Skip to main content

Photoactive Molecules within MOFs

  • Chapter
  • First Online:
Dyes and Photoactive Molecules in Microporous Systems

Part of the book series: Structure and Bonding ((STRUCTURE,volume 183))

Abstract

Photochromic molecules have been considered to be applied in responsive functional materials. Recently, the combination of a porous host matrix and these photoactive species has become an emerging field of research. Especially the use of crystalline nanoporous metal-organic frameworks (MOFs) as host materials has proven to be very promising. The combination of crystallinity and the ability to be systematically functionalized is one of the main advantages of these porous host materials. The resulting switch@MOF hybrid systems exhibit fascinating and even surprising properties ranging from the “simple” possibility of solid-state switching to remote control gas uptake and conductance photoswitching. After a short introduction to photochromism, solvatochromism, and MOFs, this chapter discusses the formation and the developments of these switch@MOF materials and the recent advances in exploitation of the light-induced structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AZB:

Azobenzene

BET:

Brunauer-Emmett-Teller

BSP:

1-(2-hydroxy-ethyl)-3,3-dimethyl-indolino-6′-nitrobenzospiropyran

c :

Closed

COF:

Covalent-organic framework

CT:

Charge-transfer

d:

Day(s)

DAE:

Diarylethenes

DC:

Direct current

DFT:

Density functional theory

DMF:

N,N′-dimethylformamide

DSC:

Difference scanning calorimetry

DTE:

Dithienylethenes

EDS/EDX:

Energy dispersive X-ray spectroscopy

EDTM:

Electric dipole transition moment

EtOH:

Ethanol

ext:

Extinction

h:

Hour(s)

HKUST:

Hong Kong University of Science and Technology

IR:

Infrared

IR-MOF:

Isoreticular MOF

IRRA:

Infrared reflection-absorption

irrad:

Irradiated

JUC:

Jilin University China

LED:

Light-emitting diode

LPE:

Liquid phase epitaxial growth

max:

Maximum

MC:

Merocyanine

MeOH:

Methanol

MIL:

Matériaux de l’Institut Lavoisier

min:

Minute or minimal

MOF:

Metal-organic framework

nm:

Nanometer

NMR:

Nuclear magnetic resonance

o :

Open

oF :

4H, 4H’-octafluoro

PAP:

2-phenylazopyridine

PCN:

Porous coordination network

PCP:

Porous coordination polymer

PDF:

Pair distribution function

PEG:

Poly(ethylene glycol)

pF :

Perfluoro

PIZOF:

Porous interpenetrated zirconium-organic frameworks

PM:

Porous material

PSS:

Photostationary state

QCM:

Quartz crystal microbalance

SBU:

Secondary building unit

SEM:

Scanning electron microscopy

SP:

Spiropyran

SP-Nitro:

1,3,3-trimethyl-indolino-6′-nitrobenzo-pyrylospiran

SP-O:

1,3,3-trimethyl-indolino-naphtho-spirooxazine

SURMOF:

Surface-mounted MOF

tF :

Ortho-tetrafluoro

TGA:

Thermogravimetric analysis

ToF-SIMS:

Time-of-flight secondary ion mass spectrometry

UHPLC:

Ultra-high-performance liquid chromatography

UiO:

Universitetet i Oslo

UV:

Ultra-violet

vis:

Visible (light)

XPS:

X-ray photoelectron spectroscopy

XR(P)D:

X-ray (powder) diffraction

ε0:

Elution power

λ:

Wavelength

References

  1. Li C, Zhang Y, Hu J, Cheng J, Liu S (2010) Angew Chem Int Ed 49:5120–5124

    Article  CAS  Google Scholar 

  2. Liao B, Long P, He B, Yi S, Ou B, Shen S, Chen J (2013) J Mater Chem C 1:3716–3721

    Article  CAS  Google Scholar 

  3. Chen J, Zeng F, Wu S, Zhao J, Chen Q, Tong Z (2008) Chem Commun 13:5580–5582

    Article  CAS  Google Scholar 

  4. Zhu L, Zhu M-Q, Hurst JK, Li ADQ (2005) J Am Chem Soc 127:8968–8970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parthenopoulos DA, Rentzepis PM (1989) Science 245:843–845

