Skip to main content

The Covalent Bond Classification Method and Its Application to Compounds That Feature 3-Center 2-Electron Bonds

  • Chapter
  • First Online:
The Chemical Bond III

Part of the book series: Structure and Bonding ((STRUCTURE,volume 171))

Abstract

This article provides a means to classify and represent compounds that feature 3-center 2-electron (3c–2e) interactions according to whether (1) the two electrons are provided by one or by two atoms; (2) the central bridging atom provides two, one, or zero electrons; and (3) the interaction is open or closed. Class I 3c–2e bonds are defined as those in which two atoms each contribute one electron to the 3-center orbital, while Class II 3c–2e bonds are defined as systems in which the pair of electrons are provided by a single atom. The use of appropriate structure-bonding representations enables the [ML l X x Z z ] covalent bond classification of the element of interest to be evaluated. This approach is of considerable benefit in predicting metal–metal bond orders that are in accord with theory for dimetallic compounds that feature bridging hydride and carbonyl ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is interesting to note that the bridged structure of B2H6 was first proposed in 1943, 27 years after Lewis’ introduction of the 2c–2e bond and only 3 years prior to his death; see [57].

  2. 2.

    Kossel also recognized the tendency for atoms to form ions with the adjacent noble gas configuration but did not extend this concept to the formation of molecules; see [10].

  3. 3.

    For examples of textbooks that employ the classification of ligands as L, X, or Z type, see [1824].

  4. 4.

    The formal charge is the charge remaining on an atom when all ligands are removed homolytically. See [17].

  5. 5.

    The notion of using an arrow to represent donation of electron density from a bond to another atom was first introduced by Walsh to describe the bonding in B2H6; see [31].

  6. 6.

    For other examples in which 3c–2e bonding is represented as donation of a M–M bonding pair of electrons to Au+, see [39].

  7. 7.

    Another closely related species is the hydride derivative, [([IPr]Au)2H]+, in which a gold center is formally replaced by hydrogen and which possesses an Au–Au distance of 2.701 Å. See [41, 42].

  8. 8.

    For a highlight of this article, see [70].

  9. 9.

    For a discussion of the bonding in B5H9, see [9092].

  10. 10.

    It is pertinent to note that, in contrast to B5H9, the iron and cobalt compounds have additional valence electrons such that they could support additional 2c–2e bonds. For such a situation, the iron and cobalt compounds would be, respectively, categorized as ML3X4 and ML2X5, which are much less common than ML4X2 and ML3X3 for these elements.

  11. 11.

    It should be emphasized that not all M–H–Y interactions must be described as 3c–2e bonds because some are better represented as 3c–4e “hydrogen bond” interactions. See, e.g., [97].

  12. 12.

    Compounds that feature coordination of Ge–H and Sn–H bonds have also been investigated; see, e.g., [112].

  13. 13.

    Note that the hypervalent representation of the silicon of {[PhBCH2CH2PPh2]Ru}2(μ-SiH6) is drawn for convenience.

  14. 14.

    Although the hapto “ηx” notation [178] is often used to describe the coordination mode of borohydride ligands [175177], such notation is strictly inappropriate because ηx refers to the number of contiguous atoms that are attached to a specific element [179]. If the atoms are not contiguous, as in borohydride, the kappa “κx” notation [180] should be used instead.

  15. 15.

    Note that alternative structure-bonding representations involving donation of electron density from a B–H bond of anionic [BH4] to cationic M+ can also be drawn. Such representations, however, are equivalent to those shown in Fig. 44, which do not portray formal charges.

  16. 16.

    This view of the bonding in agostic compounds is necessarily simplistic. For more detailed discussions, see [188191].

  17. 17.

    Compounds with triply bridging PF3 ligands are also known; see, e.g., [203205]; for an early speculation of a complex with a bridging PR3 ligand, see [206]; for compounds with asymmetrically bridging PR3 ligands, see [207210]; for calculations on hypothetical bridging PF3 complexes, see [211].

  18. 18.

    In addition to bridging in a symmetric manner, carbonyl ligands are also known to adopt bent semibridging and linear semibridging coordination modes; the bonding in these complexes is highly varied and is not part of the scope of the present article; for key references, see [228237].

  19. 19.

    A subsequent higher-quality structure revealed an Fe–Fe distance of 2.523(1) Å; see [242].

  20. 20.

    Although some theoretical articles have suggested the possibility of a weak direct Fe–Fe attractive interaction in Fe2(CO)9, the interpretation has been questioned [271].

  21. 21.

    We are aware of only two textbooks that discuss the absence of a direct Fe–Fe bond in Fe2(CO)9. Of these, one does not include a drawing of the molecule [272], while the other draws the molecule both without an Fe–Fe bond and also with a dotted FeċċċFe bond [273]; however, there is no discussion as to how the latter description should be employed with respect to electron counting purposes. Also of note, [CpM(CO)(μ-CO)]2 has been represented on the cover of a textbook, without including a M–M bond, but the bonding was not discussed [274].

  22. 22.

    Co2(CO)8 exists as an equilibrium between bridged, (CO)3Co(μ-CO)2Co(CO)3, and non-bridged isomers, (CO)4Co–Co(CO)4, of which the former is the major isomer.

  23. 23.

    Experimental charge-density studies are also in accord with the absence of a direct Co–Co bond in the bridged form of Co2(CO)8; see [276].

  24. 24.

    For other articles that describe the absence of M–M bonds in other carbonyl bridged compounds, for a similar reason, see [287].

  25. 25.

    The 2π* orbitals of CO which are perpendicular to the Fe–Fe axis are neglected from the analysis on the basis that there is little overlap with the metal d-orbitals.

  26. 26.

    For discussion pertaining to bonding in [CpFe(CO)(μ-CO)]2, see [293].

  27. 27.

    For example, the B…B distance of 2.11 Å is ca. 0.4 Å longer than the value in catBBcat derivatives; see [298].

  28. 28.

    The structure-bonding representation for the zirconium compound is one in which only one of the oxygen lone pairs of each aryloxide ligand participates in π-donation; additional π-donation would result in an 18-electron ML6X2 classification.

  29. 29.

    For other calculations on this system which propose a Mn–Mn bond, see [335].

