Skip to main content

Experiments on Molecular Magnets for Molecular Spintronics

  • Chapter
  • First Online:
Molecular Nanomagnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 164))

Abstract

We present a review of the experimental state of the art of molecular spintronics, as obtained with molecular magnetic materials. After a brief introduction about the fundamental concepts in the field, we consider experiments performed with all the approaches attempted up to date. We eventually provide a brief discussion of the future directions and the considerable challenges that remain unexplored in the field and of the possible evolutions of this quickly developing area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baibich MN et al (1988) Phys Rev Lett 61:2472

    Article  CAS  Google Scholar 

  2. Binasch G et al (1988) Phys Rev B 39:4828

    Article  Google Scholar 

  3. Žutić I, Fabian J, Das Sarma S (2004) Rev Mod Phys 76:323

    Article  Google Scholar 

  4. Nature Materials (2012) http://www.nature.com/nmat/insight/spintronics/index.html

  5. Felser C, Fecher GH (eds) (2013) Spintronics: from materials to devices, vol XXI. Springer, Netherlands, p 369

    Google Scholar 

  6. Popa PL et al (2014) Proc Natl Acad Sci USA 111:10433

    Article  CAS  Google Scholar 

  7. Seneor P, Bernand-Mantel A, Petroff F, Phys J (2007) Condens Matter 19(165222)

    Google Scholar 

  8. Cuevas JC, Sheer E (2010) Molecular electronics: an introduction to theory and experiment, World scientific series in nanotechnology and nanoscience. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  9. Launay JP, Verdaguer M (2014) Electrons in molecules: from basic principles to molecular electronics. Oxford University Press, Oxford

