

  35. Price WC (1947) The structure of diborane. J Chem Phys 15:614–615

    Article  CAS  Google Scholar 

  36. Price WC (1948) The absorption spectrum of diborane. J Chem Phys 16:894–902

    Article  CAS  Google Scholar 

  37. Pitzer KS (1946) Electron deficient molecules I. The principles of hydroboron structures. J Am Chem Soc 67:1126–1132

    Article  Google Scholar 

  38. Syrkin YK, Dyatkina ME (1941) Acta Phys URSS 14:547–560

    CAS  Google Scholar 

  39. Nekrassov BV (1940) J Gen Chem URSS 10:1021

    Google Scholar 

  40. Graham L (1972) Science and philosophy in the Soviet Union, New York, USA

    Google Scholar 

  41. Graham L (1987) Science philosophy and human behaviour in the Soviet Union, New York, USA

    Google Scholar 

  42. Pechenkin AA (1995) The 1949–1951 anti-resonance campaign in the Soviet Union LLULL, 18:135–166

    Google Scholar 

  43. Lasszlo P (2000) A diborane story. Angew Chem Int Ed Engl 39:2071–2072

    Article  Google Scholar 

  44. Mulliken RS (1947) The structure of diborane and related molecules. Chem Rev 41:207–217

    Article  CAS  PubMed  Google Scholar 

  45. Walsh AD (1947) Co-ordinate links formed by bonding electrons. J Chem Soc:89–92

    Google Scholar 

  46. Mason R, Mingos DMP (1973) Geometries of and bonding in bi- and polynuclear metal complexes with bridging ligands. J Organometal Chem 50:53–61

    Article  CAS  Google Scholar 

  47. Longuet-Higgins HC (1957) The structures of electron deficient molecules. Quart Rev Chem Soc 11:121–133

    Article  CAS  Google Scholar 

  48. Roberts I, Kimball GE (1937) The halogenation of ethylenes. J Am Chem Soc 59:947–948

    Article  CAS  Google Scholar 

  49. Dewar MJS (1951) A review of π complex theory. Bull Soc Chim Fr 18:C71–C79

    Google Scholar 

  50. Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc:2939–2953

    Google Scholar 

  51. Wilkinson G, Rosenblum M, Whiting MC, Woodward RB (1952) The structure of iron bis(cyclopentadienyl). J Am Chem Soc 74:2125–2156

    Article  CAS  Google Scholar 

  52. Fischer EO (1955) Metallverbindungen des Cyclopentadiens und des Indens. Angew Chem 57:211–212

    Google Scholar 

  53. Davies SG, Green MLH, Mingos DMP (1978) Nucleophilic addition to organotransition metal cations containing unsaturated hydrocarbon ligands. Tetrahedron 34:3047–3077

    Article  CAS  Google Scholar 

  54. Brookhart M, Green MLH (1988) Carbon-hydrogen-transition metal bonds. Prog Inorg Chem 36:1–124

    CAS  Google Scholar 

  55. Kubas G (2014) Activation of dihydrogen and co-ordination of molecular H2 to transition metals. J Organometal Chem 751:33–49

    Article  CAS  Google Scholar 

  56. Green MLH (1995) A new approach to the classification of covalent compounds of the elements. J Organometal Chem 500:127–114

    Article  CAS  Google Scholar 

  57. Green JC, Green MLH, Parkin G (2012) The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. J Chem Soc Chem Commun 48:11481–11503

    Google Scholar 

  58. Lewis PH, Rundle RE (1953) Structure of trimethylaluminium. J Chem Phys 21:986–992

    Article  CAS  Google Scholar 

  59. Rundle RE (1949) Electron deficient compounds II. Relative energies of “half-bonds”. J Chem Phys 17:671–675

    Article  CAS  Google Scholar 

  60. Longuet-Higgins HC, Wheland GW (1950) Theories of valence. Ann Rev Phys Chem 1:133–150

    Article  CAS  Google Scholar 

  61. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  62. Fleming I (1978) Frontier orbitals and organic chemical reactions. Wiley Interscience, London, pp 24–109

    Google Scholar 

  63. Libit L, Hoffmann R (1974) Detailed theory of substituent effects. J Am Chem Soc 96:1370–1383

    Article  CAS  Google Scholar 

  64. Albright TA, Burdett JK, Whangbo M-H (1985) Orbital interactions in chemistry, 2nd edn. Wiley, New York, (2018)

    Google Scholar 

  65. Longuet-Higgins HC, de Roberts VM (1954) The electronic structure of the borides MB6. Proc R Soc Lond A224:336–347

    Google Scholar 

  66. Longuet Higgins HC, de Roberts VM (1955) The electronic structure of an icosahedron of boron atoms. Proc R Soc Lond A230:1–10

    Google Scholar 

  67. Eberhardt WH, Crawford Jr B, Lipscomb WN (1954) The valence structure of the boron hydrides. J Chem Phys 22:989–1001

    Article  CAS  Google Scholar 

  68. Dickerson RE, Lipscomb WN (1957) Semi-topological approach to boron-hydride structures. J Chem Phys 27:212–217

    Google Scholar 

  69. Lipscomb WN (1964) Geometrical theory of boron hydrides. Inorg Chem 3:1683–1685

    Article  CAS  Google Scholar 

  70. Epstein IR, Lipscomb WN (1971) Boron hydride valence structures: a topological approach. Inorg Chem 10:1921–1928

    Article  Google Scholar 

  71. Moore Jr EE, Lohr Jr LL, Lipscomb WN (1961) Molecular orbitals in some boron compounds. J Chem Phys 35:1329–1334

    Article  CAS  Google Scholar 

  72. Wells AF (1984) Structural inorganic chemistry.5th edn. Oxford University Press, Oxford, pp 1049–1055

    Google Scholar 

  73. Müller U (1993) Inorganic structural chemistry. Wiley, Chichester, pp 104–105

    Google Scholar 

  74. Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Butterworth Heinemann Press, Oxford, pp 139–144