References

  1. Lewis GN (1916) J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  2. Lewis GN (1923) Valence and the structure of atoms and molecules. The Chemical Catalog, New York

    Google Scholar 

  3. Lewis GN (1933) J Chem Phys 1:17–28

    Article  CAS  Google Scholar 

  4. Gillespie RJ, Robinson EA (2007) J Comput Chem 28:87–97

    Article  CAS  Google Scholar 

  5. Longuet-Higgins HC, Bell RP (1943) J Chem Soc, 250–255

    Google Scholar 

  6. Bell RP, Longuet-Higgins HC (1945) Proc R Soc London, Ser A 183:357–374

    Article  CAS  Google Scholar 

  7. Laszlo P (2000) Angew Chem Int Ed Engl 39:2071–2072

    Article  CAS  Google Scholar 

  8. Langmuir I (1921) Science 54:59–67

    Article  CAS  Google Scholar 

  9. Langmuir I (1919) Proc Natl Acad Sci U S A 5:252–259

    Article  CAS  Google Scholar 

  10. Kossel W (1916) Ann Phys 49:229–362

    Article  CAS  Google Scholar 

  11. Mingos DMP (2004) J Organomet Chem 689:4420–4436

    Article  CAS  Google Scholar 

  12. Jensen WB (2005) J Chem Educ 82:28

    Article  CAS  Google Scholar 

  13. Green JC, Green MLH, Parkin G (2012) Chem Commun 48:11481–11503

    Article  CAS  Google Scholar 

  14. Green MLH (1995) J Organomet Chem 500:127–148

    Article  CAS  Google Scholar 

  15. Parkin G (2006) Chapter 1. In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III, vol 1. Elsevier, Oxford

    Google Scholar 

  16. Green MLH, Parkin G (2014) J Chem Educ 91:807–816

    Article  CAS  Google Scholar 

  17. Parkin G (2006) J Chem Educ 83:791–799

    Article  CAS  Google Scholar 

  18. Jean Y (2005) Molecular orbitals of transition metal complexes. Oxford University Press, London

    Google Scholar 

  19. Astruc D (2007) Organometallic chemistry and catalysis. Springer, New York

    Google Scholar 

  20. Spessard GO, Miessler GL (1996) Organometallic Chemistry. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  21. Miessler GL, Fischer PJ, Tarr DA (2014) Inorganic chemistry, 5th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  22. Crabtree RH (2009) The organometallic chemistry of the transition metals, 5th edn. Wiley-Interscience, Hoboken

    Google Scholar 

  23. Hartwig J (2010) Organotransition metal chemistry: from bonding to catalysis. University Science Books, Sausalito

    Google Scholar 

  24. Seddon EA, Seddon KR (1984) Chapter 2. In: The chemistry of ruthenium. Elsevier, New York

    Google Scholar 

  25. Amgoune A, Bourissou D (2011) Chem Commun 47:859–871

    Article  CAS  Google Scholar 

  26. Braunschweig H, Dewhurst RD (2011) Dalton Trans 40:549–558

    Article  CAS  Google Scholar 

  27. Haaland A (1989) Angew Chem Int Ed Engl 28:992–1007

    Google Scholar 

  28. Parkin G (2006) Organometallics 25:4744–4747

    Article  CAS  Google Scholar 

  29. Landry, VK, Pang, K, Quan, SM, Parkin, G (2007) Dalton Trans 820–824

    Google Scholar 

  30. Bau R, Teller RG, Kirtley SW, Koetzle TF (1979) Acc Chem Res 12:176–183

    Article  CAS  Google Scholar 

  31. Walsh, AD (1947) J Chem Soc 89–92

    Google Scholar 

  32. Berry M, Cooper NJ, Green MLH, Simpson SJ (1980) J Chem Soc Dalton Trans 29–41

    Google Scholar 

  33. Jansen M (1987) Angew Chem Int Ed Engl 26:1098–1110

    Article  Google Scholar 

  34. Pyykkö P (1997) Chem Rev 97:597–636

    Article  Google Scholar 

  35. Sculfort S, Braunstein P (2011) Chem Soc Rev 40:2741–2760

    Article  CAS  Google Scholar 

  36. Carvajal MA, Alvarez S, Novoa JJ (2004) Chem Eur J 10:2117–2132

    Article  CAS  Google Scholar 

  37. Schmidbaur H, Schier A (2015) Angew Chem Int Ed 54:746–784

    Article  CAS  Google Scholar 

  38. Robilotto TJ, Bacsa J, Gray TG, Sadighi JP (2012) Angew Chem Int Ed 51:12077–12080

    Article  CAS  Google Scholar 

  39. Hall KP, Mingos DMP (1984) Prog Inorg Chem 32:237–325

    Article  CAS  Google Scholar 

  40. Galassi R, Poli R, Quadrelli EA, Fettinger JC (1997) Inorg Chem 36:3001–3007

    Article  CAS  Google Scholar 

  41. Esterhuysen MW, Raubenheimer HG (2003) Acta Crystallogr C59:m286–m288

    CAS  Google Scholar 

  42. Tsui EY, Müller P, Sadighi JP (2008) Angew Chem Int Ed Engl 47:8937–8940

    Article  CAS  Google Scholar 

  43. Kubas GJ (2001) Metal dihydrogen and σ-bond complexes: structure, theory, and reactivity. Kluwer Academic/Plenum, New York

    Google Scholar 

  44. Kubas GJ (2001) J Organomet Chem 635:37–68

    Article  CAS  Google Scholar 

  45. Kubas GJ (2007) Proc Natl Acad Sci U S A 104:6901–6907

    Article  CAS  Google Scholar 

  46. Kubas GJ (2007) Chem Rev 107:4152–4205

    Article  CAS  Google Scholar 

  47. Kubas GJ (2009) J Organomet Chem 694:2648–2653

    Article  CAS  Google Scholar 

  48. Gordon JC, Kubas GJ (2010) Organometallics 29:4682–4701

    Article  CAS  Google Scholar 

  49. Kubas GJ (2014) J Organomet Chem 751:33–49

    Article  CAS  Google Scholar 

  50. Dutta S (2011) C R Chim 14:1029–1053

    Article  CAS  Google Scholar 

  51. Crabtree RH (1993) Angew Chem Int Ed Engl 32:789–805

    Article  Google Scholar 

  52. Perutz RN, Sabo-Etienne S (2007) Angew Chem Int Ed 46:2578–2592

    Article  CAS  Google Scholar 

  53. McGrady GS, Guilera G (2003) Chem Soc Rev 32:383–392

    Article  CAS  Google Scholar 

  54. Crabtree RH, Hamilton DG (1988) Adv Organomet Chem 28:299–338

    CAS  Google Scholar 

  55. Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) J Am Chem Soc 106:451–452

