Skip to main content

Exploring the Breadth of Terminal Ligands Coordinated in [Mo6X8]4+- and [Re6Q8]2+-Based Cluster Complexes

  • Chapter
  • First Online:
Ligated Transition Metal Clusters in Solid-state Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 180))

Abstract

This survey provides an overview of the different types of terminal ligands incorporated into molybdenum halide and rhenium chalcogenide cluster complexes. While the incorporation of halide and pseudohalide ligands is prevalent with these systems, this article focuses on the coordination of other nitrogen-, oxygen-, sulfur-, and carbon-donor ligands. Emphasis has been placed on synthetic methodologies and the significance behind coordination of these ligands to discrete cluster complexes.

Honoring the legacy of Marcel Sergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloomstrand W (1859) Ueber unorganische Haloidverbindungen, die sich wie Radicale verhalten. J Prakt Chem 77:88–119

    Google Scholar 

  2. Chevrel R, Sergent M, Prigent J (1971) Sur de nouvelles phases sulfurées ternaires du molybdène. J Solid State Chem 3:515–519

    CAS  Google Scholar 

  3. Chevrel R, Hirrien M, Sergent M (1986) Superconducting Chevrel phases: prospects and perspectives. Polyhedron 5:87–94

    Article  CAS  Google Scholar 

  4. Brorson M, King JD, Kiriakidou K, Prestopino F, Nordlander E (1999) Metal clusters as models for hydrodesulfurization catalysts. Metal Clust Chem 2:741–781

    CAS  Google Scholar 

  5. Peña O (2015) Chevrel phases: past, present and future. Phys C 514:95–112

    Google Scholar 

  6. Saha P, Jampani PH, Datta MK, Hong D, Okoli CU, Manivannan A, Kumta PN (2015) Electrochemical performance of chemically and solid state-derived Chevrel phase Mo6T8 (T= S, Se) positive electrodes for sodium-ion batteries. J Phys Chem C 119:5771–5782

    CAS  Google Scholar 

  7. Spangenberg M, Bronger W (1978) Ternary rhenium sulfides with [Re6S8]-clusters. Angew Chem Int Ed Engl 17:368–369

    Google Scholar 

  8. Chen S, Robinson WR (1978) An octahedral rhenium(III) cluster: X-ray crystal structure of Na4Re6S10(S2). J Chem Soc Chem Commun 20:879–880

    Google Scholar 

  9. Opalovskii AA, Fedorov VE, Lobkov EU, Erenburg BG (1971) New rhenium halochalcogenides. Zh Neorg Khim 16:3175–3177

    CAS  Google Scholar 

  10. Leduc L, Perrin A, Sergent M (1983) Structure du dichlorure et octaséléniure d'hexarhénium, Re6Se8Cl2: composé bidimensionnel à clusters octaédriques Re6. Acta Cryst C39:1503–1506

    CAS  Google Scholar 

  11. Perrin A, Perrin C, Sergent M (1988) Octahedral clusters in molybdenum(II) and rhenium(III) chalcohalide chemistry. J Less Common Met 137:241–265

    CAS  Google Scholar 

  12. Leduc L, Padiou J, Perrin A, Sergent M (1983) Synthèse et caractérisation d'un nouveau chalcohalogénure à clusters octaédriques de rhénium à caractère bidimensionnel: Re6Se8Cl2. J Less Common Met 95:73–80

    CAS  Google Scholar 

  13. Leduc L, Perrin A, Sergent M, Le Traon F, Pilet JC, Le Traon A (1985) Rhenium octahedral clusters: characterization of Re6Se4Cl10 and the parent compound Re6S4Br10. Mater Lett 3:209–215

    CAS  Google Scholar 

  14. Yaghi OM, Scott MJ, Holm RH (1992) Rhenium-selenium-chlorine solid phases: cluster excision and core substitution reactions of molecular species. Inorg Chem 31:4778–4784

    CAS  Google Scholar 

  15. Long JR, Williamson AS, Holm RH (1995) Dimensional reduction of Re6Se8Cl2: sheets, chains, and discrete clusters composed of chloride-terminated [Re6Q8]2+ (Q= S, Se) cores. Angew Chem Int Ed Engl 34:226–229