    Google Scholar 

  75. Hoard JL, Sullenger DB, Kennard CHL, Hughes RE (1970) The structure analysis of β-rhombohedral boron. J Solid State Chem 1:268–277

    Article  CAS  Google Scholar 

  76. Lipscomb WN (1977) Boranes and their relatives. Science 196:1047–1055

    Article  CAS  PubMed  Google Scholar 

  77. Edittisroit C, Ruedenberg K (1966) Löwdin P-O quantum theory of atoms, molecules and the solid state. Academic Press, New York, pp 262–281

    Google Scholar 

  78. Boys SF (1966) Löwdin P-O quantum theory of atoms, molecules and the solid state. Academic Press, New York, pp 253–262

    Google Scholar 

  79. Kleier DA, Halyreti A, Hall Jr AJH, Lipscomb WN (1974) Localized molecular orbitals for polyatomic molecules I. a comparison of the Edmiston-Ruedenberg and boys localization methods. J Chem Phys 61:3905–3919

    Article  CAS  Google Scholar 

  80. Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Wiley, Hoboken

    Book  Google Scholar 

  81. Lipscomb WN (1979) Relationship of the styx rules to the Wade’s rules. Inorg Chem 18:232

    Google Scholar 

  82. Lipscomb WN, Pitochelli AR, Hawthorne MF (1959) The probable structure of B10H102− ion. J Am Chem Soc 81:5833–5834

    Article  CAS  Google Scholar 

  83. Hawthorne MF, Pitochelli AR (1959) The reactions of bis-acetonitrile decaborane with amines. J Am Chem Soc 81:5519

    Article  CAS  Google Scholar 

  84. Dobrott RD, Lipscomb WN (1960) Structure of Cu2B10H10. J Chem Phys 37:1779–1784

    Article  Google Scholar 

  85. Pitochelli AR, Hawthorne MF (1960) The isolation of the icosahedral B12H122− ion. J Am Chem Soc 82:3228–3229

    Article  CAS  Google Scholar 

  86. Wunderlich JA, Lipscomb WN (1960) Structure of B12H122− ion. J Am Chem Soc 82:4427–4428

    Article  CAS  Google Scholar 

  87. Hoffmann R, Lipscomb WN (1962) Theory of polyhedral molecules. I. Physical factorizations of the secular equation. J Chem Phys 36:2179–2189

    Article  CAS  Google Scholar 

  88. Hoffmann R, Gouterman M (1962) Theory of polyhedral molecules II. A crystal field model. J Chem Phys 36:2189–2195

    Article  CAS  Google Scholar 

  89. Hoffmann R, Lipscomb WN (1962) Theory of polyhedral molecules III. Population analyses and reactivities for the carboranes. J Chem Phys 36:3489–3493

    Article  CAS  Google Scholar 

  90. Hoffmann R, Lipscomb WN (1963) Intramolecular isomerization and transformations in carboranes and substituted polyhedral molecules. Inorg Chem 2:231–232

    Article  CAS  Google Scholar 

  91. Hoffmann R (1963) Extended Hückel theory I- hydrocarbons. J Chem Phys 39:1397–1412

    Article  CAS  Google Scholar 

  92. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlag Cherie GmbH Academic Press, New York

    Google Scholar 

  93. Knoth WH, Miller HC, English DC, Parshall GW, Muetterties EL (1962) Derivative chemistry of B10H102− and B12H122−. J Am Chem Soc 84:1056–1057

    Google Scholar 

  94. Miller HC, Hertler WR, Muetterties EL, Knoth WH, Miller NE (1965) Chemistry of boranes XXV. Synthesis and chemistry of base derivatives of B10H102− and B12H122−. Inorg Chem 4:1216–1221. (see also the earlier papers in the series)

    Google Scholar 

  95. Klanberg F, Muetterties EL (1966) Chemistry of Boranes. XXVII. New polyhedral borane anions, B9H92- and B11H112−. Inorg Chem 5:1955–1960

    Google Scholar 

  96. Klanberg F, Eaton DR, Muetterties EL, Guggenberger LJ (1967) Chemistry of boranes. XXVIII. New polyhedral borane anions, B8H82−, B8H82− and B7H72−. Inorg Chem 7:1271–1281

    Google Scholar 

  97. Muetterties EL, Knoth WH (1968) Polyhedral boranes. Marcel-Dekker, New York

    Google Scholar 

  98. Hawthorne MF (1967) Muetterties EL (ed) Chemistry of boron and its compounds. Wiley, New York

    Google Scholar 

  99. Muetterties EL, Wright GM (1967) Molecular polyhedra of high co-ordination numbers. Quart Rev (Lond) 21:109–194

    Article  CAS  Google Scholar 

  100. Muetterties EL (1972) Stereochemical non-rigidity. Ed Tobe ML MTP (Med. Tech. Publ. Co.) Int Rev Sci Inorg Chem Ser One 9:37–85