    Article  CAS  Google Scholar 

  56. Upmacis RK, Gadd GE, Poliakoff M, Simpson MB, Turner JJ, Whyman R, Simpson AF (1985) J Chem Soc Chem Commun 27–30

    Google Scholar 

  57. Matthews SL, Heinekey DM (2006) J Am Chem Soc 128:2615–2620

    Article  CAS  Google Scholar 

  58. Matthews SL, Pons V, Heinekey DM (2005) J Am Chem Soc 127:850–851

    Article  CAS  Google Scholar 

  59. Rybtchinski B, Milstein D (1999) Angew Chem Int Ed 38:870–883

    Article  Google Scholar 

  60. Etienne M, Weller AS (2014) Chem Soc Rev 43:242–259

    Article  CAS  Google Scholar 

  61. Brayshaw SK, Green JC, Kociok-Kohn G, Sceats EL, Weller AS (2006) Angew Chem Int Ed 45:452–456

    Article  CAS  Google Scholar 

  62. Brayshaw SK, Sceats EL, Green JC, Weller AS (2007) Proc Natl Acad Sci U S A 104:6921–6926

    Article  CAS  Google Scholar 

  63. Chaplin AB, Weller AS (2013) J Organomet Chem 730:90–94

    Article  CAS  Google Scholar 

  64. Chaplin AB, Green JC, Weller AS (2011) J Am Chem Soc 133:13162–13168

    Article  CAS  Google Scholar 

  65. Sparkes HA, Kramer T, Brayshaw SK, Green JC, Weller AS, Howard JAK (2011) Dalton Trans 40:10708–10718

    Article  CAS  Google Scholar 

  66. Nikonov GI (2003) Angew Chem Int Ed 42:1335–1337

    Article  CAS  Google Scholar 

  67. Sherer EC, Kinsinger CR, Kormos BL, Thompson JD, Cramer CJ (2002) Angew Chem Int Ed 41:1953–1956

    Article  CAS  Google Scholar 

  68. Aullon G, Lledos A, Alvarez S (2002) Angew Chem Int Ed 41:1956–1959

    Article  CAS  Google Scholar 

  69. Chen WZ, Shimada S, Tanaka M (2002) Science 295:308–310

    Article  CAS  Google Scholar 

  70. Crabtree RH (2002) Science 295:288–289

    Article  CAS  Google Scholar 

  71. Gualco P, Amgoune A, Miqueu K, Ladeira S, Bourissou D (2011) J Am Chem Soc 133:4257–4259

    Article  CAS  Google Scholar 

  72. Berthon-Gelloz G, de Bruin B, Tinant B, Marko IE (2009) Angew Chem Int Ed 48:3161–3164

    Article  CAS  Google Scholar 

  73. Takagi N, Sakaki S (2012) J Am Chem Soc 134:11749–11759

    Article  CAS  Google Scholar 

  74. Liu HJ, Raynaud C, Eisenstein O, Tilley TD (2014) J Am Chem Soc 136:11473–11482

    Article  CAS  Google Scholar 

  75. Gibson DH (1996) Chem Rev 96:2063–2095

    Article  CAS  Google Scholar 

  76. Leitner W (1996) Coord Chem Rev 153:257–284

    Article  CAS  Google Scholar 

  77. Yin X, Moss JR (1999) Coord Chem Rev 181:27–59

    Article  CAS  Google Scholar 

  78. English NJ, El-Hendawy MM, Mooney DA, MacElroy JMD (2014) Coord Chem Rev 269:85–95

    Article  CAS  Google Scholar 

  79. Aresta M, Dibenedetto A (2007) Dalton Trans 2975–2992

    Google Scholar 

  80. Castro-Rodriguez, I, Meyer, K (2006) Chem Commun 1353–1368

    Google Scholar 

  81. Castro-Rodriguez I, Nakai H, Zakharov LN, Rheingold AL, Meyer K (2004) Science 305:1757–1759

    Article  CAS  Google Scholar 

  82. Castro-Rodriguez I, Meyer K (2005) J Am Chem Soc 127:11242–11243

    Article  CAS  Google Scholar 

  83. Lee CH, Laitar DS, Mueller P, Sadighi JP (2007) J Am Chem Soc 129:13802–13803

    Article  CAS  Google Scholar 

  84. Kilpatrick AFR, Green JC, Cloke FGN (2015) Organometallics 34:4816–4829

    Article  CAS  Google Scholar 

  85. Kilpatrick AFR, Green JC, Cloke FGN (2015) Organometallics 34:4830–4843

    Article  CAS  Google Scholar 

  86. Kilpatrick AFR, Green JC, Cloke FGN, Tsoureas N (2013) Chem Commun 49:9434–9436

    Article  CAS  Google Scholar 

  87. Greatrex R, Greenwood NN, Rankin DWH, Robertson HE (1987) Polyhedron 6:1849–1858

    Article  CAS  Google Scholar 

  88. Hedberg K, Jones ME, Schomaker V (1952) Proc Natl Acad Sci U S A 38:679–686

    Article  CAS  Google Scholar 

  89. Dulmage WJ, Lipscomb WN (1952) Acta Cryst 5:260–264

    Article  CAS  Google Scholar 

  90. Lipscomb WN (1972) Pure Appl Chem 29:493–511

    CAS  Google Scholar 

  91. Lipscomb WN (1973) Acc Chem Res 6:257–262

    Article  CAS  Google Scholar 

  92. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, New York, pp 327–332

    Book  Google Scholar 

  93. Greenwood NN, Savory CG, Grimes RN, Sneddon LG, Davison A, Wreford SS (1974) J Chem Soc Chem Commun 718–718

    Google Scholar 

  94. Weiss R, Bowser JR, Grimes RN (1978) Inorg Chem 17:1522–1527

    Article  CAS  Google Scholar 

  95. Venable TL, Sinn E, Grimes RN (1984) J Chem Soc Dalton Trans 2275–2279

    Google Scholar 

  96. Miller VR, Weiss R, Grimes RN (1977) J Am Chem Soc 99:5646–5651

    Article  CAS  Google Scholar 

  97. Brammer L (2003) Dalton Trans 3145–3157

    Google Scholar 

  98. Hall C, Perutz RN (1996) Chem Rev 96:3125–3146

    Article  CAS  Google Scholar 

  99. Crabtree RH (1995) Chem Rev 95:987–1007

    Article  CAS  Google Scholar 

  100. Young RD (2014) Chem Eur J 20:12704–12718

    Article  CAS  Google Scholar 

  101. Corey JY (2011) Chem Rev 111:863–1071

    Article  CAS  Google Scholar 

  102. Corey JY, Braddock-Wilking J (1999) Chem Rev 99:175–292

    Article  CAS  Google Scholar 

  103. Lin Z (2002) Chem Soc Rev 31:239–245

    Article  CAS  Google Scholar 

  104. Nikonov GI (2005) Adv Organomet Chem 53:217–309

    CAS  Google Scholar 

  105. Alcaraz G, Sabo-Etienne S (2008) Coord Chem Rev 252:2395–2409

    Article  CAS  Google Scholar 

  106. Schubert U (1990) Adv Organomet Chem 30:151–187

    CAS  Google Scholar 

  107. Lachaize S, Sabo-Etienne S (2006) Eur J Inorg Chem 2115–2127

    Google Scholar 

  108. Scherer W, Meixner P, Barquera-Lozada JE, Hauf C, Obenhuber A, Brück A, Wolstenholme DJ, Ruhland K, Leusser D, Stalke D (2013) Angew Chem Int Ed 52:6092–6096

    Article  CAS  Google Scholar 

  109. Hauf C, Barquera-Lozada JE, Meixner P, Eickerling G, Altmannshofer S, Stalke D, Zell T, Schmidt D, Radius U, Scherer WZ (2013) Anorg Allg Chem 639:1996–2004

    Article  CAS  Google Scholar 

  110. Scherer W, Eickerling G, Tafipolsky M, McGrady GS, Sirsch P, Chatterton, NP (2006) Chem Commun 2986–2988

    Google Scholar 

  111. McGrady GS, Sirsch P, Chatterton NP, Ostermann A, Gatti C, Altmannshofer S, Herz V, Eickerling G, Scherer W (2009) Inorg Chem 48:1588–1598