    CAS  Google Scholar 

  16. Long JR, McCarty LS, Holm RH (1996) A solid-state route to molecular clusters: access to the solution chemistry of [Re6Q8]2+ (Q= S, Se) core-containing clusters via dimensional reduction. J Am Chem Soc 118:4603–4616

    CAS  Google Scholar 

  17. Tulsky EG, Long JR (2001) Dimensional reduction: a practical formalism for manipulating solid structures. Chem Mater 13:1149–1166

    CAS  Google Scholar 

  18. Shestopalov MA, Cordier S, Hernandez O, Molard Y, Perrin C, Perrin A, Fedorov VE, Mironov YV (2009) Self-assembly of ambivalent organic/inorganic building blocks containing Re6 metal atom cluster: formation of a luminescent honeycomb, hollow, tubular metal-organic framework. Inorg Chem 48:1482–1489

    CAS  PubMed  Google Scholar 

  19. Shores MP, Beauvais LG, Long JR (1999) Cluster-expanded Prussian blue analogues. J Am Chem Soc 121:775–779

    CAS  Google Scholar 

  20. Naumov NG, Soldatov DV, Ripmeester JA, Artemkina SB, Fedorov VE (2001) Extended framework materials incorporating cyanide cluster complexes: structure of the first 3D architecture accommodating organic molecules. Chem Commun 6:571–572

    Google Scholar 

  21. Selby HD, Roland BK, Zheng Z (2003) Ligand-bridged oligomeric and supramolecular arrays of the hexanuclear rhenium selenide clusters−exploratory synthesis, structural characterization, and property investigation. Acc Chem Res 36:933–944

    CAS  PubMed  Google Scholar 

  22. Maverick AW, Gray HB (1981) Luminescence and redox photochemistry of the molybdenum(II) cluster Mo6Cl14 2−. J Am Chem Soc 103:1298–1300

    CAS  Google Scholar 

  23. Maverick AW, Najdzionek JS, MacKenzie D, Nocera DG, Gray HB (1983) Spectroscopic, electrochemical, and photochemical properties of molybdenum(II) and tungsten(II) halide clusters. J Am Chem Soc 105:1878–1882

    CAS  Google Scholar 

  24. Perruchas S, Avarvari N, Rondeau D, Levillain E, Batail P (2005) Multielectron donors based on TTF-phosphine and ferrocene-phosphine hybrid complexes of a hexarhenium(III) octahedral cluster core. Inorg Chem 44:3459–3465

    CAS  PubMed  Google Scholar 

  25. Gray TG, Rudzinski CM, Meyer EE, Holm RH, Nocera DG (2003) Spectroscopic and photophysical properties of hexanuclear rhenium(III) chalcogenide clusters. J Am Chem Soc 125:4755–4770

    CAS  PubMed  Google Scholar 

  26. Yoshimura T, Ishizaka S, Umakoshi K, Sasaki Y, Kim H-B, Kitamura N (1999) Hexarhenium(III) clusters [Re63-S)8X6]4− (X = Cl, Br, I) are luminescent at room temperature. Chem Lett 28:697–698

    Google Scholar 

  27. Gabriel J-CP, Boubekeur K, Uriel S, Batail P (2001) Chemistry of hexanuclear rhenium chalcogenide clusters. Chem Rev 101:2037–2066

    CAS  PubMed  Google Scholar 

  28. Prokopuk N, Shriver DF (1998) The octahedral M6Y8 and M6Y12 clusters of group 5 and 6 transition metals. Adv Inorg Chem 46:1–49

    CAS  Google Scholar 

  29. Fedorov VE, Mironov YV, Naumov NG, Sokolov MN, Fedin VP (2007) Chalcogenide clusters of groups 5-7. Russ Chem Rev 76:529–552

    CAS  Google Scholar 

  30. Pilet G, Perrin A (2005) Octahedral rhenium cluster chemistry: from high-temperature syntheses to the elaboration of new inorganic/molecular hybrid compounds via solution route. C R Chim 8:1728–1742

    CAS  Google Scholar 

  31. Perrin A, Perrin C (2012) The molybdenum and rhenium octahedral cluster chalcohalides in solid state chemistry: from condensed to discrete cluster units. C R Chim 15:815–836