    Google Scholar 

  10. Kouwenhoven LP et al (2001) Rep Prog Phys 64:701

    Article  CAS  Google Scholar 

  11. Nature Nanotechnology (2013) http://www.nature.com/nnano/focus/molecular-electronics/index.html

  12. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, New York

    Book  Google Scholar 

  13. Liang W et al (2002) Nature 417:725–729

    Article  CAS  Google Scholar 

  14. Kastner MA (1993) Phys Today 46:24

    Article  CAS  Google Scholar 

  15. Domingo N et al (2012) Chem Soc Rev 41:258–302

    Article  CAS  Google Scholar 

  16. Park H et al (1999) Appl Phys Lett 75:301

    Article  CAS  Google Scholar 

  17. Bogani L, Wernsdorfer W (2008) Nat Mater 7:179–186

    Article  CAS  Google Scholar 

  18. Cornia A et al (2011) Chem Soc Rev 40:3076

    Article  CAS  Google Scholar 

  19. Mannini M et al (2008) Chemistry 14:7530–7535

    Article  CAS  Google Scholar 

  20. Barth JV et al (2005) Nature 437:671

    Article  CAS  Google Scholar 

  21. Ertl G (2008) Angew Chem Int Ed 47:3524

    Article  CAS  Google Scholar 

  22. Buchholtz J et al (1977) J Chem Phys 66:573–580

    Article  Google Scholar 

  23. Kanai M et al (1995) Surf Sci 329:L619–L623

    Article  CAS  Google Scholar 

  24. Lippel PH et al (1989) Phys Rev Lett 62:171

    Article  CAS  Google Scholar 

  25. Warner M et al (2013) Nature 503:504–508

    Article  CAS  Google Scholar 

  26. Kahle S et al (2011) Nano Lett 12:518–521

    Article  Google Scholar 

  27. Lämmle K et al (2010) Nano Lett 10:2965

    Article  Google Scholar 

  28. Khajetoorians AA et al (2013) Science 339:55–59

    Article  CAS  Google Scholar 

  29. Liu J et al (2013) J Am Chem Soc 135:651

    Article  CAS  Google Scholar 

  30. Koivisto BD, Hicks RG (2005) Coord Chem Rev 249:2612–2630

    Article  CAS  Google Scholar 

  31. Zhang Y et al (2013) Nat Commun 4:2110

    Google Scholar 

  32. Caneschi A et al (1991) Prog Inorg Chem 39:331–429

    Article  Google Scholar 

  33. Ishikawa N et al (2003) J Am Chem Soc 125:8694–8695

    Article  CAS  Google Scholar 

  34. Katoh K et al (2009) J Am Chem Soc 131:9967–9976

    Article  CAS  Google Scholar 

  35. Katoh K et al (2010) Dalton Trans 39:4708–4723

    Article  CAS  Google Scholar 

  36. Katoh K et al (2012) Chem Asian J 7:1154

    Article  CAS  Google Scholar 

  37. Komeda T et al (2013) ACS Nano 7:1092

    Article  CAS  Google Scholar 

  38. Vitali L et al (2008) Nano Lett 8:3364

    Article  CAS  Google Scholar 

  39. Liu L et al. http://arxiv.org/ftp/arxiv/papers/1310/1310.8436.pdf

  40. Müllegger S et al. http://arxiv.org/pdf/1403.7035.pdf

  41. Miyamaki T (2012) Nat Commun 3:938

    Article  Google Scholar 

  42. Gopakumar TG et al (2012) Angew Chem Int Ed 52:3796

    Article  Google Scholar 

  43. Komeda T et al (2011) Nat Commun 2:217

    Article  Google Scholar 

  44. Loth S et al (2012) Science 335:196

    Article  CAS  Google Scholar 

  45. Heintze E et al (2013) Nat Mater 12:202

    Article  CAS  Google Scholar 

  46. Heersche HB et al (2006) Phys Rev Lett 96:206801

    Article  CAS  Google Scholar 

  47. Jo MH et al (2006) Nano Lett 6:2014

    Article  CAS  Google Scholar 

  48. Mannini M et al (2008) Chem Eur J 14:7530

    Article  CAS  Google Scholar 

  49. Park J et al (2002) Nature 417:722–725

    Article  CAS  Google Scholar 

  50. Mannini M et al (2009) Phys Rev Lett 8:194

    CAS  Google Scholar 

  51. Mannini M et al (2010) Nature 468:417

    Article  CAS  Google Scholar 

  52. Accorsi S et al (2006) J Am Chem Soc 128:4742

    Article  CAS  Google Scholar 

  53. Bartolomé J et al (eds) (2014) Molecular magnets, nanoscience and technology. Springer, Berlin

    Google Scholar 

  54. Zyazin AS et al (2011) Synth Met 161:591

    Article  CAS  Google Scholar 

  55. Burzuri E et al (2012) Phys Rev Lett 109:147203

    Article  CAS  Google Scholar 

  56. Misiorny M et al. http://arxiv.org/pdf/1407.5265v1.pdf

  57. Zyazin AS et al (2010) Nano Lett 10:3307–3311

    Article  CAS  Google Scholar 

  58. Vincent R et al (2012) Nature 488:357

    Article  CAS  Google Scholar 

  59. Thiele S et al (2014) Science 344:6188

    Article  Google Scholar 

  60. Wagner S et al (2013) Nat Nanotechnol 8:575

    Article  CAS  Google Scholar 

  61. Shimada H et al (2003) J Appl Phys 93:8259–8264

    Article  CAS  Google Scholar 

  62. Urdampilleta M (2011) Nat Mater 10:502

    Article  CAS  Google Scholar 

  63. Sun YP et al (2002) Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  64. Balasubramanian K, Burghard M (2005) Small 1:180–192

    Article  CAS  Google Scholar 

  65. Bogani L et al (2009) Angew Chem Int Ed 48:746–750

    Article  CAS  Google Scholar 

  66. Klyatskaya S et al (2009) J Am Chem Soc 131:15143–15151

    Article  Google Scholar 

  67. Da Jiang S et al (2012) Sci China Chem 55:867

    Article  CAS  Google Scholar 

  68. Bosch-Navarro C et al (2012) Adv Funct Mater 22:373

    Google Scholar 

  69. Castro Neto AH et al (2009) Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  70. Das Sarma S et al (2011) Rev Mod Phys 83:407–470

    Article  CAS  Google Scholar 

  71. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  72. Candini A et al (2011) Nano Lett 11:2634–2639

    Article  CAS  Google Scholar 

  73. Cervetti C et al (to appear) Nat Mater

    Google Scholar 

  74. Komatsu H et al (2010) J Am Chem Soc 132:4528–4529

    Article  CAS  Google Scholar 

  75. Baniodeh A et al Adv Funct Mater 24:6280–6290. doi:10.1002/adfm.201400336

  76. Raman KV et al (2013) Nature 493:509–513

    Article  CAS  Google Scholar 

  77. Cervetti C et al (2014) Dalton Trans 43:4220–4232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from German DFG, the BW Stiftung (Kompetenznetz Funktionelle Nanostrukturen), the AvH Stiftung (Sofja Kovalevskaja Award), the IMPRS-AM and EU ERC-StG-338258-“OptoQMol”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lapo Bogani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogani, L. (2014). Experiments on Molecular Magnets for Molecular Spintronics. In: Gao, S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_170

Download citation

Publish with us

Policies and ethics