    Article  CAS  Google Scholar 

  112. Handzlik J, Szymanska-Buzar T (2014) J Organomet Chem 769:136–143

    Article  CAS  Google Scholar 

  113. Evans DR, Drovetskaya T, Bau R, Reed CA, Boyd PDW (1997) J Am Chem Soc 119:3633–3634

    Article  CAS  Google Scholar 

  114. Castro-Rodriguez I, Nakai H, Gantzel P, Zakharov LN, Rheingold AL, Meyer K (2003) J Am Chem Soc 125:15734–15735

    Article  CAS  Google Scholar 

  115. Pike SD, Thompson AL, Algarra AG, Apperley DC, Macgregor SA, Weller AS (2012) Science 337:1648–1651

    Article  CAS  Google Scholar 

  116. Pike SD, Chadwick FM, Rees NH, Scott MP, Weller AS, Kramer T, Macgregor SA (2015) J Am Chem Soc 137:820–833

    Article  CAS  Google Scholar 

  117. Perutz RN, Turner JJ (1975) J Am Chem Soc 97:4791–4800

    Article  CAS  Google Scholar 

  118. Geftakis S, Ball GE (1998) J Am Chem Soc 120:9953–9954

    Article  CAS  Google Scholar 

  119. Lawes DJ, Darwish TA, Clark T, Harper JB, Ball GE (2006) Angew Chem Int Ed 45:4486–4490

    Article  CAS  Google Scholar 

  120. Lawes DJ, Geftakis S, Ball GE (2005) J Am Chem Soc 127:4134–4135

    Article  CAS  Google Scholar 

  121. Ball GE, Brookes CM, Cowan AJ, Darwish TA, George MW, Kawanami HK, Portius P, Rourke JP (2007) Proc Natl Acad Sci U S A 104:6927–6932

    Article  CAS  Google Scholar 

  122. Bernskoetter WH, Schauer CK, Goldberg KI, Brookhart M (2009) Science 326:553–556

    Article  CAS  Google Scholar 

  123. Young RD, Hill AF, Hillier W, Ball GE (2011) J Am Chem Soc 133:13806–13809

    Article  CAS  Google Scholar 

  124. Young RD, Lawes DJ, Hill AF, Ball GE (2012) J Am Chem Soc 134:8294–8297

    Article  CAS  Google Scholar 

  125. Cowan AJ, George MW (2008) Coord Chem Rev 252:2504–2511

    Article  CAS  Google Scholar 

  126. Calladine JA, Duckett SB, George MW, Matthews SL, Perutz RN, Torres O, Khuong QV (2011) J Am Chem Soc 133:2303–2310

    Article  CAS  Google Scholar 

  127. Calladine JA, Vuong KQ, Sun XZ, George MW (2009) Pure Appl Chem 81:1667–1675

    Article  CAS  Google Scholar 

  128. McNamara BK, Yeston JS, Bergman RG, Moore CB (1999) J Am Chem Soc 121:6437–6443

    Article  CAS  Google Scholar 

  129. Jones WD (2003) Acc Chem Res 36:140–146

    Article  CAS  Google Scholar 

  130. Bullock RM, Bende BR (2002) Isotope methods in homogeneous catalysis. In: Horváth IT (ed) Encyclopedia of catalysis. Wiley, New York

    Google Scholar 

  131. Parkin G (2009) Acc Chem Res 42:315–325

    Article  CAS  Google Scholar 

  132. Parkin G (2007) J Label Compd Radiopharm 50:1088–1114

    Article  CAS  Google Scholar 

  133. Janak KE (2006) In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III, vol 1. Elsevier, Oxford

    Google Scholar 

  134. Gómez-Gallego M, Sierra MA (2011) Chem Rev 111:4857–4963

    Article  CAS  Google Scholar 

  135. Luo XL, Kubas GJ, Bryan JC, Burns CJ, Unkefer CJ (1994) J Am Chem Soc 116:10312–10313

    Article  CAS  Google Scholar 

  136. Yang J, White PS, Schauer CK, Brookhart M (2008) Angew Chem Int Ed 47:4141–4143

    Article  CAS  Google Scholar 

  137. Zuzek AA, Neary MC, Parkin G (2014) J Am Chem Soc 136:17934–17937

    Article  CAS  Google Scholar 

  138. Zuzek AA, Parkin G (2014) J Am Chem Soc 136:8177–8180

    Article  CAS  Google Scholar 

  139. Matthews SL, Pons V, Heinekey DM (2006) Inorg Chem 45:6453–6459

    Google Scholar 

  140. Zhang SL, Dobson GR, Brown TL (1991) J Am Chem Soc 113:6908–6916

    Article  CAS  Google Scholar 

  141. Kotz KT, Yang H, Snee PT, Payne CK, Harris CB (2000) J Organomet Chem 596:183–192

    Article  CAS  Google Scholar 

  142. Burkey TJ (1990) J Am Chem Soc 112:8329–8333

    Article  CAS  Google Scholar 

  143. Atheaux I, Delpech F, Donnadieu B, Sabo-Etienne S, Chaudret B, Hussein K, Barthelat JC, Braun T, Duckett SB, Perutz RN (2002) Organometallics 21:5347–5357

    Article  CAS  Google Scholar 

  144. Atheaux I, Donnadieu B, Rodriguez V, Sabo-Etienne S, Chaudret B, Hussein K, Barthelat JC (2000) J Am Chem Soc 122:5664–5665

    Article  CAS  Google Scholar 

  145. Ben Said R, Hussein K, Barthelat JC, Atheaux I, Sabo-Etienne S, Grellier M, Donnadieu B, Chaudret B (2003) Dalton Trans 4139–4146

    Google Scholar 

  146. Lipke MC, Tilley TD (2012) Angew Chem Int Ed Engl 51:11115–11121

    Article  CAS  Google Scholar 

  147. Shimoi M, Nagai S, Ichikawa M, Kawano Y, Katoh K, Uruichi M, Ogino H (1999) J Am Chem Soc 121:11704–11712

    Article  CAS  Google Scholar 

  148. Shimoi M, Katoh K, Uruichi M, Nagai S, Ogino H (1994) Syntheses and structures of transition metal complexes of lewis base adducts of borane and borylene. In: Kabalka GW (ed) Current topics in the chemistry of boron. The Royal Society of Chemistry, London, pp 293–296