    CAS  Google Scholar 

  32. Zheng Z, Long JR, Holm RH (1997) A basis set of Re6Se8 cluster building blocks and demonstration of their linking capability: directed synthesis of an Re12Se16 dicluster. J Am Chem Soc 119:2163–2171

    CAS  Google Scholar 

  33. Ren YX, Bruck AM, Szczepura LF (2014) Octa-μ3-selenido-pentakis(triethylphosphane-κP)(trimethylacetonitrile-κN)-octahedro-hexarhenium(III) bis(hexafluoridoantimonate) trimethylacetonitrile monosolvate. Acta Cryst E70:m242–m243

    Google Scholar 

  34. Selby HD, Zheng Z, Gray TG, Holm RH (2001) Bridged multiclusters derived from the face-capped octahedral [Re6 III3-Se)8]2+ cluster core. Inorg Chim Acta 312:205–209

    CAS  Google Scholar 

  35. Selby HD, Zheng Z (2005) New directions of cluster chemistry – the story of the [Re63-Se)8]2+ clusters. Comment Inorg Chem 26:75–102

    CAS  Google Scholar 

  36. Selby HD, Roland BK, Cole JR, Zheng Z (2004) Supramolecular architectures featuring stereoisomeric cluster complexes of the [Re63-Se)8]2+ core. Macromol Symp 209:23–39

    CAS  Google Scholar 

  37. Zheng Z, Tu X (2009) Crystal engineering supported by the [Re63-Se)8]2+ core-containing clusters. CrystEngComm 11:707–719

    CAS  Google Scholar 

  38. El Osta R, Demont A, Audebrand N, Molard Y, Nguyen T, Gautier R, Brylev K, Mironov Y, Naumov NG, Kitamura N, Cordier S (2015) Supramolecular frameworks built up from red-phosphorescent trans-Re6 cluster building blocks: one pot synthesis, crystal structures, and DFT investigations. Z Anorg Allg Chem 641:1156–1163

    Google Scholar 

  39. Corbin WC, Nichol GS, Zheng Z (2015) [Re63-Se)8]2+ core-containing cluster complexes with isonicotinic acid: synthesis, structural characterization, and hydrogen-bonded assemblies. J Clust Sci 26:279–290

    CAS  Google Scholar 

  40. Itasaka A, Abe M, Yoshimura T, Tsuge K, Suzuki M, Imamura T, Sasaki Y (2002) Octahedral arrangement of porphyrin moieties around hexarhenium(III) cluster cores: structure of (μ3-selenido)hexa(5-(4-pyridyl)-10,15,20-tritolylporphyrin)hexarhenium(III) (2+). Angew Chem Int Ed 41:463–466

    CAS  Google Scholar 

  41. Kahnt A, Heiniger L-P, Liu S-X, Tu X, Zheng Z, Hauser A, Decurtins S, Guldi DM (2010) An electrochemical and photophysical study of a covalently linked inorganic–organic dyad. ChemPhysChem 11:651–658

    CAS  PubMed  Google Scholar 

  42. Yoshimura T, Ishizaka S, Kashiwa T, Ito A, Sakuda E, Shinohara A, Kitamura N (2011) Direct observation of a {Re63-S)8} core-to-ligand charge-transfer excited state in an octahedral hexarhenium complex. Inorg Chem 50:9918–9920

    CAS  PubMed  Google Scholar 

  43. Mironov YV, Brylev KA, Shestopalov MA, Yarovoi SS, Fedorov VE, Spies H, Pietzsch H-J, Stephan H, Geipel G, Bernhard G, Kraus W (2006) Octahedral rhenium cluster complexes with organic ligands: synthesis, structure and properties of [Re6Q8(3,5-Me2PzH)6]Br2·2(3,5-Me2PzH) (Q = S, Se). Inorg Chim Acta 359:1129–1134

    CAS  Google Scholar 

  44. Mironov YV, Shestopalov MA, Brylev KA, Yarovoi SS, Romanenko GV, Fedorov VE, Spies H, Pietzsch H-J, Stephan H, Geipel G, Bernhard G, Kraus W (2005) [Re6Q7O(3,5-Me2PzH)6]Br2·3,5-Me2PzH (Q = S, Se) − new octahedral rhenium cluster complexes with organic ligands: original synthetic approach and unexpected ligand exchange in the cluster core. Eur J Inorg Chem 4:657–661