    Google Scholar 

  101. Guggenberger LJ, Muetterties EL (1976) Reaction path analysis 2. The nine-atom family. J Am Chem Soc 98:7221–7225

    Article  CAS  Google Scholar 

  102. Bürgi HB, Dunitz JD (1983) From crystal statics to chemical dynamics. Acc Chem Res 16:153–161

    Article  Google Scholar 

  103. Atoji M, Lipscomb WN (1953) Crystal and molecular structure of B4Cl4. Acta Cryst 6:547–550

    Article  CAS  Google Scholar 

  104. Atoji M, Lipscomb WN (1959) Molecular and crystal structure of B8Cl8. J Chem Phys 31:605–610

    Article  Google Scholar 

  105. Morrison JA (1991) Chemistry of the polyhedral boron halides and the diboron tetrahalides. Chem Rev 91:35–48

    Article  CAS  Google Scholar 

  106. Williams RE (1994) Early Carboranes and their structural legacy. Adv Organometal Chem 36:1–50

    Article  CAS  Google Scholar 

  107. Grimes RN (2016) Carboranes, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  108. Williams RE, Good CI, Shapiro I (1962) The carborane series: BnC2Hn+2 B3C2H5. J Am Chem Soc 84:3837–3840

    Article  Google Scholar 

  109. Shapiro I, Keilin B, Williams RE, Good CD (1963) The carborane series BnC2Hn+2 II. The two isomers of B4C2H6. J Am Chem Soc 85:3167–3171

    Article  CAS  Google Scholar 

  110. Onak TP, Gerhart FJ, Williams RE (1963) Synthesis of dicarboranes from dihydrocarboranes. J Am Chem Soc 85:3378–3380

    Article  CAS  Google Scholar 

  111. Onak TP, Drake RP, Dunks GB (1964) Studies on 2,3-dicarbahexaborane (8) and related compounds. Inorg Chem 3:1686–1690

    Article  CAS  Google Scholar 

  112. Heying TL, Ager JW, Clark SL, Mangold DJ, Goldstein HL, Hillman M, Polak RJ, Szymanski JW (1963) A new series of organoboranes I. Carboranes from the reaction of decaborane with acetylenic compounds. Inorg Chem 6:1089–1092, 115

    Article  Google Scholar 

  113. Fein MM, Bobinski J, Mayes N, Schwartz N, Cohen MS (1963) Carboranes. I. the preparation and chemistry of 1-isopropenylcarborane and its derivatives (a new family of stable closo-boranes). Inorg Chem 2:1111–1115

    Article  CAS  Google Scholar 

  114. Heying TL, Fein MM et al (1963) Inorg Chem 2(12):1087–1215

    Google Scholar 

  115. Bregadze VI (1992) Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem Rev 92:209–223

    Article  CAS  Google Scholar 

  116. Zakharkin LI Stanko VI Brattsev VA Chapovsky YA, Okhlobystin OY (1963) Metalation of B10C2H12 (barene) and its derivatives by butyllithium Izv Akad Nauk SSSR Ser Khim 12:2236–2237

    Google Scholar 

  117. Zakharkin LI Stanko VI Brattsev VA, Chapovsky YA, Okhlobystin OY (1963) Metalation of B10C2H12 (barene) and its derivatives by butyllithium Izv Akad Nauk SSSR Ser Khim 12:2236–2237

    Google Scholar 

  118. Knoth WH (1967) 1-B9H9CH and B11H11CH. J Am Chem Soc 89:1274–1275

    Article  CAS  Google Scholar 

  119. Rudolph RW, Voorhees RL, Cochoy RE (1970) The preparation and characterization of 1-germa-, 1-stanna-, and l-plumba-2,3-dicarba-dodecaborane. J Am Chem Soc 92:3351–3354

    Article  CAS  Google Scholar 

  120. Pretzer WR, Rudolph RW (1976) Deltahedral and deltahedral-fragment thiaboranes with 12-, 11-, 10-, and 9-vertex frameworks. Their syntheses and characterization. J Am Chem Soc 98:1441–1447

    Article  CAS  Google Scholar 

  121. Wisboeck RA, Hawthorne MF (1964) Dicarbaundecaborane(13) and derivatives. J Am Chem Soc 86:642–643

    Google Scholar 

  122. Hawthorne MF, Young DC, Garett PM, Owen DA, Schwerin SG, Tebbe FN, Wegner PA (1968) Dicarbollyl derivatives of the transition metals. Metallocene analogs. J Am Chem Soc 90:862–896

    Article  CAS  Google Scholar 

  123. Garett PM, Tebbe FN, Hawthorne MF (1964) A new carborane, B9C2H11, and its derivatives. J Am Chem Soc 86:4223–4224

    Google Scholar 

  124. Hawthorne MF (1968) The chemistry of the polyhedral species derived from transition metals and carboranes. Acc Chem Res 1:281–288

    Article  CAS  Google Scholar 

  125. George AD, Hawthorne MF (1969) Polyhedral manganese carbonyl derivatives of the B6C2H82− ligand. Inorg Chem 8:1801–1803

    Article  CAS  Google Scholar 

  126. George TA, Hawthorne MF (1969) Cobalt complexes containing the B7C2H92- ligand. A metallocene analog. J Am Chem Soc 91:5475–5482

    Article  CAS  Google Scholar 

  127. Hawthorne MF, Dunks GB (1972) Metallocarboranes that exhibit novel chemical features. Science 178:462–471

    Article  CAS  PubMed  Google Scholar 

  128. Grafstein D, Dvarak J (1963) Neocarboranes, a new family of stable organoboranes isomeric with the carboranes. Inorg Chem 2:1128–1133

    Article  CAS  Google Scholar 

  129. Johannis A (1891) Compte Rendu Hebd seances. Acad Sci 13:795

    Google Scholar 

  130. Zintl E, Harder A (1936) Metals and alloys XXI. Stoichiometry of binary sodium compounds. Z Phys Chem Abst B34:238–254

    Article  CAS  Google Scholar 

  131. Zintl E, Kaiser H (1933) Metals and alloys. VI. Ability of elements to form negative ions. Z Anorg Allgem Chem 211:113–131

