Skip to main content

Experimental Charge Densities from Multipole Modeling: Moving into the Twenty-First Century

  • Chapter
  • First Online:
21st Century Challenges in Chemical Crystallography II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 186))

Abstract

In this chapter, we intend to take a closer look at the capabilities and trends in experimental charge density studies based on single crystal X-ray diffraction, now that we are well and truly into the twenty-first century. Following a long and relatively dormant period since the fundamental discoveries of X-rays and their usage as probes for atomic arrangements in crystals (what we now call crystallography) about a century ago, great technological inventions on both the X-ray source and detector sides started to influence this scientific discipline in the 1980s. Ever since, scientists in this field have been required to constantly adapt to a long range of new developments. The increasing possibilities of the equipment enabled entirely new ways of preparing experiments and analyzing data. However, as skepticism is a prominent feature of most scientists’ DNA, the community at large has not embraced these new possibilities without hesitation, not least since commercial vendors appeared actively promoting their own products. Nevertheless, the last few decades have witnessed relentless progress in all hardware aspects of crystallography, and we are now at a fascinating point in time where all elements of diffraction are at an incredibly high level, enabling us to reach data quality of exceptional accuracy in very short time. In this chapter, we will therefore outline how we got here and where we may go from here. As a particular case, we explain in detail how the use of experimental charge density studies has had important impact in the field of single-molecule magnets – these fascinating materials being merely an example of the unlimited possibilities for coupling advanced structural studies with physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coppens P (1967) Comparative X-ray and neutron diffraction study of bonding effects in s-triazine. Science 158:1577–1579

    CAS  PubMed  Google Scholar 

  2. Coppens P (2017) Preface to special issue on charge density, photocrystallography and time-resolved crystallography: a tribute to Professor Philip Coppens. Acta Crystallogr B 73:519

    CAS  Google Scholar 

  3. Stalke D (2011) Meaningful structural descriptors from charge density. Chem Eur J 17:9264–9278

    CAS  PubMed  Google Scholar 

  4. Hathwar VR (2017) Validation of chemical bonding by charge-density descriptors: the current scenario. J Indian Inst Sci 97:281–298

    Google Scholar 

  5. Tolborg K, Iversen BB (2019) Electron density studies in materials research. Chem Eur J 25:15010–15029

    CAS  PubMed  Google Scholar 

  6. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101:1583–1628

    CAS  PubMed  Google Scholar 

  7. Gatti C (2005) Chemical bonding in crystals: new directions. Z Kristallogr 220:399–457

    CAS  Google Scholar 

  8. Gatti C, Macchi P (2012) Modern charge-density analysis. Springer, Dordrecht

    Google Scholar 

  9. Stalke D (2016) Mingos DMP (ed) The chemical bond I: 100 years old and getting stronger. Springer, Cham, pp 57–88. (Chap. 2)

    Google Scholar 

  10. Stewart RF (1969) Generalized X-ray scattering factors. J Chem Phys 51:4569–4577

    CAS  Google Scholar 

  11. Dawson B (1967) A general structure factor formalism for interpreting accurate X-ray and neutron diffraction data. Proc R Soc Lond A 298:255–263

    CAS  Google Scholar 

  12. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    CAS  Google Scholar 

  13. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 34:909–921

    Google Scholar 

  14. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    CAS  Google Scholar 

  15. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    CAS  Google Scholar 

  16. Bader RFW, Keith TA, Gough KM, Laidig KE (1992) Properties of atoms in molecules – additivity and transferability of group polarizabilities. Mol Phys 75:1167–1189

    CAS  Google Scholar 

  17. Jelsch C, Teeter MM, Lamzin V, Pichon-Pesme V, Blessing RH, Lecomte C (2000) Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. Proc Natl Acad Sci U S A 97:3171–3176

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jarzembska KN, Dominiak PM (2012) New version of the theoretical databank of transferable aspherical pseudoatoms, UBDB2011-towards nucleic acid modelling. Acta Crystallogr A 68:139–147

    CAS  PubMed  Google Scholar 

  19. Holladay A, Leung P, Coppens P (1983) Generalized relations between D-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray-diffraction data. Acta Crystallogr A 39:377–387

    Google Scholar 

  20. Garman EF, Schneider TR (1997) Macromolecular cryocrystallography. J Appl Crystallogr 30:211–237

    Google Scholar 

  21. Larsen FK (1995) Diffraction studies of crystals at low-temperatures – crystallography below 77 K. Acta Crystallogr B 51:468–482