    Google Scholar 

  45. Shestopalov MA, Zubareva KE, Khripko OP, Khripko YI, Solovieva AO, Kuratieva NV, Mironov YV, Kitamura N, Fedorov VE, Brylev KA (2014) The first water-soluble hexarhenium cluster complexes with a heterocyclic ligand environment: synthesis, luminescence, and biological properties. Inorg Chem 53:9006–9013

    CAS  PubMed  Google Scholar 

  46. Szczepura LF, Oh MK, Knott SA (2007) Synthesis and electrochemical study of the first tetrazolate hexanuclear rhenium cluster complex. Chem Commun 44:4617–4619

    Google Scholar 

  47. Orto P, Selby HD, Ferris D, Maeyer JR, Zheng Z (2007) Alcohol addition to acetonitrile activated by the [Re63-Se)8]2+ cluster core. Inorg Chem 46:4377–4379

    CAS  PubMed  Google Scholar 

  48. Zheng Z (2012) Chemical transformations supported by the [Re63-Se)8]2+ cluster core. Dalton Trans 41:5121–5131

    CAS  PubMed  Google Scholar 

  49. Durham JL, Tirado JT, Knott SA, Oh MK, McDonald R, Szczepura LF (2012) Preparation of a family of hexanuclear rhenium cluster complexes containing 5-(phenyl)tetrazol-2-yl ligands and alkylation of 5-substituted tetrazolate ligands. Inorg Chem 51:7825–7836

    CAS  PubMed  Google Scholar 

  50. Knott SA, Templeton JN, Durham JL, Howard AM, McDonald R, Szczepura LF (2013) Azide alkyne cycloaddition facilitated by hexanuclear rhenium chalcogenide cluster complexes. Dalton Trans 42:8132–8139

    CAS  PubMed  Google Scholar 

  51. Corbin WC, Nichol GS, Zheng Z (2016) Amidine production by the addition of NH3 to nitrile(s) bound to and activated by the Lewis acidic [Re63-Se)8]2+ cluster core. Inorg Chem 55:9505–9508

    CAS  PubMed  Google Scholar 

  52. Chin CP, Ren Y, Berry J, Knott SA, McLauchlan CC, Szczepura LF (2018) Small molecule activation of nitriles coordinated to the [Re6Se8]2+ core: formation of oxazine, oxazoline and carboxamide complexes. Dalton Trans 47:4653–4660

    CAS  PubMed  Google Scholar 

  53. Fedin FP, Virovets AA, Sykes AG (1998) Synthesis of the first sulfido-bridged octahedral rhenium(III) aqua ion [Re6S8(H2O)6]2+. Inorg Chim Acta 271:228–230

    CAS  Google Scholar 

  54. Zheng Z, Selby HD, Roland BK (2001) The first ‘hexaaqua-‘ complex of the [Re6Se8]2+ cluster core, [Re6Se8(OH)2(H2O)4]·12H2O. Acta Cryst Sect E E57:i77–i79

    Google Scholar 

  55. Yarovoi SS, Mironov YV, Naumov DY, Gatilov YV, Kozlova SG, Kim S-J, Fedorov VE (2005) Octahedral hexahydroxo rhenium cluster complexes [Re6Q8(OH)6]4–·(Q = S, Se): synthesis, structure, and properties. Eur J Inorg Chem 2005:3945–3949

    Google Scholar 

  56. Brylev KA, Mironov YV, Yarovoi SS, Naumov NG, Fedorov VE, Kim S-J, Kitamura N, Kuwahara Y, Yamada K, Ishizaka S, Sasaki Y (2007) A family of octahedral rhenium cluster complexes [Re6Q8(H2O)n(OH)6-n]n-4 (Q = S, Se; n = 0−6): structural and pH−dependent spectroscopic studies. Inorg Chem 46:7414–7422

    CAS  PubMed  Google Scholar 

  57. Mironov YV, Brylev KA, Kim S-J, Kozlova SG, Kitamura N, Fedorov VE (2011) Octahedral cyanohydroxo cluster complex trans-[Re6Se8(CN)4(OH)2]4−: synthesis, crystal structure, and properties. Inorg Chim Acta 370:363–368