    Article  CAS  Google Scholar 

  132. Zintl E (1938) Intermetallic compounds. Angew Chem 52:1–6

    Article  Google Scholar 

  133. Klemm W (1958) Metalloids and their compounds with the alkali metal. Proc Chem Soc (Lond):329–341

    Google Scholar 

  134. Fassler TF (2011) Zintl ions. Struct Bond 140:1–156

    Google Scholar 

  135. Corbett JD (1976) Chem Rev 85:383

    Article  Google Scholar 

  136. Corbett JD (1976) Homopolyatomic ions of the post-transition elements – synthesis, structure, and bonding. Prog Inorg Chem 21:129–158

    CAS  Google Scholar 

  137. Belin CHE, Corbett JD, Cisar JA (1977) Homopolyatomic anions and configurational questions. Synthesis and structure of the nonagermanide(2-) and nonagermanide(4-) ions, Ge92- and Ge94-. J Am Chem Soc 99:7163–7169

    Google Scholar 

  138. Critchlow SC, Corbett JD (1981) Stable homopolyatomic anions – Sn42−, Ge42- – X-ray crystal structure of K2(crypt)2Sn4.Ethylenediamine. J Chem Soc Chem Commun:236–237

    Google Scholar 

  139. Corbett JD, Prince J, Garbisch B (1970) Polyatomic cations of tellurium and selenium in chloroaluminate salts. Systems M- (MCl4 + 4AlCl3). Inorg Chem 9:2731–2735

    Article  CAS  Google Scholar 

  140. Gillespie RJ (1979) Ring, cage and cluster compounds of the main group elements. Chem Soc Rev 8:315–352

    Article  CAS  Google Scholar 

  141. Gillespie RJ, Peel TE, Robinson EA (1971) Hammett acidity function for some super acid systems. I. Systems H2SO4-SO3, H2SO4-HSO3F, H2SO4-HSO3Cl, and H2SO4-HB(HSO4)4. J Am Chem Soc 93:5083–5097

    Article  CAS  Google Scholar 

  142. Barr J, Gillespie RJ, Ummat PK (1970) Cation S42+. J Chem Soc (D) Chem Commun:264–265

    Google Scholar 

  143. Barr J, Gillespie RJ, Kapoor R, Malhotra KC (1969) New polyatomic cations of the group VIB elements. I. Solutions of selenium in highly acidic solvents. Can J Chem 46:149–159

    Article  Google Scholar 

  144. Barr J, Gillespie RJ, Pez GP, Ummat PK, Vaidya OC (1970) Tenn+ cations. J Am Chem Soc 92:1081–1082

    Article  CAS  Google Scholar 

  145. Barr J, Crump DB, Gillespie RJ, Kapoor R, Ummat PK (1968) Polyatomic cations of the group VIB elements. II. Compounds of the Se42+ cation. Can J Chem 46:149–159

    Article  CAS  Google Scholar 

  146. Axtell JC, Saleh LMA, Elaine A, Qian EA, Wixtrom AI, Spokoyny AM (2018) Synthesis and applications of perfunctionalized boron clusters. Inorg Chem 57:2333–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mesbah W, Soleimani M, Kianfar E, Geiseler G, Massa W, Hofmann M, Berndt A (2009) hyper-closo-Hexa(amino)hexaboranes: structurally related to known hyper-closo-dodecaboranes. Metastable with regard to their classical cycloisomers. Eur J Inorg Chem 48:5577–5582

    Article  Google Scholar 

  148. Kutz NA, Morrison JA (1980) 2N framework electron clusters: preparation and relative thermal stabilitites of the polyhedrane boron sub-bromides. Inorg Chem 19:3295–3299

    Article  CAS  Google Scholar 

  149. Speiser B, Wizemann T, Würde M (2003) Two-electron-transfer redox systems part 7:two-step electrochemical oxidation of the boron subhalide cluster dianions B6X62− (X = Cl, Br, I). Inorg Chem 42:4018–4028

    Article  CAS  PubMed  Google Scholar 

  150. Lorenzen V Preetz W (1997) Crystal structures of (n-Bu4N)[B6Cl6], (n-Bu4N)[B6Br6], and (Ph3PNPPh3)[B6I6], and vibrational spectra and normal coordinate analysis of the hexa-halogeno-closohexaborate Radical Anions [B6X6], X = Cl, Br. I Z Naturforsch 52b: 565–572

    Google Scholar 

  151. Speiser B, Wizemann T, Würde M (2003) Two-electron-transfer redox systems part 7:two-step electrochemical oxidation of the boron subhalide cluster dianions B6X6 (X= cl, Br, I). Inorg Chem 42:4018–4028

    Article  CAS  PubMed  Google Scholar 

  152. Kettle SFA (1966) A topological equivalent-orbital approach to the bonding in some tetrahedral molecules. Theor Chim Acta 4:150–154

    Article  CAS  Google Scholar 

  153. Kettle SFA (1966) The electronic structure of some polynuclear metal carbonyls. J Chem Soc(A):1013–1014

    Google Scholar 

  154. Kettle SFA (1965) Bonding within the Mo6Cl84+ and Ta6Cl122+ cations. Theor Chim Acta 3:211–212. 3:282-283

    Article  CAS  Google Scholar 

  155. Kettle SFA, Tomlinson V (1969) Electronic structure of the boron hydrides I. cage molecules. J Chem Soc A:2002–2006

    Google Scholar 

  156. Kettle SFA, Tomlinson V (1969) Electronic structure of the boron hydrides III. Basic theory and its relation to the Hückel theory of conjugated hydrocarbons. Theor Chim Acta 14:175–183