    Article  CAS  PubMed  Google Scholar 

  6. Chung D-J, Ito Y, Imanishi Y (1994) J Appl Polym Sci 51:2027–2033

    Article  Google Scholar 

  7. Moniruzzaman M, Sabey CJ, Fernando GF (2007) Polymer 48:255–263

    Article  CAS  Google Scholar 

  8. Allcock HR, Kim C (1991) Macromolecules 24:2846–2851

    Article  CAS  Google Scholar 

  9. Oh YJ, Nam JA, Al-Nahain A, Lee S, In I, Park SY (2012) Macromol Rapid Commun 33:1958–1963

    Article  CAS  PubMed  Google Scholar 

  10. Kundu PK, Olsen GL, Kiss V, Klajn R (2014) Nat Commun 5:3588 (1–9)

    Article  CAS  Google Scholar 

  11. Samanta D, Galaktionova D, Gemen J, Shimon LJW, Diskin-Posner Y, Avram L, Král P, Klajn R (2018) Nat Commun 9:641 (1–9)

    Google Scholar 

  12. Wang D, Zhao W, Wei Q, Zhao C, Zheng Y (2018) ChemPhotoChem 2:403–415

    Article  CAS  Google Scholar 

  13. Marlow F, Hoffmann K, Caro J (1997) Adv Mater 9:567–570

    Article  Google Scholar 

  14. Weh K, Noack M, Hoffmann K, Schröder K-P, Caro J (2002) Microporous Mesoporous Mater 54:15–26

    Article  CAS  Google Scholar 

  15. Hoffmann K, Resch-Genger U, Marlow F (2000) Microporous Mesoporous Mater 41:99–106

    Article  CAS  Google Scholar 

  16. Casades I, Alvaro M, García H, Pillai MN (2002) Photochem Photobiol Sci 1:219–223

    Article  CAS  PubMed  Google Scholar 

  17. Casades I, Constantine S, Cardin D, Garcı́a H, Gilbert A, Márquez F (2000) Tetrahedron 56:6951–6956

    Article  CAS  Google Scholar 

  18. Schomburg C, Wark M, Rohlfing Y, Schulz­Ekloff G, Wöhrle D (2001) J Mater Chem 11:2014–2021

    Article  CAS  Google Scholar 

  19. Fritzsche J, Hebd CR (1867) Seances Acad Sci 69:1035–1038

    Google Scholar 

  20. Hirshberg Y, Hebd CR (1950) Seances Acad Sci 116:903–904

    Google Scholar 

  21. Bouas-Laurent H, Dürr H (2001) Pure Appl. Chem 73:639–665

    CAS  Google Scholar 

  22. Waldeck DH (1991) Chem Rev 91:415–436

    Article  CAS  Google Scholar 

  23. Hartley GS (1937) Nature 140:281–281

    Article  CAS  Google Scholar 

  24. Hartley GS (1938) J Chem Soc:633–642

    Google Scholar 

  25. Robertson JM (1939) J Chem Soc:232–236

    Google Scholar 

  26. Fischer E, Hirshberg Y (1952) J Chem Soc:4522–4524

    Google Scholar 

  27. Chaudé O, Rumpf R, Hebd CR (1953) Seances Acad Sci 236:697–699

    Google Scholar 

  28. Berkovic G, Krongauz V, Weiss V (2000) Chem Rev 100:1741–1754

    Article  CAS  PubMed  Google Scholar 

  29. Irie M (2000) Chem Rev 100:1685–1716

    Article  CAS  PubMed  Google Scholar 

  30. Yokoyama Y (2000) Chem Rev 100:1717–1739

    Article  CAS  PubMed  Google Scholar 

  31. Kortekaas L, Browne WR (2019) Chem Soc Rev 48:3406–3424

    Article  CAS  PubMed  Google Scholar 

  32. Klajn R (2014) Chem Soc Rev 43:148–184

    Article  CAS  PubMed  Google Scholar 