    Google Scholar 

  22. Iversen BB, Larsen FK, Pinkerton AA, Martin A, Darovsky A, Reynolds PA (1999) Accurate charge densities in days – use of synchrotrons, image plates and very low temperatures. Acta Crystallogr B 55:363–374

    CAS  PubMed  Google Scholar 

  23. Coppens P, Iversen B, Larsen FK (2005) The use of synchrotron radiation in X-ray charge density analysis of coordination complexes. Coord Chem Rev 249:179–195

    CAS  Google Scholar 

  24. Jorgensen MRV, Hathwar VR, Bindzus N, Wahlberg N, Chen Y-S, Overgaard J et al (2014) Contemporary X-ray electron-density studies using synchrotron radiation. IUCrJ 1:267–280

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gruner SM, Tate MW, Eikenberry EF (2002) Charge-coupled device area X-ray detectors. Rev Sci Instrum 73:2815–2842

    CAS  Google Scholar 

  26. Weiss MS (2001) Global indicators of X-ray data quality. J Appl Crystallogr 34:130–135

    CAS  Google Scholar 

  27. Weiss MS, Hilgenfeld R (1997) On the use of the merging R factor as a quality indicator for X-ray data. J Appl Crystallogr 30:203–205

    CAS  Google Scholar 

  28. Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–275

    CAS  PubMed  Google Scholar 

  29. Zavodnik VV, Stash A, Tsirelson VV, de Vries R, Feil D (1999) Electron density study of urea using TDS-corrected X-ray diffraction data: quantitative comparison of experimental and theoretical results. Acta Crystallogr B 55:45–54

    CAS  PubMed  Google Scholar 

  30. Zhurov VV, Zhurova EA, Pinkerton AA (2008) Optimization and evaluation of data quality for charge density studies. J Appl Crystallogr 41:340–349

    CAS  Google Scholar 

  31. Abrahams SC, Keve ET (1971) Normal probability plot analysis of error in measured and derived quantities and standard deviations. Acta Crystallogr A 27:157–171

    CAS  Google Scholar 

  32. Volkov A, Macchi P, Farrugia LJ, Gatti C, Mallinson P, Richter T et al (2006) XD2006 – a computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors. University at Buffalo, New York

    Google Scholar 

  33. Krause L, Niepotter B, Schurmann CJ, Stalke D, Herbst-Irmer R (2017) Validation of experimental charge-density refinement strategies: when do we overfit? IUCrJ 4:420–430

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guillot B, Lagoutte A, Lecomte C, Jelsch C (2005) Advances in protein and small-molecule charge-density refinement methods using MoPro. J Appl Crystallogr 38:38–54

    CAS  Google Scholar 

  35. Fournier B, Guillot B, Lecomte C, Escudero-Adan EC, Jelsch C (2018) A method to estimate statistical errors of properties derived from charge-density modelling. Acta Crystallogr A 74:170–183

    CAS  Google Scholar 

  36. Kuhs WF (1992) Generalized atomic displacements in crystallographic structure-analysis. Acta Crystallogr A 48:80–98

    Google Scholar 

  37. Zhurov VV, Zhurova EA, Stash AI, Pinkerton AA (2011) Importance of the consideration of anharmonic motion in charge-density studies: a comparison of variable-temperature studies on two explosives, RDX and HMX. Acta Crystallogr A 67:160–173

    CAS  PubMed  Google Scholar 

  38. Herbst-Irmer R, Henn J, Holstein JJ, Hübschle CB, Dittrich B, Stern D et al (2012) Anharmonic motion in experimental charge density investigations. J Phys Chem A 117:633–641

    Google Scholar 

  39. Sørensen HO, Larsen S (2003) Measurement of high-quality diffraction data with a Nonius KappaCCD diffractometer: finding the optimal experimental parameters. J Appl Crystallogr 36:931–939

    Google Scholar 

  40. Kuhs WF (1988) The anharmonic temperature factor in crystallographic structure-analysis. Aust J Phys 41:369–382

    CAS  Google Scholar 

  41. Meindl K, Herbst-Irmer R, Henn J (2010) On the effect of neglecting anharmonic nuclear motion in charge density studies. Acta Crystallogr A 66:362–371