    Article  CAS  Google Scholar 

  157. Kettle SFA (1967) The electronic structure of metal carbonyls and related compounds part 11. The electronic structure of Rh6(CO)16. J Chem Soc A:314–315

    Google Scholar 

  158. Cotton FA, Haas TE (1964) A molecular orbital treatment of the bonding in certain metal atom clusters. Inorg Chem 3:10–17

    Article  CAS  Google Scholar 

  159. Cotton FA (1966) Transition metal compounds containing clusters of metal atoms. Quart Rev Chem Soc:389–401

    Google Scholar 

  160. Jones CE, Evans WE, Hawthorne MF (1973) Electronic considerations in metalloboranes. JCS Chem Commun:543–545

    Google Scholar 

  161. King RB (1972) Chemical applications of topology and group theory. V. Polyhedral metal clusters and boron hydrides. J Am Chem Soc 94:95–103. and earlier papers in the series

    Article  CAS  Google Scholar 

  162. King RB, Rouvray DH (1977) Chemical applications of group theory and topology 7. A graph theoretical interpretation of the bonding in boranes, carboranes and metal clusters. J Amer Chem Soc 99:7834–7840

    Article  CAS  Google Scholar 

  163. Williams RE (1971) Carboranes and boranes: polyhedra and polyhedral fragments. Inorg Chem 10:210–214

    Article  CAS  Google Scholar 

  164. Williams RE (1976) Carboranes and boranes: polyhedra and polyhedral fragments. Adv Inorg Radiochem 18:67–142

    Article  CAS  Google Scholar 

  165. Wade K (2009) Bonding with boron. Nat Chem 1:92

    Article  CAS  PubMed  Google Scholar 

  166. Wade K (1971) The structural significance of the number of skeletal bonding electron pairs in carboranes, the higher boranes and borane anions and various transition metal-carbonyl cluster compounds. J Chem Soc Chem Commun:792–793

    Google Scholar 

  167. Wade K (1971) Electron deficient compounds. Nelson, London, pp 150–183

    Book  Google Scholar 

  168. Welch AJ (2013) The significance and impact of Wade’s rules. J Chem Soc Chem Commun 49:3615–3616, and references cited therein

    Article  CAS  Google Scholar 

  169. Wade K (1972) Skeletal electron counting in cluster species. Some generalisations and predictions. Inorg Nucl Chem Lett 8:559–562

    Article  CAS  Google Scholar 

  170. Wade K (1972) Skeletal electron counting in cluster species. Applications to metal-hydrocarbon π-complexes. Inorg Nucl Chem Lett 8:563–566

    Article  CAS  Google Scholar 

  171. Wade K (1976) Structural and bonding patterns in cluster chemistry. Adv Inorg Radiochem 18:1–66

    Article  CAS  Google Scholar 

  172. Wade K (1974) Boranes – rule-breakers become pattern-makers. New Sci 62(901):615–617

    CAS  Google Scholar 

  173. Wade K (1975) Key to cluster shapes. Chem Br 11:177–183

    CAS  Google Scholar 

  174. Sidgwick NV, Powell HW (1940) Stereochemical types of valency groups. Proc R Soc Lond Ser A 176:153–180

    Article  CAS  Google Scholar 

  175. Gillespie RJ, Nyholm RS (1958) Stereochemistry of inorganic molecules and complex ions, inorganic stereochemistry Progr in Stereochem, vol 2. Academic Press, New York, pp 261–305

    Google Scholar 

  176. Gillespie RJ, Nyholm RS (1957) Inorganic stereochemistry. Q Rev Chem Soc 17:339–380

    Article  Google Scholar 

  177. Braterman PS (1972) Spectra and bonding in carbonyls. A bonding. Struct Bond 10:57–86

    Article  CAS  Google Scholar 

  178. Rudolph RW, Pretzer WR (1972) Hiickel-type rules and the systematization of borane and heteroborane chemistry. Inorg Chem 11:1974–1978

    Article  CAS  Google Scholar 

  179. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules part I. J Chem Soc:2260–2265

    Google Scholar 

  180. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules part II. J Chem Soc:2266–2295

    Google Scholar 

  181. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules part III. J Chem Soc:2296–2300

    Google Scholar 

  182. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules part IV. J Chem Soc:2301–2305

    Google Scholar 

  183. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules part V. J Chem Soc:2306–2311

    Google Scholar 

  184. Rudolph RW (1976) Boranes and heteroboranes: a paradigm for the electron requirements of clusters? Acc Chem Res 9:446–452

    Article  CAS  Google Scholar 

  185. Mingos DMP (1972) A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci 236:99–102

    Article  CAS  Google Scholar 

  186. Wade K (1972) Skeletal electron counting in cluster and ring compounds. Nat Phys Sci 240:71

    Article  CAS  Google Scholar 

  187. Bannister AJ (1972) Structures of electron rich cage species. Nat Phys Sci 239:69–71

    Article  Google Scholar 

  188. Hübel W, Dahl LF, Braye EH (1966) Preparation and structures of methyl phenylpropiolate-iron carbonyl complexes. A new dicarbonyl-π-cyclopentadienyloxy-σ-vinyliron compound. J Am Chem Soc 88:446–452

    Article  Google Scholar 

  189. Blount JF, Dahl LF, Hoogzand C, Hübel W (1966) Structure of and bonding in an alkyne-nonacarbonyltriiron complex. A new type of iron-acetylene interaction. J Am Chem Soc 88:292–301