    Google Scholar 

  149. Ariafard A, Amini MM, Azadmehr A (2005) J Organomet Chem 690:1147–1156

    Article  CAS  Google Scholar 

  150. Alcaraz G, Sabo-Etienne S (2010) Angew Chem Int Ed 49:7170–7179

    Article  CAS  Google Scholar 

  151. Piers WE (2000) Angew Chem Int Ed 39:1923–1925

    Article  CAS  Google Scholar 

  152. Bera B, Jagirdar BR (2011) Inorg Chim Acta 372:200–205

    Article  CAS  Google Scholar 

  153. Douglas TM, Chaplin AB, Weller AS (2008) J Am Chem Soc 130:14432–14433

    Article  CAS  Google Scholar 

  154. Nako AE, White AJP, Crimmin MR (2015) Dalton Trans 44:12530–12534

    Article  CAS  Google Scholar 

  155. Pörschke KR, Kleimann W, Tsay YH, Krüger C, Wilke G (1990) Chem Ber 123:1267–1273

    Article  Google Scholar 

  156. Arndt P, Spannenberg A, Baumann W, Burlakov VV, Rosenthal U, Becke S, Weiss T (2004) Organometallics 23:4792–4795

    Article  CAS  Google Scholar 

  157. Muraoka T, Ueno K (2010) Coord Chem Rev 254:1348–1355

    Article  CAS  Google Scholar 

  158. Ueno K, Yamaguchi T, Uchiyama K, Ogino H (2002) Organometallics 21:2347–2349

    Article  CAS  Google Scholar 

  159. Lin Z (2008) Struct Bond 130:123–148

    Article  CAS  Google Scholar 

  160. Pandey KK (2009) Coord Chem Rev 253:37–55

    Article  CAS  Google Scholar 

  161. Hartwig JF, Muhoro CN, He X, Eisenstein O, Bosque R, Maseras F (1996) J Am Chem Soc 118:10936–10937

    Article  CAS  Google Scholar 

  162. Schlecht S, Hartwig JF (2000) J Am Chem Soc 122:9435–9443

    Article  CAS  Google Scholar 

  163. Crestani MG, Muñoz-Hernández M, Arévalo A, Acosta-Ramírez A, García JJ (2005) J Am Chem Soc 127:18066–18073

    Article  CAS  Google Scholar 

  164. Parkin G (2010) Struct Bond 136:113–146

    Article  CAS  Google Scholar 

  165. Bortz M, Bau R, Schneider JJ, Mason SA (2001) J Clust Sci 12:285–291

    Article  CAS  Google Scholar 

  166. Albinati A, Venanzi LM (2000) Coord Chem Rev 200:687–715

    Article  Google Scholar 

  167. Petersen JL, Brown RK, Williams JM, McMullan RK (1979) Inorg Chem 18:3493–3498

    Article  CAS  Google Scholar 

  168. Nako AE, Tan QW, White AJP, Crimmin MR (2014) Organometallics 33:2685–2688

    Article  CAS  Google Scholar 

  169. Macchi P, Donghi D, Sironi A (2005) J Am Chem Soc 127:16494–16504

    Article  CAS  Google Scholar 

  170. Matito E, Solà M (2009) Coord Chem Rev 253:647–665

    Article  CAS  Google Scholar 

  171. Farrugia LJ, Macchi P (2012) Struct Bond 146:127–158

    Article  CAS  Google Scholar 

  172. Casey CP, Sakaba H, Hazin PN, Powell DR (1991) J Am Chem Soc 113:8165–8166

    Article  CAS  Google Scholar 

  173. Suzuki H, Omori H, Lee DH, Yoshida Y, Moro-oka Y (1988) Organometallics 7:2243–2245

    Article  CAS  Google Scholar 

  174. Koga N, Morokuma K (1993) J Mol Struct 300:181–189

    Article  CAS  Google Scholar 

  175. Marks TJ, Kolb JR (1977) Chem Rev 77:263–293

    Article  CAS  Google Scholar 

  176. Xu Z, Lin Z (1996) Coord Chem Rev 156:139–162

    Article  CAS  Google Scholar 

  177. Besora M, Lledós A (2008) Struct Bond 130:149–202

    Article  CAS  Google Scholar 

  178. Cotton FA (1968) J Am Chem Soc 90:6230–6232

    Article  CAS  Google Scholar 

  179. International Union of Pure and Applied Chemistry (2005) Nomenclature for inorganic chemistry, IR-10.2.5.1. RSC, London, p 216

    Google Scholar 

  180. Sloan TE, Busch DH (1978) Inorg Chem 17:2043–2047

    Article  CAS  Google Scholar 

  181. Brookhart M, Green MLH, Parkin G (2007) Proc Natl Acad Sci U S A 104:6908–6914

    Article  CAS  Google Scholar 

  182. Brookhart M, Green MLH, Wong LL (1988) Prog Inorganic Chem 36:1–124

    Article  CAS  Google Scholar 

  183. Brookhart M, Green MLH (1983) J Organomet Chem 250:395–408

    Article  CAS  Google Scholar 

  184. Dawoodi Z, Green MLH, Mtetwa VSB, Prout K (1982) J Chem Soc Chem Commun 802–803

    Google Scholar 

  185. Dawoodi, Z, Green MLH, Mtetwa VSB, Prout K, Schultz AJ, Williams JM, Koetzle TF (1986) J Chem Soc Dalton Trans 1629–1637

    Google Scholar 

  186. Dawoodi Z, Green MLH, Mtetwa VSB, Prout K (1982) J Chem Soc Chem Commun 1410–1411

    Google Scholar 

  187. Lee H, Desrosiers PJ, Guzei I, Rheingold AL, Parkin G (1998) J Am Chem Soc 120:3255–3256

    Article  CAS  Google Scholar 

  188. Scherer W, McGrady GS (2004) Angew Chem Int Ed 43:1782–1806

    Article  CAS  Google Scholar 

  189. Clot, E, Eisenstein, O (2004) Struct Bond 113, 1–36

    Google Scholar 

  190. Saβmannshausen J (2012) Dalton Trans 41:1919–1923

    Article  Google Scholar 

  191. Scherer W, Herz V, Hauf C (2012) Struct Bond 146:159–208

    Article  CAS  Google Scholar 

  192. Holton J, Lappert MF, Pearce R, Yarrow PIW (1983) Chem Rev 83:135–201

    Article  CAS  Google Scholar 

  193. Baik MH, Friesner RA, Parkin G (2004) Polyhedron 23:2879–2900

    Article  CAS  Google Scholar 

  194. Shin, JH, Parkin, G (1998) J Chem Soc Chem Commun 1273–1274

    Google Scholar 

  195. Braunstein P, Boag NM (2001) Angew Chem Int Ed 40:2427–2433

    Article  CAS  Google Scholar 

  196. Bursten BE, Cayton RH (1986) Organometallics 5:1051–1053

    Article  CAS  Google Scholar 

  197. Waymouth RW, Potter KS, Schaefer WP, Grubbs RH (1990) Organometallics 9:2843–2846

    Article  CAS  Google Scholar 

  198. Stults SD, Andersen RA, Zalkin A (1989) J Am Chem Soc 111:4507–4508

    Article  CAS  Google Scholar 

  199. Huffman JC, Streib WE (1971) Chem Commun 911–912

    Google Scholar 

  200. Ni C, Power PP (2009) Organometallics 28:6541–6545

    Article  CAS  Google Scholar 

  201. Werner H (2004) Angew Chem Int Ed 43:938–954

    Article  CAS  Google Scholar 

  202. Pechmann T, Brandt CD, Werner H (2004) Dalton Trans 959–966

    Google Scholar 

  203. Balch AL, Davis BJ, Olmstead MM (1993) Inorg Chem 32:3937–3942

    Article  CAS  Google Scholar 

  204. Balch AL, Davis BJ, Olmstead MM (1990) J Am Chem Soc 112:8592–8593

    Article  CAS  Google Scholar 

  205. Schinzel S, Muller R, Riedel S, Werner H, Kaupp M (2011) Chem Eur J 17:7228–7235

    Article  CAS  Google Scholar 

  206. Bender R, Braunstein P, Dedieu A, Dusausoy Y (1989) Angew Chem Int Ed Engl 28:923–925

    Article  Google Scholar 

  207. Murahashi T, Otani T, Okuno T, Kurosawa H (2009) Angew Chem Int Ed 39:537–540

    Article  Google Scholar 

  208. Leoni P, Pasquali M, Sommovigo M, Laschi F, Zanello P, Albinati A, Lianza F, Pregosin PS, Ruegger H (1993) Organometallics 12:1702–1713