    CAS  Google Scholar 

  58. Selby HD, Orto P, Carducci MD, Zheng Z (2002) Novel concentration-driven structural interconversion in shape-specific solids supported by the octahedral [Re63-Se)8]2+ cluster core. Inorg Chem 41:6175–6177

    CAS  PubMed  Google Scholar 

  59. Choi S-J, Brylev KA, Xu J-Z, Mironov YV, Fedorov VE, Sohn YS, Kim S-J, Choy J-H (2008) Cellular uptake and cytotoxicity of octahedral rhenium cluster complexes. J Inorg Biochem 102:1991–1996

    CAS  PubMed  Google Scholar 

  60. Brylev KA, Mironov YV, Kozlova SG, Fedorov VE, Kim S-J, Pietzsch H-J, Stephan H, Ito A, Ishizaka S, Kitamura N (2009) The first octahedral cluster complexes with terminal formate ligands: synthesis, structure, and properties of K4[Re6S8(HCOO)6] and Cs4[Re6S8(HCOO)6]. Inorg Chem 48:2309–2315

    CAS  PubMed  Google Scholar 

  61. Dorson F, Molard Y, Cordier S, Fabre B, Efremova O, Rondeau D, Mironov Y, Cîrcu V, Naumov N, Perrin C (2009) Selective functionalisation of Re6 cluster anionic units: from hexa-hydroxo [Re6Q8(OH)6]4− (Q = S, Se) to neutral trans-[Re6Q8L4L′2] hybrid building blocks. Dalton Trans:1297–1299

    Google Scholar 

  62. Edwards JA, McDonald R, Szczepura LF (2015) Crystal structure of octa-μ3-selenido-(p-toluenesulfonato-κO)pentakis(triethylphosphane-κP)-octahedro-hexarhenium(III) p-toluenesulfonate dichloromethane disolvate. Acta Cryst E71:m158–m159

    Google Scholar 

  63. Templeton JN (2006) Progress towards the synthesis of site-differentiated hexanuclear molybdenum and rhenium clusters containing sulfur donor ligands. Dissertation, Illinois State University, Normal

    Google Scholar 

  64. Edwards JA (2008) Synthesis, characterization, and reactivity studies of hexanuclear rhenium cluster complexes with oxygen and sulfur donor ligands. Dissertation, Illinois State University, Normal

    Google Scholar 

  65. McIndoe SJ, Dyson PJ (2000) Transition metal carbonyl cluster chemistry. CRC Press, Amsterdam

    Google Scholar 

  66. Orto PJ, Nichol GS, Wang R, Zheng Z (2007) Cluster carbonyls of the [Re63-Se)8]2+ core. Inorg Chem 46:8436–8438

    CAS  PubMed  Google Scholar 

  67. Orto PJ, Nichol GS, Okumura N, Evans DH, Arratia-Peréz R, Ramirez-Tagle R, Wang R, Zheng Z (2008) Cluster carbonyls of the [Re63-Se)8]2+ core: synthesis, structural characterization, and computational analysis. Dalton Trans 6:4247–4253

    Google Scholar 

  68. Durham JL, Wilson WB, Huh DN, McDonald R, Szczepura LF (2015) Organometallic rhenium(III) chalcogenide clusters: coordination of N-heterocyclic carbenes. Chem Commun 51:10536–10538

    CAS  Google Scholar 

  69. Wilson WB (2015) Synthesis, characterization, and reactivity of hexarhenium selenide cluster complexes containing carbon-coordinating ligands. Dissertation, Illinois State University, Normal

    Google Scholar 

  70. Bain RL, Shriver DF, Ellis DE (2001) Extended materials based on the [Mo6Cl8]4+ building block bridged by 4,4′-bipyridine. Inorg Chim Acta 325:171–174

    CAS  Google Scholar 

  71. Robinson LM, Shriver DF (1996) Synthesis and photophysical properties of polymer-bound hexanuclear molybdenum clusters. J Coord Chem 37:119–129

    CAS  Google Scholar 

  72. Méry D, Ruiz J, Nlate S, Astruc D, Cordier S, Kirakci K, Perrin C (2005) The simple hexapyridine cluster [Mo6Br8Py6][OSO2CF3]4 and substituted hexapyridine clusters including a cluster-cored polyolefin dendrimer. Z Anorg Allg Chem 631:2746–2750