  33. Lokshin V, Samat A, Metelitsa AV (2002) Russ Chem Rev 71:893–916

    Article  CAS  Google Scholar 

  34. Hartley GS, Le Fèvre RJW (1939) J Chem Soc:531–535

    Google Scholar 

  35. Irie M (2010) Photochem Photobiol Sci 9:1535–1542

    Article  CAS  PubMed  Google Scholar 

  36. Hermann D, Schwartz HA, Ruschewitz U (2017) ChemistrySelect 2:11846–11852

    Article  CAS  Google Scholar 

  37. Lukyanov BS, Metelitsa AV, Voloshin NA, Alexeenko YS, Lukyanova MB, Vasilyuk GT, Maskevich SA, Mukhanov EL (2005) Int J Photoenergy 7:17–22

    Article  CAS  Google Scholar 

  38. Rezvanova AA, Frolova LA, Troshin PA (2016) Mendeleev Commun 26:26–28

    Article  CAS  Google Scholar 

  39. Ubukata T, Fujii S, Arimatsu K, Yokoyama Y (2012) J Mater Chem 22:14410–14417

    Article  CAS  Google Scholar 

  40. Harada J, Kawazoe Y, Ogawa K (2010) Chem Commun 46:2593–2595

    Article  CAS  Google Scholar 

  41. Gentili PL, Nocchetti M, Miliani C, Favaro G (2004) New J Chem 28:379–386

    Article  CAS  Google Scholar 

  42. Natali M, Giordani S (2012) Chem Soc Rev 41:4010–4029

    Article  CAS  PubMed  Google Scholar 

  43. Bléger D (2016) Macromol Chem Phys 217:189–198

    Article  CAS  Google Scholar 

  44. Lee C-L, Liebig T, Hecht S, Bléger D, Rabe JP (2014) ACS Nano 8:11987–11993

    Article  CAS  PubMed  Google Scholar 

  45. Kumar K, Knie C, Bléger D, Peletier MA, Friedrich H, Hecht S, Broer DJ, Debije MG, Schenning APHJ (2016) Nat Commun 7:11975 (1-8)

    Google Scholar 

  46. Zhao F, Bonasera A, Nöchel U, Behl M, Bléger D (2018) Macromol Rapid Commun 39:1700527 (1–5)

    Google Scholar 

  47. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Nature 401:152–155

    Article  CAS  PubMed  Google Scholar 

  48. Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley, Weinheim

    Google Scholar 

  49. Dähne S, Leupold D, Nikolajewski HE, Radeglia R (1965) Zeitschrift für Naturforsch B 20:1006–1007

    Article  Google Scholar 

  50. Radeglia R, Dähne S (1970) J Mol Struct 5:399–411

    Article  CAS  Google Scholar 

  51. Brady JE, Carr PW (1985) J Phys Chem 89:5759–5766

    Article  CAS  Google Scholar 

  52. Brunschwig BS, Ehrenson S, Sutin N (1987) J Phys Chem 91:4714–4723

    Article  CAS  Google Scholar 

  53. Bayliss NS, McRae EG (1954) J Phys Chem 58:1002–1006

    Article  CAS  Google Scholar 

  54. Metelitsa AV, Lokshin V, Micheau JC, Samat A, Guglielmetti R, Minkin VI (2002) Phys Chem Chem Phys 4:4340–4345

    Article  CAS  Google Scholar 

  55. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276–279

    Article  CAS  Google Scholar 

  56. Tan J-C, Civalleri B (2015) CrystEngComm 17:197–198

    Article  CAS  Google Scholar 

  57. Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Öhrström L, O’Keeffe M, Suh MP, Reedijk J (2013) Pure Appl Chem 85:1715–1724