    CAS  PubMed  Google Scholar 

  42. Restori R, Schwarzenbach D (1996) Anharmonic motion vs chemical bonding: on the interpretation of electron densities determined by X-ray diffraction. Acta Crystallogr A 52:369–378

    Google Scholar 

  43. Spackman MA (2018) Towards the use of experimental electron densities to estimate reliable lattice energies. CrystEngComm 20:5340–5347

    CAS  Google Scholar 

  44. Manjula S, Kalaiarasi C, Pavan MS, Hathwar VR, Kumaradhas P (2018) Charge density and electrostatic potential of hepatitis C anti-viral agent andrographolide: an experimental and theoretical study. Acta Crystallogr B 74:693–704

    CAS  Google Scholar 

  45. Woinska M, Wanat M, Taciak P, Pawinski T, Minor W, Wozniak K (2019) Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements. IUCrJ 6:868–883

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hathwar VR, Gonnade RG, Munshi P, Bhadbhade MM, Row TNG (2011) Halogen bonding in 2,5-dichloro-1,4-benzoquinone: insights from experimental and theoretical charge density analysis. Cryst Growth Des 11:1855–1862

    CAS  Google Scholar 

  47. Farrugia LJ (2005) Is there a Co-Co bond path in Co-2(CO)(6)(mu-CO)(mu-C4H2O2)? Chem Phys Lett 414:122–126

    CAS  Google Scholar 

  48. Overgaard J, Platts JA, Iversen BB (2009) Experimental and theoretical charge-density study of a tetranuclear cobalt carbonyl complex. Acta Crystallogr B 65:715–723

    CAS  PubMed  Google Scholar 

  49. Overgaard J, Clausen HF, Platts JA, Iversen BB (2008) Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. J Am Chem Soc 130:3834–3843

    CAS  PubMed  Google Scholar 

  50. Gianopoulos CG, Zhurov VV, Pinkerton AA (2019) Charge densities in actinide compounds: strategies for data reduction and model building. IUCrJ 6:895–908

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhurov VV, Zhurova EA, Stash AI, Pinkerton AA (2011) Characterization of bonding in cesium uranyl chloride: topological analysis of the experimental charge density. J Phys Chem A 115:13016–13023

    CAS  PubMed  Google Scholar 

  52. Overgaard J, Jones C, Dange D, Platts JA (2011) Experimental charge density analysis of a gallium(I) N-heterocyclic carbene analogue. Inorg Chem 50:8418–8426

    CAS  PubMed  Google Scholar 

  53. Fischer A, Tiana D, Scherer W, Batke K, Eickerling G, Svendsen H et al (2011) Experimental and theoretical charge density studies at subatomic resolution. J Phys Chem A 115:13061–13071

    CAS  PubMed  Google Scholar 

  54. Engelhardt F, Maaß C, Andrada DM, Herbst-Irmer R, Stalke D (2018) Benchmarking lithium amide versus amine bonding by charge density and energy decomposition analysis arguments. Chem Sci 9:3111–3121

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Haas CD, Fischer A, Hauf C, Wieser C, Schmidt AP, Eickerling G et al (2019) The color of the elements: a combined experimental and theoretical electron density study of ScB2 C2. Angew Chem Int Ed 58:2360–2364

    CAS  Google Scholar 

  56. Dos Santos LHR, Rodrigues BL, Idemori YM, Fernandes NG (2012) Short hydrogen bonds in a new salt of pyromellitic acid: an experimental charge density investigation. J Mol Struct 1014:102–109

    Google Scholar 

  57. Schmidtmann M, Farrugia LJ, Middlemiss DS, Gutmann MJ, McIntyre GJ, Wilson CC (2009) Experimental and theoretical charge density study of polymorphic isonicotinamide-oxalic acid molecular complexes with strong O center dot center dot center dot H center dot center dot center dot N hydrogen bonds. J Phys Chem A 113:13985–13997

    CAS  PubMed  Google Scholar 

  58. Piccoli PMB, Koetzle TF, Schultz AJ, Zhurova EA, Stare J, Pinkerton AA et al (2008) Variable temperature neutron diffraction and X-ray charge density studies of tetraacetylethane. J Phys Chem A 112:6667–6677