    Article  CAS  Google Scholar 

  190. Chini P (1968) The closed metal carbonyl clusters. Inorg Chim Acta Rev 2:31–51

    Article  CAS  Google Scholar 

  191. Albano VG, Sansoni M, Chini P, Martinengo S (1973) Synthesis and crystallographic characterization of the carbidopentadecacarbonylhexarhodate dianion in its bis(benzyltrimethylammonium) salt, the first example of trigonal prismatic cluster of metal atoms. J Chem Soc Dalton Trans:651–655

    Google Scholar 

  192. Albano VG, Chini P, Martinengo S, Sansoni M, Strumoli D (1974) New arrangements of transition metal atoms in carbido-carbony1 clusters of rhodium and cobalt. J Chem Soc Chem Commun:299–300

    Google Scholar 

  193. Johnson BFG, Benfield RE (1980) Transition metal clusters. In: Johnson BFG (ed) Ligand mobility in clusters. Wiley, Chichester, pp 471–544

    Google Scholar 

  194. Eady CR, Johnson BFG, Lewis J (1972) Products of the pyrolysis of Os3(CO)12. J Organometal Chem 37:C39–C40

    Article  CAS  Google Scholar 

  195. Elian M, Hoffmann R (1975) Bonding capabilities of transition metal carbonyl fragments. Inorg Chem 14:1058–1076

    Article  CAS  Google Scholar 

  196. Urch DS (1970) Orbitals and symmetry penguin library of science. Penguin Books, Baltimore

    Book  Google Scholar 

  197. Whitesides TH, Lichtenberger DL, Budnik RA (1975) Bonding in ring whizzers. I. Photoelectron spectra and molecular orbital calculations for (η5-C6H7)Mn(CO)3, (η5-C7H9)Mn(CO)3 and (η5-C7H7)Mn(CO)3. Inorg Chem 14:68–73. Gives an early example of the fragment analysis

    Google Scholar 

  198. Elian M, Chen MML, Mingos DMP, Hoffmann R (1976) A comparative study of conical fragments. Inorg Chem 15:1148–1155

    Article  CAS  Google Scholar 

  199. Hoffmann R (1982) Building bridges between inorganic and organic chemistry Nobel prize lecture. Angew Chem Int Ed Engl 21:711–724

    Article  Google Scholar 

  200. Fehlner TP (1990) Inorganometallic chemistry. Plenum, New York

    Google Scholar 

  201. Mingos DMP (1990) Bonding connections and inter-relationships Inorgano-metallic chemistry. Plenum, New York, pp 179–220

    Google Scholar 

  202. Johnston RL, Mingos DMP (1985) General theoretical analysis of three-connected polyhedral molecules and their capped derivatives. J Organometal Chem 280:407–418

    Article  CAS  Google Scholar 

  203. Lyne PD Mingos DMP (1992) In: Maksic ZB, Eckert-Maksic M (eds) Systematics of electron rich polyhedral molecules, an econium to linus pauling-molecules in natural science and medicine. Ellis Horwood, pp 395–432

    Google Scholar 

  204. Lyne PD, Mingos DMP, Ziegler TA (1992) Theoretical study of Te62+ and Te4S42+. J Chem Soc Dalton Trans:2743–2747

    Google Scholar 

  205. Burdett JK (1980) Molecular shapes – theoretical models of inorganic stereochemistry. Wiley-Interscience, New York, pp 257–275

    Google Scholar 

  206. Fejes Tóth L (1971) Perfect distribution of points on a sphere. Periodica Math Hungar 1:25–33

    Google Scholar 

  207. Fejes Tóth G, Fejes Tóth L (1980) Dictators on a planet. Studia Sci Math Hungar 15:313–316

    Google Scholar 

  208. Fowler PW, Tarnai T (1996) Transition from spherical circle packing to covering: geometrical analogues of chemical isomerization. Proc R Soc Lond A452:2043–2064

    Google Scholar 

  209. Fowler PW, Tarnai T, Gáspár TZ (2002) From circle packing to covering on a sphere with antipodal constraints. Proc R Soc Lond A458:2275–2287

    Google Scholar 

  210. Eady CR, Johnson BFG, Lewis J (1972) Products of the pyrolysis of Os3(CO)12. J Organometal Chem 37:C39–C40

    Article  CAS  Google Scholar 

  211. Mason R, Thomas KM, Mingos DMP (1973) Stereochemistry of octadecacarbonyl hexaosmium(0)- a novel hexanuclear complex based on a bicapped tetrahedron of metal atoms. J Am Chem Soc 95:3802–3804

    Article  CAS  Google Scholar 

  212. Eady CR, Johnson BFG, Lewis J, Mason RP, Hitchcock PB, Thomas KM (1977) The structure of [Os7(CO)21]: X-ray and 13C nuclear magnetic resonance analyses. J Chem Soc Chem Commun:385–386

    Google Scholar 

  213. Eady CR, Johnson BFG, Lewis J (1975) Products of the pyrolysis of dodecacarbonyl-triangulo- triruthenium and triosmium. J Chem Soc Dalton Trans:2606–2611

    Google Scholar 

  214. Lewis Jackson PF, Johnson BFG, Nelson WJH, McPartlin M (1982) The synthesis of the cluster dianion [Os10C(CO)24]2− by pyrolysis. X-ray structure analysis of [N(PPh3)2]2 [Os10C(CO)24] and [Os5C(CO)14H(NC5H4)]. J Chem Soc Dalton Trans:2099–2107

    Google Scholar 

  215. Mingos DMP, McPartlin M (1984) Some structural systematics in cluster chemistry. Polyhedron 3:1321–1328

    Article  Google Scholar 

  216. McPartlin M, Eady CR, Johnson BFG, Lewis J (1976) X-ray structures of the hexanuclear cluster complexes [H2Os6(CO)18], [HOs6(CO)18], and [Os6(CO)18]2−. J Chem Soc Chem Commun 883–885