    Article  CAS  Google Scholar 

  58. Abrahams BF, Hoskins BF, Michail DM, Robson R (1994) Nature 369:727–729

    Article  CAS  Google Scholar 

  59. Hoskins BF, Robson R (1989) J Am Chem Soc 111:5962–5964

    Article  CAS  Google Scholar 

  60. Li H, Eddaoudi M, Thomas A, Groy L, Yaghi OM (1998) J Am Chem Soc 120:8571–8572

    Article  CAS  Google Scholar 

  61. Kondo M, Yoshitomi T, Matsuzaka H, Kitagawa S, Seki K (1997) Angew Chem Int Ed 36:1725–1727

    Article  CAS  Google Scholar 

  62. Ninclaus C, Serre C, Riou D, Férey G (1998) C R Acad Sci Ser IIc 1:551–556

    CAS  Google Scholar 

  63. Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, Volkringer C, Loiseau T, Férey G, Latroche M (2010) J Am Chem Soc 132:2991–2997

    Article  CAS  PubMed  Google Scholar 

  64. Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Chem Rev 112:782–835

    Article  CAS  PubMed  Google Scholar 

  65. Wu H, Reali RS, Smith DA, Trachtenberg MC, Li J (2010) Chem A Eur J 16:13951–13954

    Article  CAS  Google Scholar 

  66. Li J-R, Sculley J, Zhou H-C (2012) Chem Rev 112:869–932

    Article  CAS  PubMed  Google Scholar 

  67. Alaerts L, Maes M, Giebeler L, Jacobs PA, Martens JA, Denayer JFM, Kirschhock CEA, De Vos DE (2008) J Am Chem Soc 130:14170–14178

    Article  CAS  PubMed  Google Scholar 

  68. Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock CEA, Denayer JFM, De Vos DE (2010) J Am Chem Soc 132:15277–15285

    Article  CAS  PubMed  Google Scholar 

  69. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450–1459

    Article  CAS  PubMed  Google Scholar 

  70. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J-S, Hwang YK, Marsaud V, Bories P-N, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Nat Mater 9:172–178

    Article  CAS  PubMed  Google Scholar 

  71. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Angew Chem Int Ed 45:5974–5978

    Article  CAS  Google Scholar 

  72. Tu M, Reinsch H, Rodríguez-Hermida S, Verbeke R, Stassin T, Egger W, Dickmann M, Dieu B, Hofkens J, Vankelecom I, Stock N, Ameloot R (2018) Angew Chem 131:2445–2449

    Google Scholar 

  73. Dolgopolova EA, Moore TM, Ejegbavwo OA, Pellechia PJ, Smith MD, Shustova NB (2017) Chem Commun 53:7361–7364

    Article  CAS  Google Scholar 

  74. Stavila V, Talin AA, Allendorf MD (2014) Chem Soc Rev:5994–6010

    Google Scholar 

  75. Allendorf MD, Schwartzberg A, Stavila V, Talin AA (2011) Chem A Eur J 17:11372–11388

    Article  CAS  Google Scholar 

  76. Inokuma Y, Arai T, Fujita M (2010) Nat Chem 2:780–783

    Article  CAS  PubMed  Google Scholar 

  77. Brkljača R, Schneider B, Hidalgo W, Otálvaro F, Ospina F, Lee S, Hoshino M, Fujita M, Urban S (2017) Molecules 22:211 (1–9)

    Article  CAS  Google Scholar 

  78. Lee S, Hoshino M, Fujita M, Urban S (2017) Chem Sci 8:1547–1550

    Article  CAS  PubMed  Google Scholar 

  79. Inokuma Y, Matsumura K, Yoshioka S, Fujita M (2017) Chem An Asian J 12:208–211

    Article  CAS  Google Scholar 

  80. Zigon N, Kikuchi T, Ariyoshi J, Inokuma Y, Fujita M (2017) Chem An Asian J 12:1057–1061

    Article  CAS  Google Scholar 

  81. Sakurai F, Khutia A, Kikuchi T, Fujita M (2017) Chem A Eur J 23:15035–15040

    Article  CAS  Google Scholar 

  82. Hoshino M, Khutia A, Xing H, Inokuma Y, Fujita M (2016) IUCrJ 3:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Inokuma Y, Yoshioka S, Ariyoshi J, Arai T, Hitora Y, Takada K, Matsunaga S, Rissanen K, Fujita M (2013) Nature 495:461–466

