Skip to main content

The Photochemistry of Transition Metal Complexes and Its Application in Biology and Medicine

  • Chapter
  • First Online:
Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents

Part of the book series: Structure and Bonding ((STRUCTURE,volume 165))

Abstract

Fostered by the success of photodynamic therapy (PDT), light activation of transition metal complexes has raised notable interest for applications in biology and in medicine. The rich photochemistry of metal complexes and the arsenal of chemical reactions accessible via light excitation have been exploited for developing therapeutic agents which exert their biological action through novel mechanisms. This chapter aims to provide an overview of the concepts and strategies adopted by leading scientists in the design and development of photoactivatable metal complexes with potential use in cancer therapy. In particular, we focus on the anticancer properties of Pt, Rh, and Ru complexes which have been demonstrated to be amongst the most promising classes of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Felsher DW (2003) Opinion: cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer 3:375–379

    Article  CAS  Google Scholar 

  2. Bown SG (2013) Photodynamic therapy for photochemists. Philos Trans R Soc Math Phys Eng Sci 371:20120371

    Article  Google Scholar 

  3. Schatzschneider U (2010) Photoactivated biological activity of transition-metal complexes. Eur J Inorg Chem 2010:1451–1467

    Article  Google Scholar 

  4. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233:351–371

    Article  Google Scholar 

  5. Naik A, Rubbiani R, Gasser G, Spingler B (2014) Visible-light-induced annihilation of tumor cells with platinum-porphyrin conjugates. Angew Chem Int Ed 53:6938–6941

    Article  CAS  Google Scholar 

  6. Sun Y, Joyce LE, Dickson NM, Turro C (2010) DNA photocleavage by an osmium(II) complex in the PDT window. Chem Commun 46:6759–6761

    Google Scholar 

  7. Farrer NJ, Salassa L, Sadler PJ (2009) Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans 48:10690–10701

    Article  Google Scholar 

  8. Elias B, Kirsch-De Mesmaeker A (2006) Photo-reduction of polyazaaromatic Ru(II) complexes by biomolecules and possible applications. Coord Chem Rev 250:1627–1641

    Article  CAS  Google Scholar 

  9. Fino E, Araya R, Peterka DS, Salierno M, Etchenique R, Yuste R (2009) RuBi-glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front Neural Circuits 3:1–9

    Article  Google Scholar 

  10. Salierno M, Marceca E, Peterka DS, Yuste R, Etchenique R (2010) A fast ruthenium polypyridine cage complex photoreleases glutamate with visible or IR light in one and two photon regimes. J Inorg Biochem 104:418–422

    Article  CAS  Google Scholar 

  11. Zayat L, Calero C, Alborés P, Baraldo L, Etchenique R (2003) A new strategy for neurochemical photodelivery: metal–ligand heterolytic cleavage. J Am Chem Soc 125:882–883

    Article  CAS  Google Scholar 

  12. Niesel J, Pinto A, Peindy N’Dongo HW, Merz K, Ott I, Gust R, Schatzschneider U (2008) Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem Commun 15:1798–1800

    Article  Google Scholar 

  13. Rose MJ, Fry NL, Marlow R, Hinck L, Mascharak PK (2008) Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets. J Am Chem Soc 130:8834–8846

    Article  CAS  Google Scholar 

  14. Ford PC (2008) Polychromophoric metal complexes for generating the bioregulatory agent nitric oxide by single- and two-photon excitation. Acc Chem Res 41:190–200

    Article  CAS  Google Scholar 

  15. Fry NL, Mascharak PK (2011) Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light. Acc Chem Res 44:289–298

    Article  CAS  Google Scholar 

  16. Schatzschneider U (2011) PhotoCORMs: light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorg Chim Acta 374:19–23

    Article  CAS  Google Scholar 

  17. Zayat L, Filevich O, Baraldo LM, Etchenique R (2013) Ruthenium polypyridyl phototriggers: from beginnings to perspectives. Philos Trans R Soc Math Phys Eng Sci 371:20120330

    Article  Google Scholar 

  18. Rosenberg B, Van Camp L, Grimley EB, Thomson AJ (1967) The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum (IV) complexes. J Biol Chem 242:1347–1352

    CAS  Google Scholar 

  19. Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:8113–8127

    Article  CAS  Google Scholar 

  20. Kratochwil NA, Bednarski PJ, Mrozek H, Vogler A, Nagle JK (1996) Photolysis of an iodoplatinum(IV) diamine complex to cytotoxic species by visible light. Anticancer Drug Des 11:155–171

    CAS  Google Scholar 

  21. Kratochwil NA, Zabel M, Range K-J, Bednarski PJ (1996) Synthesis and X-ray crystal structure of trans, cis-[Pt(OAc)2I2(en)]: a novel type of cisplatin analog that can be photolyzed by visible light to DNA-binding and cytotoxic species in vitro. J Med Chem 39:2499–2507

    Article  CAS  Google Scholar 

  22. Garino C, Salassa L (2013) The photochemistry of transition metal complexes using density functional theory. Philos Trans R Soc Math Phys Eng Sci 371:20120134