    Google Scholar 

  217. Mingos DMP, Evans DG (1982) Molecular orbital analysis of the bonding in low Nuclearity gold and platinum tertiary phosphine complexes and the development of Isolobal analogies for the M(PR3) fragment. J Organometal Chem 232:171–191

    Article  Google Scholar 

  218. Bruce MI (2007) RSC specialist per reports. In: Green M (ed) Organo-transition metal cluster compounds, vol 27. pp 151–220

    Google Scholar 

  219. Salter ID (1989) Heteronuclear cluster chemistry of copper, silver and gold. Adv Organometal Chem 29:243–343

    Google Scholar 

  220. Lauher JW, Wald K (1981) Synthesis and structure of triphenylphosphinegold-dodecacarbonyltricobaltiron ([FeCo3(CO)12AuPPh3]): a trimetallic trigonal-bipyramidal cluster. Gold derivatives as structural analogs of hydrides. J Am Chem Soc 103:7648–7650

    Article  CAS  Google Scholar 

  221. Housecroft CE (1995) Transition metal boride clusters at the molecular level. Coord Chem Rev 143:297–330

    Article  CAS  Google Scholar 

  222. Housecroft CE (1995) Denuding the boron atom of B-H interactions in transition metal-boron clusters. Chem Soc Rev:215–222

    Google Scholar 

  223. Schmidbaur H (2000) The aurophilicity phenomenon: a decade of experimental findings, theoretical concepts and emerging application. Gold Bull 33:3–10

    Article  CAS  Google Scholar 

  224. Jiang XF, Hau FKW, Sun QF, Yu SY, Yam VWW (2014) From [Au(I)… .Au(I)]-coupled cages to the cage built 2-D [Au(I)…Au(I)] arrays: Au(I)…Au(I) bonding interaction driven self-assembly and Ag(I) sensing and photo-suitable behaviour. J Am Chem Soc 136:10921–10929

    Article  CAS  PubMed  Google Scholar 

  225. Mingos DMP, Menzer S, Yau J, Williams DJ (1995) Gold(I)[2] catenane. Angew Chem Int Ed Engl 34:1894–1895

    Article  CAS  Google Scholar 

  226. Pyykkö P (1997) Strong closed shell interactions in inorganic chemistry. Chem Rev 97:597–636

    Article  PubMed  Google Scholar 

  227. Mingos DMP, Forsyth MI (1977) Molecular orbital calculations on transition metal cluster compounds containing six metal atoms. J Chem Soc Dalton Trans:611–616

    Google Scholar 

  228. Johnston RL, Mingos DMP (1987) Group theoretical paradigm for describing the skeletal molecular orbitals of cluster compounds part I deltahedral clusters. J Chem Soc Dalton Trans:647–656

    Google Scholar 

  229. Johnston RL, Mingos DMP (1987) Group theoretical paradigm for describing the skeletal molecular orbitals of cluster compounds part II – bispherical clusters. J Chem Soc Dalton Trans:1445–1456

    Google Scholar 

  230. Mingos DMP (1982) Comment: edge bridging in clusters, Royal Society meeting for discussion – metal clusters in chemistry. Proc R Soc A308:14–15

    Google Scholar 

  231. Mingos DMP, Evans DG (1982) Polyhedral skeletal electron pair theory – its extension to non-conical fragments. J Organometal Chem 240:321–327

    Article  Google Scholar 

  232. Mingos DMP, Evans DG (1983) Polyhedral skeletal electron pair theory – its extension to non-conical ML4. Fragments Organometal 2:435–447

    Article  Google Scholar 

  233. Evans J (1978) A molecular-orbital evaluation of skeletal electron-counting procedures I. J Chem Soc Dalton Trans:8–25

    Google Scholar 

  234. Owen SM (1988) Electron counting in clusters: a view of the concepts. Polyhedron 7:253–283

    Article  CAS  Google Scholar 

  235. Mingos DMP, Wales DJ (1990) An introduction to cluster chemistry. Prentice-Hall, Upper Saddle River

    Google Scholar 

  236. Johnston RL, Mingos DMP (1987) Theoretical models of cluster bonding. Struct Bond 68:29–87

    Article  Google Scholar 

  237. Johnston RL, Mingos DMP (1985) General theoretical analysis of four-connected polyhedral molecules. J Organometal Chem 280:419–428

    Article  CAS  Google Scholar 

  238. Stone AJ (1981) New approach to bonding in transition-metal clusters and related compounds. Inorg Chem 20:563–571

    Article  CAS  Google Scholar 

  239. Stone AJ (1980) A new approach to bonding in transition metal clusters: theory. Mol Phys 41:1339–1354

    Article  CAS  Google Scholar 

  240. Stone AJ (1981) Alderton MJ (1982) A new model of structure and bonding in the boron hydrides. Inorg Chem 21:2297–2302

    Article  Google Scholar 

  241. Redmond DB, Quin CM, McKierman JGR (1983) Point-group symmetries on the spherical shell. New perspectives in the generation of symmetry-adapted LCAO functions. J Chem Soc Farad Trans II 79:1791–1809

    Article  CAS  Google Scholar 

  242. Ceulemans A (2013) Group theory applied to chemistry. Springer, Heidelberg

    Book  Google Scholar 

  243. O’Neill ME, Wade K (1983) Relationships between interatomic distances and electron numbers for D3h tricapped trigonal prismatic 9-atom cluster systems. Polyhedron 2:963–966

    Article  Google Scholar 

  244. Corbett JD (1976) Homopolyatomic ions of the post-transition elements – synthesis, structure and bonding. Prog Inorg Chem 21:129–158