    Article  CAS  PubMed  Google Scholar 

  84. Czaja AU, Trukhan N, Müller U (2009) Chem Soc Rev 38:1284–1293

    Article  CAS  PubMed  Google Scholar 

  85. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J (2006) J Mater Chem 16:626–636

    Article  CAS  Google Scholar 

  86. Mezenov YA, Krasilin AA, Dzyuba VP, Nominé A, Milichko VA (2019) Adv Sci 6:1900506 (1–15)

    Article  CAS  Google Scholar 

  87. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469–472

    Article  CAS  PubMed  Google Scholar 

  88. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Science 336:1018–1023

    Article  CAS  PubMed  Google Scholar 

  89. Schaate A, Roy P, Preusse T, Lohmeier SJ, Godt A, Behrens P (2011) Chem A Eur J 17:9320–9325

    Article  CAS  Google Scholar 

  90. Falcaro P, Ricco R, Doherty CM, Liang K, Hill AJ, Styles MJ (2014) Chem Soc Rev 43:5513–5560

    Article  CAS  PubMed  Google Scholar 

  91. Zhuang JL, Terfort A, Wöll C (2015) Coord Chem Rev 307:391–424

    Article  CAS  Google Scholar 

  92. Li Y-S, Bux H, Feldhoff A, Li G-L, Yang W-S, Caro J (2010) Adv Mater 22:3322–3326

    Article  CAS  PubMed  Google Scholar 

  93. Zhang F, Zou X, Feng W, Zhao X, Jing X, Sun F, Ren H, Zhu G (2012) J Mater Chem 22:25019–25026

    Article  CAS  Google Scholar 

  94. Zhuang J-L, Ceglarek D, Pethuraj S, Terfort A (2011) Adv Funct Mater 21:1442–1447

    Article  CAS  Google Scholar 

  95. Knebel A, Sundermann L, Mohmeyer A, Strauß I, Friebe S, Behrens P, Caro J (2017) Chem Mater 29:3111–3117

    Article  CAS  Google Scholar 

  96. Li Y-S, Liang F-Y, Bux H, Feldhoff A, Yang W-S, Caro J (2010) Angew Chem Int Ed 49:548–551

    Article  CAS  Google Scholar 

  97. Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann S, Evers F, Zacher D, Fischer RA, Wöll C (2007) J Am Chem Soc 129:15118–15119