    Google Scholar 

  73. Méry D, Plault L, Ornelas C, Ruiz J, Nlate S, Astruc D, Blais J-C, Rodrigues J, Cordier S, Kirakci K, Perrin C (2006) From simple monopyridine clusters [Mo6Br13(Py-R)][n-Bu4N] and hexapyridine clusters [Mo6X8(Py-R)6][OSO2CF3]4 (X = Br or I) to cluster-cored organometallic stars, dendrons, and dendrimers. Inorg Chem 45:1156–1167

    PubMed  Google Scholar 

  74. Méry D, Ornelas C, Daniel M-C, Ruiz J, Rodrigues J, Astruc D, Cordier S, Kirakci K, Perrin C (2005) Mo6Br8-cluster-cored organometallic stars and dendrimers. C R Chim 8:1789–1797

    Google Scholar 

  75. Adamenko OA, Lukova GV, Golubeva ND, Smirnov VA, Boiko GN, Pomogailo AD, Uflyand IE (2001) Synthesis, structure, and physicochemical properties of [Mo6Cl8]4+-containing clusters. Dokl Phys Chem 381:275–278

    Google Scholar 

  76. Sokolov MN, Mihailov MA, Peresypkina EV, Brylev KA, Kitamura N, Fedin VP (2011) Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2− (X = Br, I). Dalton Trans 40:6375–6377

    CAS  PubMed  Google Scholar 

  77. Kirakci K, Kubát P, Dušek M, Fejfarová K, Šícha V, Mosinger J, Lang K (2012) A highly luminescent hexanuclear molybdenum cluster – a promising candidate toward photoactive materials. Eur J Inorg Chem 2012:3107–3111

    CAS  Google Scholar 

  78. Kirakci K, Kubát P, Langmaier J, Polívka T, Fuciman M, Fejfarová K, Lang K (2013) A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I). Dalton Trans 42:7224–7232

    CAS  PubMed  Google Scholar 

  79. Kirakci K, Fejfarová K, Kučeraková M, Lang K (2014) Hexamolybdenum cluster complexes with pyrene and anthracene carboxylates: ultrabright red emitters with the antenna effect. Eur J Inorg Chem 2014:2331–2336

    CAS  Google Scholar 

  80. Kirakci K, Kubát P, Fejfarová K, Martinčík J, Nikl M, Lang K (2016) X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: a new class of nanoscintillators. Inorg Chem 55:803–809

    CAS  PubMed  Google Scholar 

  81. Kirakci K, Šícha V, Holub J, Kubát P, Lang K (2014) Luminescent hydrogel particles prepared by self-assembly of β-cyclodextrin polymer and octahedral molybdenum cluster complexes. Inorg Chem 53:13012–13018

    CAS  PubMed  Google Scholar 

  82. Bůžek D, Hynek J, Kučeráková M, Kirakci K, Demel J, Lang K (2016) MoII cluster complex-based coordination polymer as an efficient heterogeneous catalyst in the Suzuki-Miyaura coupling reaction. Eur J Inorg Chem 2016:4668–4673

    Google Scholar 

  83. Akagi S, Fujii S, Horiguchi T, Kitamura N (2017) pK a(L ) dependences of structural, electrochemical, and photophysical properties of octahedral hexamolybdenum(II) clusters: [Mo6 X 8 L 6]2− (X = Br or I; L = carboxylate). J Clust Sci 28:757–772

    CAS  Google Scholar 

  84. Fujii S, Horiguchi T, Akagi S, Kitamura N (2016) Quasi-one-step six-electron electrochemical reduction of an octahedral hexanuclear molybdenum(II) cluster. Inorg Chem 55:10259–10266

    CAS  PubMed  Google Scholar 

  85. Mikhailov MA, Brylev KA, Abramov PA, Sakuda E, Akagi S, Ito A, Kitamura N, Sokolov MN (2016) Synthetic tuning of redox, spectroscopic, and photophysical properties of {Mo6I8}4+ core cluster complexes by terminal carboxylate ligands. Inorg Chem 55:8437–8445