    CAS  PubMed  Google Scholar 

  59. Hibbs DE, Overgaard J, Howard ST, Nguyen TH (2005) Experimental charge density of a potential DHO synthetase inhibitor: dimethyl-trans-2-oxohexahydro-pyrimidine-4,6-dicarboxylate. Org Biomol Chem 3:441–447

    CAS  PubMed  Google Scholar 

  60. Overgaard J, Schiott B, Larsen FK, Iversen BB (2001) The charge density distribution in a model compound of the catalytic triad in serine proteases. Chem Eur J 7:3756–3767

    CAS  PubMed  Google Scholar 

  61. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr B 55:563–572

    CAS  PubMed  Google Scholar 

  62. Espinosa E, Lecomte C, Molins E (1999) Experimental electron density overlapping in hydrogen bonds: topology vs. energetics. Chem Phys Lett 300:745–748

    CAS  Google Scholar 

  63. Madsen GKH, Iversen BB, Larsen FK, Kapon M, Reisner GM, Herbstein FH (1998) Topological analysis of the charge density in short intramolecular O-H center dot center dot center dot O hydrogen bonds. Very low temperature X-ray and neutron diffraction study of benzoylacetone. J Am Chem Soc 120:10040–10045

    CAS  Google Scholar 

  64. Flensburg C, Larsen S, Stewart RF (1995) Experimental charge-density study of methylammonium hydrogen succinate monohydrate – a salt with a very short O-H-O hydrogen-bond. J Phys Chem 99:10130–10141

    CAS  Google Scholar 

  65. Woinska M, Jayatilaka D, Spackman MA, Edwards AJ, Dominiak PM, Wozniak K et al (2014) Hirshfeld atom refinement for modelling strong hydrogen bonds. Acta Crystallogr A 70:483–498

    CAS  Google Scholar 

  66. Overgaard J, Iversen BB (2012) Stalke D (ed) Electron density and chemical bonding I, vol 3. Springer, Heidelberg, pp 53–74

    Google Scholar 

  67. Tolborg K, Jorgensen MRV, Sist M, Mamakhel A, Overgaard J, Iversen BB (2019) Low-barrier hydrogen bonds in negative thermal expansion material H3 [Co(CN)6]. Chem Eur J 25:6814–6822

    CAS  PubMed  Google Scholar 

  68. Gatti C, Saleh G, Lo Presti L (2016) Source function applied to experimental densities reveals subtle electron-delocalization effects and appraises their transferability properties in crystals. Acta Crystallogr B 72:180–193

    CAS  Google Scholar 

  69. Dos Santos LHR, Lanza A, Barton AM, Brambleby J, Blackmore WJA, Goddard PA et al (2016) Experimental and theoretical electron density analysis of copper pyrazine nitrate quasi-low-dimensional quantum magnets. J Am Chem Soc 138:2280–2291

    PubMed  Google Scholar 

  70. Shukla R, Ruzié C, Schweicher G, Kennedy AR, Geerts YH, Chopra D et al (2019) Insight from electron density and energy framework analysis on the structural features of Fx-TCNQ (x = 0, 2, 4) family of molecules. Acta Crystallogr B 75:71–78

    CAS  Google Scholar 

  71. Shi MW, Thomas SP, Hathwar VR, Edwards AJ, Piltz RO, Jayatilaka D et al (2019) Measurement of electric fields experienced by urea guest molecules in the 18-crown-6/urea (1:5) host-guest complex: an experimental reference point for electric-field-assisted catalysis. J Am Chem Soc 141:3965–3976

    CAS  PubMed  Google Scholar 

  72. Jorgensen MRV, Hathwar VR, Sist M, Wang X, Hoffmann CM, Briseno AL et al (2014) Accurate atomic displacement parameters from time-of-flight neutron-diffraction data at TOPAZ. Acta Crystallogr A 70:679–681

    CAS  Google Scholar 

  73. Blessing RH (1995) On the differences between X-ray and neutron thermal vibration parameters. Acta Crystallogr B 51:816–823

    PubMed  Google Scholar 

  74. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143

    CAS  Google Scholar 

  75. Escalera-Moreno L, Baldoví JJ, Gaita-Ariño A, Coronado E (2018) Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective. Chem Sci 9:3265–3275

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037

    CAS  PubMed  Google Scholar 

  77. Bunting PC, Atanasov M, Damgaard-Moller E, Perfetti M, Crassee I, Orlita M et al (2018) A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state. Science 362:12–21