    Article  CAS  PubMed  Google Scholar 

  98. Castellanos S, Kapteijn F, Gascon J (2016) CrystEngComm 18:4006–4012

    Article  CAS  Google Scholar 

  99. Jones CL, Tansell AJ, Easun TL (2016) J Mater Chem A 4:6714–6723

    Article  CAS  Google Scholar 

  100. Dolgopolova EA, Rice AM, Martin CR, Shustova NB (2018) Chem Soc Rev 47:4710–4728

    Article  CAS  PubMed  Google Scholar 

  101. Mukhopadhyay RD, Praveen VK, Ajayaghosh A (2014) Mater Horiz 1:572–576

    Article  CAS  Google Scholar 

  102. Russew M-M, Hecht S (2010) Adv Mater 22:3348–3360

    Article  CAS  PubMed  Google Scholar 

  103. Wang L, Li Q (2018) Chem Soc Rev 47:1044–1097

    Article  CAS  PubMed  Google Scholar 

  104. Coudert F-X (2015) Chem Mater 27:1905–1916

    Article  CAS  Google Scholar 

  105. Juan-Alcañiz J, Gascon J, Kapteijn F (2012) J Mater Chem 22:10102–10118

    Article  CAS  Google Scholar 

  106. Schwartz HA, Ruschewitz U, Heinke L (2018) Photochem Photobiol Sci 17:864–873

    Article  CAS  PubMed  Google Scholar 

  107. Schaate A, Dühnen S, Platz G, Lilienthal S, Schneider AM, Behrens P (2012) Eur J Inorg Chem:790–796

    Google Scholar 

  108. Epley CC, Roth KL, Lin S, Ahrenholtz SR, Grove TZ, Morris AJ (2017) Dalton Trans 46:4917–4922

    Article  CAS  PubMed  Google Scholar 

  109. Zhang J, Wang L, Li N, Liu J, Zhang W, Zhang Z, Zhou N, Zhu X (2014) CrystEngComm 16:6547–6551

    Article  CAS  Google Scholar 

  110. Khayyami A, Philip A, Karppinen M (2019) Angew Chem 131:13534–13538

    Article  Google Scholar 

  111. Zheng Y, Sato H, Wu P, Jeon HJ, Matsuda R, Kitagawa S (2017) Nat Commun 8:100 (1–6)

    PubMed Central  Google Scholar 

  112. Dolgopolova EA, Galitskiy VA, Martin CR, Gregory HN, Yarbrough BJ, Rice AM, Berseneva AA, Ejegbavwo OA, Stephenson KS, Kittikhunnatham P, Karakalos SG, Smith MD, Greytak AB, Garashchuk S, Shustova NB (2019) J Am Chem Soc 141:5350–5358

    Article  CAS  PubMed  Google Scholar 

  113. Modrow A, Zargarani D, Herges R, Stock N (2011) Dalton Trans 40:4217–4222

    Article  CAS  PubMed  Google Scholar 

  114. Park J, Yuan D, Pham KT, Li J-R, Yakovenko A, Zhou H-C (2012) J Am Chem Soc 134:99–102

    Article  CAS  PubMed  Google Scholar 

  115. Yu X, Wang Z, Buchholz M, Füllgrabe N, Grosjean S, Bebensee F, Bräse S, Wöll C, Heinke L (2015) Phys Chem Chem Phys 17:22721–22725

    Article  CAS  PubMed  Google Scholar 

  116. Healey K, Liang W, Southon PD, Church TL, D’Alessandro DM (2016) J Mater Chem A 4:10816–10819

    Article  CAS  Google Scholar 

  117. Modrow A, Zargarani D, Herges R, Stock N (2012) Dalton Trans 41:8690–8696

    Article  CAS  PubMed  Google Scholar 

  118. Heinke L, Cakici M, Dommaschk M, Grosjean S, Herges R, Bräse S, Wöll C (2014) ACS Nano 8:1463–1467

    Article  CAS  PubMed  Google Scholar 

  119. Heinke L (2017) J Phys D Appl Phys 50:193004 (1–18)

    Article  CAS  Google Scholar 

  120. Wang Z, Knebel A, Grosjean S, Wagner D, Bräse S, Wöll C, Caro J, Heinke L (2016) Nat Commun 7:13872 (1–7)

    Google Scholar 

  121. Müller K, Helfferich J, Zhao F, Verma R, Kanj AB, Meded V, Bléger D, Wenzel W, Heinke L (2018) Adv Mater 30:1706551 (1–7)

    Google Scholar 

  122. Kanj AB, Bürck J, Grosjean S, Bräse S, Heinke L (2019) Chem Commun 55:8776–8779

    Article  CAS  Google Scholar 

  123. Wang Z, Heinke L, Jelic J, Cakici M, Dommaschk M, Maurer RJ, Oberhofer H, Grosjean S, Herges R, Bräse S, Reuter K, Wöll C (2015) Phys Chem Chem Phys 17:14582–14587

    Article  CAS  PubMed  Google Scholar 

  124. Williams DE, Martin CR, Dolgopolova EA, Swifton A, Godfrey DC, Ejegbavwo OA, Pellechia PJ, Smith MD, Shustova NB (2018) J Am Chem Soc 140:7611–7622

    Article  CAS  PubMed  Google Scholar 

  125. Ohara K, Inokuma Y, Fujita M (2010) Angew Chem Int Ed 49:5507–5509

    Article  CAS  Google Scholar 

  126. Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S (2012) J Am Chem Soc 134:4501–4504