    CAS  PubMed  Google Scholar 

  86. Akagi S, Horiguchi T, Fujii S, Kitamura N (2019) Terminal ligand (L) effects on zero-magnetic-field splitting in the excited triplet states of [{Mo6Br8}L6]2− (L = aromatic carboxylates). Inorg Chem 58:703–714

    CAS  PubMed  Google Scholar 

  87. Molard Y, Dorson F, Cîrcu V, Roisnel T, Artzner F, Cordier S (2010) Clustomesogens: liquid crystal materials containing transition-metal clusters. Angew Chem Int Ed 49:3351–3355

    CAS  Google Scholar 

  88. Amela-Cortes M, Molard Y, Paofai S, Desert A, Duvail J-L, Naumov NG, Cordier S (2016) Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M6Qi 8La 6]n− octahedral nano-building blocks. Dalton Trans 45:237–245

    CAS  PubMed  Google Scholar 

  89. Beltran A, Mikhailov M, Sokolov MN, Pérez-Laguna V, Rezusta A, Revillo MJ, Galindo F (2016) A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of Staphylococcus aureus. J Mater Chem B 4:5975–5979

    CAS  PubMed  Google Scholar 

  90. Kirakci K, Zelenka J, Rumlová M, Martinčík J, Nikl M, Ruml T, Lang K (2018) Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J Mater Chem B 6:4301–4307

    CAS  PubMed  Google Scholar 

  91. Prokopuk N, Weinert CS, Siska DP, Stern CL, Shriver DF (2000) Hydrogen-bonding hexamolybdenum clusters: formation of inorganic-organic networks. Angew Chem Int Ed 112:3450–3453

    Google Scholar 

  92. Gorman CB, Su WY, Jiang H, Watson CM, Boyle P (1999) Hybrid organic–inorganic, hexa-arm dendrimers based on an Mo6Cl8 core. Chem Commun 10:877–878

    Google Scholar 

  93. Mikhailov MA, Brylev KA, Virovets AV, Gallyamov MR, Novozhilova I, Sokolov MN (2016) Complexes of {Mo6I8} with nitrophenolates: synthesis and luminescence. New J Chem 40:1162–1168

    CAS  Google Scholar 

  94. Johnston DH, Gaswick DC, Lonergan MC, Stern CL, Shriver DF (1992) Preparation of bis(tetrabutylammonium) octa(μ 3-chloro)hexakis(trifluoromethanesulfonato)-octahedro-hexamolybdate(2-), (Bu4N)2[Mo6Cli 8(CF3SO3)a 6]: a versatile starting material for substituted Mo(II) clusters containing the [Mo6Cl8]4+ core. Inorg Chem 31:1869–1873

    CAS  Google Scholar 

  95. Efremova OA, Vorotnikov YA, Brylev KA, Vorotnikova NA, Novozhilov IN, Kuratieva NV, Edeleva MV, Benoit DM, Kitamura N, Mironov YV, Shestopalov MA, Sutherland AJ (2016) Octahedral molybdenum cluster complexes with aromatic sulfonate ligands. Dalton Trans 45:15427–15435

    CAS  PubMed  Google Scholar 

  96. Mikhailov MA, Gushchin AL, Gallyamov MR, Virovets AV, Sokolov MN, Sheven DG, Pervukhin VV (2017) Tosylate cluster complexes (Bu4N)26I8(O3SC6H4CH3)6] (M = Mo, W). Russ J Coord Chem 43:172–180

    CAS  Google Scholar 

  97. Fuhrmann A-D, Seyboldt A, Schank A, Zitzer G, Speiser B, Enseling D, Jüstel T, Meyer H-J (2017) Luminescence quenching of ligand-substituted molybdenum and tungsten halide clusters by oxygen and their oxidation electrochemistry. Eur J Inorg Chem 2017:4259–4266

    CAS  Google Scholar 

  98. Braack P, Simsek MK, Preetz W (1998) Darstellung, kristallstrukturen und schwingungsspektren von [(Mo6Xi 8)Ya 6]2−; Xi = Cl, Br; Ya = NO3, NO2. Z Anorg Allg Chem 624:375–380

    CAS  Google Scholar 

  99. Efremova OA, Shestopalov MA, Chirtsova NA, Smolentsev AI, Mironov YV, Kitamura N, Brylev KA, Sutherland AJ (2014) A highly emissive inorganic hexamolybdenum cluster complex as a handy precursor for the preparation of new luminescent materials. Dalton Trans 43:6021–6025