    Article  CAS  Google Scholar 

  209. Budzelaar PHM, Vanleeuwen P, Roobeek CF, Orpen AG (1992) Organometallics 11:23–25

    Article  CAS  Google Scholar 

  210. Albinati A, Lianza F, Pasquali M, Sommovigo M, Leoni P, Pregosin PS, Ruegger H (1991) Inorg Chem 30:4690–4692

    Article  CAS  Google Scholar 

  211. Yang HQ, Li QS, Xie Y, King RB, Schaefer HF (2010) J Phys Chem A 114:8896–8901

    Article  CAS  Google Scholar 

  212. Sun H, Gu J, Zhang Z, Lin H, Ding F, Wang Q (2007) Angew Chem Int Ed 46:7498–7500

    Article  CAS  Google Scholar 

  213. Lescop C (2006) Actual Chim 30–33

    Google Scholar 

  214. Sauthier M, Le Guennic B, Deborde V, Toupet L, Halet JF, Reau R (2001) Angew Chem Int Ed 40:228–231

    Article  CAS  Google Scholar 

  215. Leca F, Sauthier M, Deborde V, Toupet L, Réau R (2003) Chem Eur J 9:3785–3795

    Article  CAS  Google Scholar 

  216. Leca F, Lescop C, Rodriguez-Sanz E, Costuas K, Halet JF, Réau R (2005) Angew Chem Int Ed 44:4362–4365

    Article  CAS  Google Scholar 

  217. Nohra B, Rodriguez-Sanz E, Lescop C, Réau R (2008) Chem Eur J 14:3391–3403

    Article  CAS  Google Scholar 

  218. Rodriguez-Sanz E, Lescop C, Réau R (2010) C R Chim 13:980–984

    Article  CAS  Google Scholar 

  219. Welsch S, Nohra B, Peresypkina EV, Lescop C, Scheer M, Réau R (2009) Chem Eur J 15:4685–4703

    Article  CAS  Google Scholar 

  220. Evans WJ, Greci MA, Ziller JW (1998) Chem Commun 2367–2368

    Google Scholar 

  221. Davenport TC, Tilley TD (2011) Angew Chem Int Ed 50:12205–12208

    Article  CAS  Google Scholar 

  222. Lorber C, Choukroun R, Vendier L (2008) Organometallics 27:5017–5024

    Article  CAS  Google Scholar 

  223. Beckwith JD, Tschinkl M, Picot A, Tsunoda M, Bachman R, Gabbai FP (2001) Organometallics 20:3169–3174

    Article  CAS  Google Scholar 

  224. Lin P, Clegg W, Harrington, RW, Henderson, RA (2005) Dalton Trans 2349–2351

    Google Scholar 

  225. Al-Mandhary MRA, Fitchett CM, Steel PJ (2006) Aust J Chem 59:307–314

    Article  CAS  Google Scholar 

  226. Hu Z, Gorun SM (2001) Inorg Chem 40:667–671

    Article  CAS  Google Scholar 

  227. Li XL, Meng XG, Xu SP (2009) Chin J Struct Chem 28:1619–1624

    CAS  Google Scholar 

  228. Crabtree RH, Lavin M (1986) Inorg Chem 25:805–812

    Article  CAS  Google Scholar 

  229. Colton R, McCormick MJ (1980) Coord Chem Rev 31:1–52

    Article  CAS  Google Scholar 

  230. Horwitz CP, Shriver DF (1984) Adv Organomet Chem 23:219–305

    CAS  Google Scholar 

  231. Cotton FA (1976) Prog Inorg Chem 21:1–28

    Article  CAS  Google Scholar 

  232. Morris-Sherwood BJ, Powell CB, Hall MB (1984) J Am Chem Soc 106:5079–5083

    Article  CAS  Google Scholar 

  233. Sargent AL, Hall MB (1989) J Am Chem Soc 111:1563–1569

    Article  CAS  Google Scholar 

  234. Sargent AL, Hall MB (1990) Polyhedron 9:1799–1808

    Article  CAS  Google Scholar 

  235. Simpson CQ, Hall MB (1992) J Am Chem Soc 114:1641–1645

    Article  CAS  Google Scholar 

  236. Miller TF, Strout DL, Hall MB (1998) Organometallics 17:4164–4168

    Article  CAS  Google Scholar 

  237. Sironi A (1995) Inorg Chem 34:1342–1349

    Article  CAS  Google Scholar 

  238. Dewar J, Jones HO (1905) Proc R Soc Lond 76:558–577

    Article  CAS  Google Scholar 

  239. Brill R (1927) Z Krist 65:89–93

    Google Scholar 

  240. Powell, HM, Ewens, RVG (1939) J Chem Soc 286–292

    Google Scholar 

  241. Sidgwick NV, Bailey RW (1934) Proc R Soc Lond A 144:521–537

    Article  CAS  Google Scholar 

  242. Cotton FA, Troup JM (1974) J Chem Soc Dalton Trans 800–802

    Google Scholar 

  243. Sidgwick NV, Powell HM (1940) Proc R Soc Lond 176:153–180

    Article  CAS  Google Scholar 

  244. Astruc D (2007) Organometallic chemistry and catalysis. Springer, New York, p 157

    Google Scholar 

  245. Wulfsburg G (2000) Inorganic chemistry. University Science, California, p 557

    Google Scholar 

  246. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley Inter-Science, New York, p 809

    Google Scholar 

  247. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley Inter-Science, New York, p 1025