    Article  Google Scholar 

  23. Kratochwil NA, Parkinson JA, Bednarski PJ, Sadler PJ (1999) Nucleotide platination induced by visible light. Angew Chem Int Ed 38:1460–1463

    Article  CAS  Google Scholar 

  24. Vogler A, Kern A, Fusseder BZ (1978) M-azide photochemistry. Naturforsch B 33:1352–1356

    Google Scholar 

  25. Vogler A, Hlavatsch J (1983) M-azide photochemistry second article. Angew Chem Int Ed Engl 22:154–155

    Article  Google Scholar 

  26. Muller P, Schroder B, Parkinson JA, Kratochwil NA, Coxall RA, Parkin A, Parsons S, Sadler PJ (2003) Nucleotide cross-linking induced by photoreactions of platinum(IV) azide complexes. Angew Chem Int Ed 42:335–339

    Article  CAS  Google Scholar 

  27. Mackay FS, Woods JA, Moseley H, Ferguson J, Dawson A, Parsons S, Sadler PJ (2006) A photoactivated trans-diammine platinum complex as cytotoxic as cisplatin. Chem Eur J 12:3155–3161

    Article  CAS  Google Scholar 

  28. Kašpárková J, Mackay FS, Brabec V, Sadler PJ (2003) Formation of platinated GG cross-links on DNA by photoactivation of a platinum(IV) azide complex. J Biol Inorg Chem 8:741–745

    Article  Google Scholar 

  29. Ronconi L, Sadler PJ (2008) Unprecedented carbon–carbon bond formation induced by photoactivation of a platinum(IV)-diazido complex. Chem Commun 2:235–237

    Article  Google Scholar 

  30. Phillips HIA, Ronconi L, Sadler PJ (2009) Photoinduced reactions of cis, trans, cis-[Pt(IV)(N3)2(OH)2(NH3)2] with 1-methylimidazole. Chem Eur J 15:1588–1596

    Google Scholar 

  31. Heringova P, Woods J, Mackay FS, Kasparkova J, Sadler PJ, Brabec V (2006) Transplatin is cytotoxic when photoactivated: enhanced formation of DNA cross-links. J Med Chem 49:7792–7798

    Article  CAS  Google Scholar 

  32. Westendorf AF, Bodtke A, Bednarski PJ (2011) Studies on the photoactivation of two cytotoxic trans, trans, trans-diazidodiaminodihydroxo-Pt(IV) complexes. Dalton Trans 40:5342–5351

    Article  CAS  Google Scholar 

  33. Bednarski PJ, Grünert R, Zielzki M, Wellner A, Mackay FS, Sadler PJ (2006) Light-activated destruction of cancer cell nuclei by platinum diazide complexes. Chem Biol 13:61–67

    Article  CAS  Google Scholar 

  34. Mackay FS, Woods JA, Heringová P, Kašpárková J, Pizarro AM, Moggach SA, Parsons S, Brabec V, Sadler PJ (2007) A potent cytotoxic photoactivated platinum complex. Proc Natl Acad Sci U S A 104:20743–20748

    Article  CAS  Google Scholar 

  35. Farrer NJ, Woods JA, Salassa L, Zhao Y, Robinson KS, Clarkson G, Mackay FS, Sadler PJ (2010) A potent trans-diimine platinum anticancer complex photoactivated by visible light. Angew Chem Int Ed 49:8905–8908

    Article  CAS  Google Scholar 

  36. Westendorf AF, Zerzankova L, Salassa L, Sadler PJ, Brabec V, Bednarski PJ (2011) Influence of pyridine versus piperidine ligands on the chemical, DNA binding and cytotoxic properties of light activated trans, trans, trans-[Pt(N3)2(OH)2(NH3)(L)]. J Inorg Biochem 105:652–662

    Google Scholar 

  37. Westendorf AF, Woods JA, Korpis K, Farrer NJ, Salassa L, Robinson K, Appleyard V, Murray K, Grünert R, Thompson AM, Sadler PJ, Bednarski PJ (2012) Trans, trans, trans-[PtIV(N3)2(OH)2(py)(NH3)]: a light-activated antitumor platinum complex that kills human cancer cells by an apoptosis-independent mechanism. Mol Cancer Ther 11:1894–1904

    Google Scholar 

  38. Butler JS, Woods JA, Farrer NJ, Newton ME, Sadler PJ (2012) Tryptophan switch for a photoactivated platinum anticancer complex. J Am Chem Soc 134:16508–16511

    Article  CAS  Google Scholar 

  39. Pracharova J, Zerzankova L, Stepankova J, Novakova O, Farrer NJ, Sadler PJ, Brabec V, Kasparkova J (2012) Interactions of DNA with a new platinum(IV) azide dipyridine complex activated by UVA and visible light: relationship to toxicity in tumor cells. Chem Res Toxicol 25:1099–1111

    Article  CAS  Google Scholar 

  40. Zhao Y, Woods JA, Farrer NJ, Robinson KS, Pracharova J, Kasparkova J, Novakova O, Li H, Salassa L, Pizarro AM, Clarkson GJ, Song L, Brabec V, Sadler PJ (2013) Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts. Chem Eur J 19:9578–9591