    CAS  PubMed  Google Scholar 

  100. Szczepura LF, Ooro BA, Wilson SR (2002) Synthesis of hexanuclear molybdenum clusters containing phosphine oxide ligands. J Chem Soc Dalton Trans 16:3112–3116

    Google Scholar 

  101. Saito T, Nishida M, Yamagata T, Yamagata Y, Yamaguchi Y (1986) Synthesis of hexanuclear molybdenum cluster alkyl complexes coordinated with trialkylphosphines: crystal structures of trans-[(Mo6Cl8)Cl4{P(nC4H9)3}2] and all-trans-[(Mo6Cl8)Cl2(C2H5)2{P(nC4H9)3}2]•C6H5CH3. Inorg Chem 25:1111–1117

    Google Scholar 

  102. Mikhaylov MA, Abramov PA, Komarov VY, Sokolov MN (2017) Cluster aqua/hydroxocomplexes supporting extended hydrogen bonding networks. Preparation and structure of a unique series of cluster hydrates [Mo6I8(OH)4(H2O)2]·nH2O (n = 2, 12, 14). Polyhedron 122:241–246

    CAS  Google Scholar 

  103. Vorotnikov YA, Efremova OA, Novozhilov IN, Yanshole VV, Kuratieva NV, Brylev KA, Kitamura N, Mironov YV, Shestopalov MA (2017) Hexaazide octahedral molybdenum cluster complexes: synthesis, properties and the evidence of hydrolysis. J Mol Struct 1134:237–243

    CAS  Google Scholar 

  104. Schoonover JR, Zietlow TC, Clark DL, Heppert JA, Chisholm MH, Gray HB, Sattelberger AP, Woodruff WH (1996) Resonance raman spectra of [M6X8Y6]2− cluster complexes (M = Mo, W; X, Y = Cl, Br, I). Inorg Chem 35:6606–6613

    CAS  PubMed  Google Scholar 

  105. Szczepura LF, Ketcham KA, Ooro BA, Edwards JA, Templeton JN, Cedeño DL, Jircitano AJ (2008) Synthesis and study of hexanuclear molybdenum clusters containing thiolate ligands. Inorg Chem 47:7271–7278

    CAS  PubMed  Google Scholar 

  106. Szczepura LF, Edwards JA, Cedeno DL (2009) Luminescent properties of hexanuclear molybdenum(II) chloride clusters containing thiolate ligands. J Clust Sci 20:105–112

    CAS  Google Scholar 

  107. Sokolov MN, Mikhailov MA, Virovets AV, Brylev KA, Bredikhin RA, Maksimov AM, Platonov VE, Fedin VP (2013) Synthesis, structure, and luminescence of the octahedral molybdenum cluster [Mo6I8(SC6F4H)6]2−. Russ Chem Bull 62:1764–1767

    CAS  Google Scholar 

  108. Yamagata T, Okiyama H, Imoto H, Saito T (1997) trans-[(Mo6Cl8)(C7H7)4{P(n-C4H9)3}2] and trans-[(Mo6Cl8)(C8H5)4{P(n-C5H11)3}2]·2C7H8. Acta Cryst C53:859–862

    CAS  Google Scholar 

  109. Sokolov MN, Mikhailov MA, Brylev KA, Virovets AV, Vicent C, Kompankov NB, Kitamura N, Fedin VP (2013) Alkynyl complexes of high-valence clusters. Synthesis and luminescence properties of [Mo6I8(C≡CC(O)OMe)6]2−, the first complex with exclusively organometallic outer ligands in the family of octahedral {M6X8} clusters. Inorg Chem 52:12477–12481

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CHE RUI-1401686 and RUI-0957729) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa F. Szczepura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szczepura, L.F., Soto, E. (2019). Exploring the Breadth of Terminal Ligands Coordinated in [Mo6X8]4+- and [Re6Q8]2+-Based Cluster Complexes. In: Halet, JF. (eds) Ligated Transition Metal Clusters in Solid-state Chemistry . Structure and Bonding, vol 180. Springer, Cham. https://doi.org/10.1007/430_2019_32

Download citation

Publish with us

Policies and ethics