    CAS  Google Scholar 

  245. Fowler PW, Porterfield WW (1985) An extended tensor surface harmonic theory of clusters. Inorg Chem 24:3511–3518

    Article  CAS  Google Scholar 

  246. Bott SG, Ezomo OJ, Hallam MF, Williams ID (1988) Facilitation of the substitution reaction of triangular platinum cluster compounds and the structural characterisation of [Pt3(SO2)3(PCy3)3] and [Pt3Br(SO2)2(PCy3)3]NEt4 by single crystal X-ray diffraction. J Chem Soc Dalton Trans:1461–1466

    Google Scholar 

  247. Goudsmit RJ, Johnson BFG, Lewis J, Raithby PR, Whitmire KH (1982) Synthesis and X-ray crystal structure of the cluster [Os6(CO)17(P(OMe)3)4], an example of a hexa-metal planar complex. J Chem Soc Chem Commun:640–642

    Google Scholar 

  248. Mingos DMP (2020) In: Mingos DMP, Raithby PR (eds) Historical development of structural correlations in 21st century challenges in chemical crystallography II. Structure and bonding, vol 186, pp 1–56

    Google Scholar 

  249. Mingos DMP (1974) Molecular orbital calculations for an octahedral cobalt cluster complex [Co6(CO)14]4−. J Chem Soc Dalton Trans:124–138

    Google Scholar 

  250. Mingos DMP (1977) Recent developments in theoretical organometallic chemistry. Adv Organomet Chem 15:1–45

    Article  CAS  Google Scholar 

  251. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17:311–319

    Article  CAS  Google Scholar 

  252. Lauher JW (1978) The bonding capabilities of transition metal clusters. J Am Chem Soc 100:5305–5315

    Article  CAS  Google Scholar 

  253. Ciani G, Sironi A (1980) The stoichiometries of high-nuclearity transition metal carbonyl cluster compounds: I. Compact close-packed clusters. J Organometal Chem 197:233–248

    Article  CAS  Google Scholar 

  254. Woolley RG (1985) Bonding in transition-metal cluster compounds. 2. The metal cluster-aorane analogy. Inorg Chem 24:3525–3531

    Article  CAS  Google Scholar 

  255. Brint RP, Pelin K, Spalding TR (1980) Evaluation of the “isoelectronic-isolobal” description of cluster bonding units. Inorg Nucl Chem Lett 16:391–339

    Article  CAS  Google Scholar 

  256. May AJ, Mingos DMP (1990) In: Kaesz HD, Shriver DF, Adams RD (eds) Structural and bonding aspects of metal cluster chemistry in the chemistry of metal cluster complexes. Verlag Chemie, Weinheim, pp 11–119

    Google Scholar 

  257. Mingos DMP (1983) Polyhedral skeletal electron pair theory – a generalised principle for condensed polyhedra. J Chem Soc Chem Commun:706–708

    Google Scholar 

  258. Mingos DMP, Evans DG (1983) Bonding in condensed polyhedral cluster compounds of platinum. J Organometal Chem 251:C13–C16

    Article  CAS  Google Scholar 

  259. Mingos DMP, Lin Z (1988) Theoretical analysis of high nuclearity clusters. J Chem Soc Dalton Trans:1657–1664

    Google Scholar 

  260. Mingos DMP, Lin Z (1988) Molecular orbital analysis of carbonyl cluster compounds with close packed metallic arrangements. J Organometal Chem 341:523–534

    Article  CAS  Google Scholar 

  261. Mingos DMP, Cox DN, Hoffmann R (1981) Extended Hückel molecular orbital calculations on dodecahedral metalloboranes which do not conform to the polyhedral skeletal electron pair theory. J Chem Soc Dalton Trans:1788–1797

    Google Scholar 

  262. Balakrishnarajan MM, Jemmis ED (2000) Electronic requirements of polycondensed polyhedral boranes. J Am Chem Soc 122:4516–4517

    Article  CAS  Google Scholar 

  263. Jemmis ED, Balakrishnaraja MM, Pancharatna PD (2002) Electronic requirements for macropolyhedral boranes. Chem Rev 102:93–144

    Article  CAS  PubMed  Google Scholar 

  264. Papoian GA, Hoffman R (2000) Hypervalent bonding in one, two and three dimensions: extending the Zintl-Klimm concept to non-classical electron rich networks. Angew Chem Int Ed Engl 39:2408–2448

    Article  Google Scholar 

  265. Nesper R (1991) Bonding patterns in intermetallic compounds. Angew Chem Int Ed Engl 30:789–817

    Article  Google Scholar 

Download references

Acknowledgements and Dedication

I would like to thank Roald Hoffmann, Alan Welch, Catherine Housecroft and Lin Zhenyang, for their helpful comments on the manuscript and all the students and postdocs who have helped and inspired me during the last 50 years. Whilst writing this review I was often reminded of the late and greatly missed Roy Johnston who co-authored in 1987 “Theoretical models of cluster bonding” which was also published in Structure and Bonding and has stood the test of time. His external D.Phil. examiner was Professor Kenneth Wade who recognised his breadth of knowledge, his grasp of the literature and his flair for theoretical chemistry. I dedicate this chapter to both of them who in their different ways greatly influenced the way I approached chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael P. Mingos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mingos, D.M.P. (2021). Personal Historical Perspective on the Development of Electron Counting Rules for Boranes and Clusters and Ken Wade’s Contribution. In: Mingos, D. (eds) 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules . Structure and Bonding, vol 187. Springer, Cham. https://doi.org/10.1007/430_2021_86

Download citation

Publish with us

Policies and ethics