    Article  CAS  PubMed  Google Scholar 

  127. Dybtsev DN, Chun H, Kim K (2004) Angew Chem Int Ed 43:5033–5036

    Article  CAS  Google Scholar 

  128. Uemura T, Washino G, Yanai N, Kitagawa S (2013) Chem Lett 42:222–223

    Article  CAS  Google Scholar 

  129. Hermann D, Emerich H, Lepski R, Schaniel D, Ruschewitz U (2013) Inorg Chem 52:2744–2749

    Article  CAS  PubMed  Google Scholar 

  130. Ruschewitz U, Hermann D (2010) Z Anorg Allg Chem 636:2068

    Article  Google Scholar 

  131. Ruschewitz U, Hermann D (2012) Z Anorg Allg Chem 638:1574

    Google Scholar 

  132. Volkringer C, Meddouri M, Loiseau T, Guillou N, Marrot J, Férey G, Haouas M, Taulelle F, Audebrand N, Latroche M (2008) Inorg Chem 47:11892–11901

    Article  CAS  PubMed  Google Scholar 

  133. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G (2004) Chem A Eur J 10:1373–1382

    Article  CAS  Google Scholar 

  134. Volkringer C, Loiseau T, Guillou N, Férey G, Elkaïm E, Vimont A (2009) Dalton Trans 53:2241–2249

    Article  CAS  Google Scholar 

  135. Wegner HA (2012) Angew Chem Int Ed 51:4787–4788

    Article  CAS  Google Scholar 

  136. Bléger D, Schwarz J, Brouwer AM, Hecht S (2012) J Am Chem Soc 134:20597–20600

    Article  PubMed  CAS  Google Scholar 

  137. Hermann D, Schwartz HA, Werker M, Schaniel D, Ruschewitz U (2019) Chem A Eur J 25:3606–3616

    Article  CAS  Google Scholar 

  138. Hernández-Trujillo J, Vela A (1996) J Phys Chem 100:6524–6530

    Article  Google Scholar 

  139. Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) J Chem Soc Perkin Trans 2:651–669

    Google Scholar 

  140. Das D, Agarkar H (2018) ACS Omega 3:7630–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Agarkar H, Das D (2019) J Mol Struct 1184:435–442

    Article  CAS  Google Scholar 

  142. Fu W-Q, Liu M, Gu Z-G, Chen S-M, Zhang J (2016) Cryst Growth Des 16:5487–5492

    Article  CAS  Google Scholar 

  143. Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148–1150

    Article  CAS  PubMed  Google Scholar 

  144. Müller K, Wadhwa J, Singh Malhi J, Schöttner L, Welle A, Schwartz H, Hermann D, Ruschewitz U, Heinke L (2017) Chem Commun 53:8070–8073

    Article  Google Scholar 

  145. Johannsmann D (2015) The quartz crystal microbalance in soft matter research. Springer, Basel

    Book  Google Scholar 

  146. Wang Z, Grosjean S, Bräse S, Heinke L (2015) ChemPhysChem 16:3779–3783

    Article  CAS  PubMed  Google Scholar 

  147. Kobatake S, Yamada T, Uchida K, Kato N, Irie I (1999) J Am Chem Soc 121:2380–2386

    Article  CAS  Google Scholar 

  148. Yamada T, Kobatake S, Irie M (2000) Bull Chem Soc Jpn 73:2179–2184

    Article  CAS  Google Scholar 

  149. Walton IM, Cox JM, Coppin JA, Linderman CM, Patel DGD, Benedict JB, Ren H, Zhu G (2013) Chem Commun 49:8012–8014

    Article  CAS  Google Scholar 

  150. Florea L, Hennart A, Diamond D, Benito-Lopez F (2012) Sensors Actuators B Chem 175:92–99

    Article  CAS  Google Scholar 

  151. Florea L, McKeon A, Diamond D, Benito-Lopez F (2013) Langmuir 29:2790–2797

    Article  CAS  PubMed  Google Scholar 

  152. Schwartz HA, Olthof S, Schaniel D, Meerholz K, Ruschewitz U (2017) Inorg Chem 56:13100–13110

    Article  CAS  PubMed  Google Scholar 

  153. Snyder LR (1983) High performance liquid chromatography. Academic Press, New York

    Google Scholar 

  154. Garg S, Schwartz H, Kozlowska M, Kanj AB, Müller K, Wenzel W, Ruschewitz U, Heinke L (2019) Angew Chem Int Ed 58:1193–1197