    Google Scholar 

  248. Miessler GL, Tarr DA (1998) Inorganic chemistry, 2nd edn. Prentice-Hall, Englewood Cliffs, p 440

    Google Scholar 

  249. Miessler GL, Tarr DA (1990) Inorganic chemistry, 1st edn. Prentice-Hall, Englewood Cliffs, p 430

    Google Scholar 

  250. Spessard GO, Miessler GL (1996) Organometallic chemistry. Prentice-Hall, Englewood Cliffs, p 68

    Google Scholar 

  251. Elschenbroich C, Salzer A (1989) Organometallics, 1st edn. VCH, Weinheim, p 224

    Google Scholar 

  252. Elschenbroich C, Salzer A (1992) Organometallics, 2nd edn. VCH, Weinheim, p 224

    Google Scholar 

  253. Greenwood NN, Earnshaw A (1986) Chemistry of the elements. Pergamon Press, New York, p 1283

    Google Scholar 

  254. King RB (1969) Transition-metal organometallic chemistry: an introduction. Academic Press, New York, p 118

    Google Scholar 

  255. Huheey JE, Keiter WA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. Harper Collins College, New York, p 636

    Google Scholar 

  256. Housecroft CE (1996) Metal-metal bonded carbonyl dimers and clusters. Oxford University Press, Oxford, p 9

    Google Scholar 

  257. Wardlaw W (1948) Endeavour 26:66–69

    Google Scholar 

  258. Braterman PS (1972) Struct Bond 10:57–86

    Article  CAS  Google Scholar 

  259. Lauher JW, Elian M, Summerville RH, Hoffmann R (1976) J Am Chem Soc 98:3219–3224

    Article  CAS  Google Scholar 

  260. Summerville RH, Hoffmann R (1979) J Am Chem Soc 101:3821–3831

    Article  CAS  Google Scholar 

  261. Macchi P, Sironi A (2003) Coord Chem Rev 238:383–412

    Article  CAS  Google Scholar 

  262. Heijser W, Baerends EJ, Ros P (1980) Faraday Symp Chem Disc 14:211–234

    Article  CAS  Google Scholar 

  263. Bauschlicher CW (1986) J Chem Phys 84:872–875

    Article  CAS  Google Scholar 

  264. Rosa A, Baerends EJ (1991) New J Chem 15:815–829

    CAS  Google Scholar 

  265. Ponec R, Lendvay G, Chaves J (2008) J Comput Chem 29:1387–1398

    Article  CAS  Google Scholar 

  266. Bo C, Sarasa JP, Poblet JM (1993) J Phys Chem 97:6362–6366

    Article  CAS  Google Scholar 

  267. Mealli C, Proserpio DM (1990) J Organomet Chem 386:203–208

    Article  CAS  Google Scholar 

  268. Reinhold J, Hunstock E, Mealli C (1994) New J Chem 18:465–471

    CAS  Google Scholar 

  269. Reinhold J, Kluge O, Mealli C (2007) Inorg Chem 46:7142–7147

    Article  CAS  Google Scholar 

  270. Reinhold J, Barthel A, Mealli C (2003) Coord Chem Rev 238:333–346

    Article  CAS  Google Scholar 

  271. Ponec R, Gatti C (2009) Inorg Chem 48:11024–11031

    Article  CAS  Google Scholar 

  272. Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms, 3rd edn. Springer, New York, 3 pp

    Book  Google Scholar 

  273. Elschenbroich C (2006) Organometallics, 3rd edn. Wiley-VCH, Weinheim, pp 359–361

    Google Scholar 

  274. Cotton FA, Wilkinson G, Gauss PL (1995) Basic inorganic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  275. Low AA, Kunze KL, Macdougall PJ, Hall MB (1991) Inorg Chem 30:1079–1086

    Article  CAS  Google Scholar 

  276. Leung PC, Coppens P (1983) Acta Crystallogr B 39:535–542

    Article  Google Scholar 

  277. Foroutan-Nejad C, Shahbazian S, Marek R (2014) Chem Eur J 20:10140–10152

    Article  CAS  Google Scholar 

  278. Bénard M (1978) J Am Chem Soc 100:7740–7742

    Article  Google Scholar 

  279. Bénard M (1979) Inorg Chem 18:2782–2785

    Article  Google Scholar 

  280. Mitschler A, Rees B, Lehmann MS (1978) J Am Chem Soc 100:3390–3397

    Article  CAS  Google Scholar 

  281. Jemmis ED, Pinhas AR, Hoffmann R (1980) J Am Chem Soc 102:2576–2585

    Article  CAS  Google Scholar 

  282. Granozzi G (1988) J Mol Struct 173:313–328

    Article  CAS  Google Scholar 

  283. Bursten BE, Cayton RH (1986) J Am Chem Soc 108:8241–8249

    Article  CAS  Google Scholar 

  284. Bursten BE, Cayton RH, Gatter MG (1988) Organometallics 7:1342–1348

    Article  CAS  Google Scholar 

  285. Andreocci MV, Bossa M, Cauletti C, Paolesse R, Ortaggi G, Vondrak T, Piancastelli MN, Casarin M, Dal CM, Granozzi G (1989) J Organomet Chem 366:343–55

    Article  CAS  Google Scholar 

  286. Böhm MC (1982) Z Naturforsch 37A:241–247

    Google Scholar 

  287. Kostic NM, Fenske RF (1983) Inorg Chem 22:666–671

    Article  CAS  Google Scholar 

  288. Ponec R (2015) Comput Theor Chem 1053:195–213

    Article  CAS  Google Scholar 

  289. Radius U, Bickelhaupt FM, Ehlers AW, Goldberg N, Hoffmann R (1998) Inorg Chem 37:1080–1090

    Article  CAS  Google Scholar 

  290. Bickelhaupt FM, Nagle JK, Klemm WL (2008) J Phys Chem A 112:2437–2446

    Article  CAS  Google Scholar 

  291. Frenking G, Loschen C, Krapp A, Fau S, Strauss SH (2007) J Comput Chem 28:117–126

    Article  CAS  Google Scholar 

  292. Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) J Am Chem Soc 121:10428–10429

    Article  CAS  Google Scholar 

  293. Bitterwolf TE (2000) Coord Chem Rev 206:419–450

    Article  Google Scholar 

  294. Labinger JA (2015) Inorg Chim Acta 424:14–19

    Article  CAS  Google Scholar 

  295. Gotz K, Kaupp M, Braunschweig H, Stalke D (2009) Chem Eur J 15:623–632

    Article  CAS  Google Scholar 

  296. Flierler U, Burzler M, Leusser D, Henn J, Ott H, Braunschweig H, Stalke D (2008) Angew Chem Int Ed 47:4321–4325

    Article  CAS  Google Scholar 

  297. Muhoro CN, He X, Hartwig JF (1999) J Am Chem Soc 121:5033–5046

    Article  CAS  Google Scholar 

  298. Nguyen P, Dai CY, Taylor NJ, Power WP, Marder TB, Pickett NL, Norman NC (1995) Inorg Chem 34:4290–4291

    Article  CAS  Google Scholar 

  299. Nguyen P, Lesley G, Taylor NJ, Marder TB, Pickett NL, Clegg W, Elsegood MRJ, Norman NC (1994) Inorg Chem 33:4623–4624