    Google Scholar 

  78. Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085

    CAS  Google Scholar 

  79. Atanasov M, Zadrozny JM, Long JR, Neese F (2013) A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(ii) complexes with single-molecule magnet behavior. Chem Sci 4:139–156

    CAS  Google Scholar 

  80. Atanasov M, Ganyushin D, Sivalingam K, Neese F (2012) Molecular electronic structures of transition metal complexes II. Springer, Berlin

    Google Scholar 

  81. Gomez-Coca S, Cremades E, Aliaga-Alcalde N, Ruiz E (2013) Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. J Am Chem Soc 135:7010–7018

    CAS  PubMed  Google Scholar 

  82. Thomsen MK, Nyvang A, Walsh JPS, Bunting PC, Long JR, Neese F et al (2019) Insights into single-molecule-magnet behavior from the experimental electron density of linear two-coordinate iron complexes. Inorg Chem 58:3211–3218

    CAS  PubMed  Google Scholar 

  83. Reiff WM, LaPointe AM, Witten EH (2004) Virtual free ion magnetism and the absence of jahn-teller distortion in a linear two-coordinate complex of high-spin iron(II). J Am Chem Soc 126:10206–10207

    CAS  PubMed  Google Scholar 

  84. Zadrozny JM, Atanasov M, Bryan AM, Lin C-Y, Rekken BD, Power PP et al (2013) Slow magnetization dynamics in a series of two-coordinate iron(ii) complexes. Chem Sci 4:125–138

    CAS  Google Scholar 

  85. Kramers HA (1930) General theory of the paramagnetic rotation in crystals. Proc Acad Sci Amsterdam 33:959

    CAS  Google Scholar 

  86. Zadrozny JM, Xiao DJ, Atanasov M, Long GJ, Grandjean F, Neese F et al (2013) Magnetic blocking in a linear iron(I) complex. Nat Chem 5:577–581

    CAS  PubMed  Google Scholar 

  87. Atanasov M, Aravena D, Suturina E, Bill E, Maganas D, Neese F (2015) First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord Chem Rev 289–290:177–214

    Google Scholar 

  88. Craven M, Nygaard MH, Zadrozny JM, Long JR, Overgaard J (2018) Determination of d-orbital populations in a cobalt(II) single-molecule magnet using single-crystal X-ray diffraction. Inorg Chem 57:6913–6920

    CAS  PubMed  Google Scholar 

  89. Zadrozny JM, Long JR (2011) Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)(4)](2-). J Am Chem Soc 133:20732–20734

    CAS  PubMed  Google Scholar 

  90. Gao C, Genoni A, Gao S, Jiang S, Soncini A, Overgaard J (2020) Observation of the asphericity of 4f-electron density and its relation to the magnetic anisotropy axis in single-molecule magnets. Nat Chem 12(2):213–219

    CAS  PubMed  Google Scholar 

  91. Jiang S-D, Qin S-X (2015) Prediction of the quantized axis of rare-earth ions: the electrostatic model with displaced point charges. Inorg Chem Front 2:613–619

    CAS  Google Scholar 

  92. Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548:439–442

    CAS  PubMed  Google Scholar 

  93. Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2018) Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 362(6421):1400–1403

    CAS  PubMed  Google Scholar 

  94. Guo FS, Day BM, Chen YC, Tong ML, Mansikkamaki A, Layfield RA (2017) A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew Chem Int Ed 56:11445–11449

    CAS  Google Scholar 

  95. Grimwood DJ, Jayatilaka D (2001) Wavefunctions derived from experiment. II. A wavefunction for oxalic acid dihydrate. Acta Crystallogr A 57:87–100

    CAS  PubMed  Google Scholar 

  96. Jayatilaka D, Grimwood DJ (2001) Wavefunctions derived from experiment. I. Motivation and theory. Acta Crystallogr A 57:76–86

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Villum Foundation and the Danish National Research Foundation (DNRF-93). Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Overgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damgaard-Møller, E., Krause, L., Overgaard, J. (2020). Experimental Charge Densities from Multipole Modeling: Moving into the Twenty-First Century. In: Mingos, D., Raithby, P.R. (eds) 21st Century Challenges in Chemical Crystallography II. Structure and Bonding, vol 186. Springer, Cham. https://doi.org/10.1007/430_2020_61

Download citation

Publish with us

Policies and ethics