    Article  CAS  Google Scholar 

  155. Darwish N, Aragonès AC, Darwish T, Ciampi S, Díez-Pérez I (2014) Nano Lett 14:7064–7070

    Article  CAS  PubMed  Google Scholar 

  156. Kumar S, van Herpt JT, Gengler RYN, Feringa BL, Rudolf P, Chiechi RC (2016) J Am Chem Soc 138:12519–12526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jiang G, Song Y, Guo X, Zhang D, Zhu D (2008) Adv Mater 20:2888–2898

    Article  CAS  Google Scholar 

  158. Tork A, Boudreault F, Roberge M, Ritcey AM, Lessard RA, Galstian TV (2001) Appl Opt 40:1180–1186

    Article  CAS  PubMed  Google Scholar 

  159. Sakuragi M, Aoki K, Tamaki T, Ichimura K (1990) Bull Chem Soc Jpn 63:74–79

    Article  CAS  Google Scholar 

  160. Whelan J, Wojtyk JTC, Buncel E (2008) Chem Mater 20:3797–3799

    Article  CAS  Google Scholar 

  161. Radu A, Byrne R, Alhashimy N, Fusaro M, Scarmagnani S, Diamond D (2009) J Photochem Photobiol A Chem 206:109–115

    Article  CAS  Google Scholar 

  162. Chu NYC (1983) Can J Chem 61:300–305

    Article  CAS  Google Scholar 

  163. Schwartz HA, Werker M, Tobeck C, Christoffels R, Schaniel D, Olthof S, Meerholz K, Kopacka H, Huppertz H, Ruschewitz U (2020) ChemPhotoChem 4:195–206

    Google Scholar 

  164. Hoorens MWH, Medved’ M, Laurent AD, Di Donato M, Fanetti S, Slappendel L, Hilbers M, Feringa BL, Buma WJ, Szymanski W (2019) Nat Commun 10:2390 (1–11)

    Article  CAS  Google Scholar 

  165. Bendeif E-E, Gansmuller A, Hsieh K-Y, Pillet S, Woike T, Zobel M, Neder RB, Bouazaoui M, El Hamzaoui H, Schaniel D (2015) RSC Adv 5:8895–8902

    Article  CAS  Google Scholar 

  166. Hsieh K-Y, Bendeif E-E, Gansmuller A, Pillet S, Woike T, Schaniel D (2013) RSC Adv 3:26132–26141

    Article  CAS  Google Scholar 

  167. Volkringer C, Popov D, Loiseau T, Férey G, Burghammer M, Riekel C, Haouas M, Taulelle F (2009) Chem Mater 21:5695–5697

    Article  CAS  Google Scholar 

  168. Horcajada P, Surblé S, Serre C, Hong DY, Seo YK, Chang JS, Grenèche JM, Margiolaki I, Férey G (2007) Chem Commun:2820–2822

    Google Scholar 

  169. Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I (2004) Angew Chem Int Ed 43:6296–6301

    Article  CAS  Google Scholar 

  170. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) J Am Chem Soc 130:13850–13851

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Ruschewitz .

Editor information

Editors and Affiliations

Appendix

Appendix

This book chapter was completed in October 2019 and covers almost all the literature available at that time. As MOFs as hosts for photoactive molecules are a very fast developing field of research, it was not possible to include the many interesting papers published after this deadline.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwartz, H.A., Ruschewitz, U. (2020). Photoactive Molecules within MOFs. In: Martínez-Martínez, V., López Arbeloa, F. (eds) Dyes and Photoactive Molecules in Microporous Systems. Structure and Bonding, vol 183. Springer, Cham. https://doi.org/10.1007/430_2020_56

Download citation

Publish with us

Policies and ethics