    Article  CAS  Google Scholar 

  300. Lam WH, Lin Z (2000) Organometallics 19:2625–2628

    Article  CAS  Google Scholar 

  301. Landry VK, Melnick JG, Buccella D, Pang K, Ulichny JC, Parkin G (2006) Inorg Chem 45:2588–2597

    Article  CAS  Google Scholar 

  302. Figueroa JS, Melnick JG, Parkin G (2006) Inorg Chem 45:7056–7058

    Article  CAS  Google Scholar 

  303. Pang K, Parkin G (2006) Chem Commun, 5015–5017

    Google Scholar 

  304. Watanabe T, Ishida Y, Matsuo T, Kawaguchi H (2010) Dalton Trans 39:484–491

    Article  CAS  Google Scholar 

  305. Cotton FA, Kibala PA, Wojtczak WA (1991) J Am Chem Soc 113:1462–1463

    Article  CAS  Google Scholar 

  306. Krieck S, Gorls H, Yu L, Reiher M, Westerhausen M (2009) J Am Chem Soc 131:2977–2985

    Article  CAS  Google Scholar 

  307. Evans WJ, Kozimor SA, Ziller JW, Kaltsoyannis N (2004) J Am Chem Soc 126:14533–14547

    Article  CAS  Google Scholar 

  308. Jones JN, Macdonald CLB, Gorden JD, Cowley AH (2003) J Organomet Chem 666:3–5

    Article  CAS  Google Scholar 

  309. Buchin B, Gemel C, Cadenbach T, Schmid R, Fischer RA (2006) Angew Chem Int Ed 45:1074–1076

    Article  CAS  Google Scholar 

  310. Fernandez I, Cerpa E, Merino G, Frenking G (2008) Organometallics 27:1106–1111

    Article  CAS  Google Scholar 

  311. Herberich GE, Hessner B, Boveleth W, Luthe H, Saive R, Zelenka L (1983) Angew Chem Int Ed Engl 22:996–996

    Article  Google Scholar 

  312. Herberich GE, Hausmann I, Klaff N (1989) Angew Chem Int Ed Engl 28:319–320

    Article  Google Scholar 

  313. Beck V, O'Hare D (2004) J Organomet Chem 689:3920–3938

    Article  CAS  Google Scholar 

  314. Wadepohl H (1992) Angew Chem Int Ed Engl 31:247–262

    Article  Google Scholar 

  315. Lamanna WM (1986) J Am Chem Soc 108:2096–2097

    Article  CAS  Google Scholar 

  316. Lamanna WM, Gleason WB, Britton D (1987) Organometallics 6:1583–1584

    Article  CAS  Google Scholar 

  317. Salzer A, Werner H (1972) Angew Chem Int Ed 11:930–932

    Article  CAS  Google Scholar 

  318. Kudinov AR, Rybinskaya MI, Struchkov YT, Yanovskii AI, Petrovskii PV (1987) J Organomet Chem 336:187–197

    Article  CAS  Google Scholar 

  319. Cowley AH, Macdonald CLB, Silverman JS, Gorden JD, Voigt A (2001) Chem Commun 175–176

    Google Scholar 

  320. Cowley AH (2004) Chem Commun 2369–2375

    Google Scholar 

  321. Loginov DA, Muratov DV, Kudinov AR (2008) Russ Chem Bull 57:1–7

    Article  CAS  Google Scholar 

  322. Katz TJ, Rosenberg M (1962) J Am Chem Soc 84:865–866

    Article  CAS  Google Scholar 

  323. Katz TJ, Rosenberg M (1963) J Am Chem Soc 85:2030–2031

    Article  CAS  Google Scholar 

  324. Katz TJ, O’Hara RK, Rosenberg M (1964) J Am Chem Soc 86:249–252

    Article  CAS  Google Scholar 

  325. Summerscales OT, Cloke FGN (2006) Coord Chem Rev 250:1122–1140

    Article  CAS  Google Scholar 

  326. Cloke FGN (2001) Pure Appl Chem 73:233–238

    Article  CAS  Google Scholar 

  327. Cloke FGN, Green JC, Jardine CN, Kuchta MC (1999) Organometallics 18:1087–1090

    Article  CAS  Google Scholar 

  328. Balazs G, Cloke FGN, Gagliardi L, Green JC, Harrison A, Hitchcock PB, Shahi ARM, Summerscales OT (2008) Organometallics 27:2013–2020

    Article  CAS  Google Scholar 

  329. Ashley AE, Cooper RT, Wildgoose GG, Green JC, O'Hare D (2008) J Am Chem Soc 130:15662–15677

    Article  CAS  Google Scholar 

  330. Summerscales OT, Rivers CJ, Taylor MJ, Hitchcock PB, Green JC, Cloke FGN (2012) Organometallics 31:8613–8617

    Article  CAS  Google Scholar 

  331. Ashley AE, Balazs G, Cowley AR, Green JC, O'Hare D (2007) Organometallics 26:5517–5521

    Article  CAS  Google Scholar 

  332. Chen X, Du Q, Jin R, Wang HY, Wang L, Feng H, Xie YM, King RB (2014) Inorg Chim Acta 415:111–119

    Article  CAS  Google Scholar 

  333. Jones SC, Hascall T, Barlow S, O'Hare D (2002) J Am Chem Soc 124:11610–11611.

    Google Scholar 

  334. Muñoz-Castro A, Carey DML, Arratia-Pérez R (2009) Polyhedron 28:1561–1567

    Article  CAS  Google Scholar 

  335. Li HD, Feng H, Sun WG, Fan QC, Xie YM, King RB, Schaefer HF (2012) Mol Phys 110:1637–1650

    Article  CAS  Google Scholar 

  336. Li H, Feng H, Sun W, Xie Y, King RB, Schaefer HF III (2011) Eur J Inorg Chem 2746–2755

    Google Scholar 

  337. Li H, Feng H, Sun W, Fan Q, Xie Y, King RB (2012) J Organomet Chem 700:4–12

    Article  CAS  Google Scholar 

  338. Howard JAK, Woodward P (1978) J Chem Soc Dalton Trans 412–416

    Google Scholar 

  339. Brookes A, Gordon F, Howard J, Knox SAR, Woodward P (1973) J Chem Soc Chem Commun, 587–589

    Google Scholar 

  340. Bendjaballah S, Kahlal S, Costuas K, Bevillon E, Saillard JY (2006) Chem Eur J 12:2048–2065

    Article  CAS  Google Scholar 

  341. Bunel EE, Valle L, Jones NL, Carroll PJ, Barra C, Gonzalez M, Munoz N, Visconti G, Aizman A, Manriquez JM (1988) J Am Chem Soc 110:6596–6598

    Article  CAS  Google Scholar 

  342. Manriquez JM, Ward MD, Reiff WM, Calabrese JC, Jones NL, Carroll PJ, Bunel EE, Miller JS (1995) J Am Chem Soc 117:6182–6193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G. P. thanks the US Department of Energy Office of Basic Energy Sciences (DE-FG02-93ER14339) for support. This report was prepared as an account of work sponsored by an agency of the US government. Neither the US government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malcolm L. H. Green or Gerard Parkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Green, M.L.H., Parkin, G. (2016). The Covalent Bond Classification Method and Its Application to Compounds That Feature 3-Center 2-Electron Bonds. In: Mingos, D. (eds) The Chemical Bond III. Structure and Bonding, vol 171. Springer, Cham. https://doi.org/10.1007/430_2015_206

Download citation

Publish with us

Policies and ethics