    Article  CAS  Google Scholar 

  41. Mackay FS, Farrer NJ, Salassa L, Tai HC, Deeth RJ, Moggach SA, Wood PA, Parsons S, Sadler PJ (2009) Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes. Dalton Trans 13:2315–2325

    Article  Google Scholar 

  42. Mackay FS, Moggach SA, Collins A, Parsons S, Sadler PJ (2009) Photoactive trans ammine/amine diazido platinum(IV) complexes. Inorg Chim Acta 362:811–819

    Article  CAS  Google Scholar 

  43. Farrer NJ, Woods JA, Munk VP, Mackay FS, Sadler PJ (2010) Photocytotoxic trans-diam(m)ine platinum(IV) diazido complexes more potent than their cis isomers. Chem Res Toxicol 23:413–421

    Article  CAS  Google Scholar 

  44. Cubo L, Pizarro AM, Quiroga AG, Salassa L, Navarro-Ranninger C, Sadler PJ (2010) Photoactivation of trans diamine platinum complexes in aqueous solution and effect on reactivity towards nucleotides. J Inorg Biochem 104:909–918

    Article  CAS  Google Scholar 

  45. Howard RA, Kimball AP, Bear JL (1979) Mechanism of action of tetra-μ-carboxylatodirhodium(II) in L1210 tumor suspension culture. Cancer Res 39:2568–2573

    CAS  Google Scholar 

  46. Zyngier S, Kimura E, Najjar R (1989) Antitumor effects of rhodium-(II) citrate in mice bearing Ehrlich tumors. Braz J Med Biol Res 22:397–401

    CAS  Google Scholar 

  47. Erck A, Rainen L, Whileyman J, Chang IM, Kimball AP, Bear JL (1974) Studies of rhodium(II) carboxylates as potential antitumor agents. Proc Soc Exp Biol Med 145:1278–1283

    Article  CAS  Google Scholar 

  48. Chifotides HT, Dunbar KR (2005) Interactions of metal−metal-bonded antitumor active complexes with DNA fragments and DNA. Acc Chem Res 38:146–156

    Article  CAS  Google Scholar 

  49. Rubin JR, Haromy TP, Sundaralingam M (1991) Structure of the anti-cancer drug complex tetrakis(μ-acetato)-bis(1-methyl-adenosine)dirhodium(II) monohydrate. Acta Crystallogr C47:1712–1714

    CAS  Google Scholar 

  50. Aoki K, Salam MA (2002) Interligand interactions affecting specific metal bonding to nucleic acid bases. A case of Rh2(O2CCH3)4, Rh2(CF3CONH)4, and Rh2(O2CCH3)2(NHCOCF3)2 toward purine nucleobases and nucleosides. Inorg Chim Acta 339:427–437

    Article  CAS  Google Scholar 

  51. Dunbar KR, Matonic JH, Saharan VP, Crawford CA, Christou G (1994) Structural evidence for a new metal-binding mode for guanine bases: implications for the binding of dinuclear antitumor agents to DNA. J Am Chem Soc 116:2201–2202

    Article  CAS  Google Scholar 

  52. Crawford CA, Day EF, Saharan VP, Folting K, Huffman JC, Dunbar KR, Christou G (1996) N7,O6 bridging 9-ethylguanine (9-EtGH) groups in dinuclear metal-metal bonded complexes with bond orders of one, two or four. Chem Commun 1113–1114

    Google Scholar 

  53. Catalan KV, Mindiola DJ, Ward DL, Dunbar KR (1997) A novel dirhodium compound with neutral, bridging 9-ethyladenine ligands. Inorg Chem 36:2458–2460

    Article  CAS  Google Scholar 

  54. Catalan KV, Hess JS, Maloney MM, Mindiola DJ, Ward DL, Dunbar KR (1999) Reactions of DNA purines with dirhodium formamidinate compounds that display antitumor behavior. Inorg Chem 38:3904–3913

    Article  CAS  Google Scholar 

  55. Asara JM, Hess JS, Lozada E, Dunbar KR, Allison J (2000) Evidence for binding of dirhodium bis-acetate units to adjacent GG and AA sites on single-stranded DNA. J Am Chem Soc 122:8–13

    Article  CAS  Google Scholar 

  56. Chifotides HT, Koomen JM, Kang M, Dunbar KR, Tichy S, Russell D (2004) Binding of DNA purine sites to dirhodium compounds probed by mass spectrometry. Inorg Chem 43:6177–6187

    Article  CAS  Google Scholar 

  57. Tselepi-Kalouli E, Katsaros N (1990) The interaction of Rh(II) and Rh(III) with DNA. J Inorg Biochem 40:95–102

    Article  CAS  Google Scholar 

  58. Pittet PA, Dadci L, Zbinden P, Abou-Hamdan A, Merbach AE (1993) High-pressure proton NMR study of acetonitrile exchange kinetics on [Rh2(CH3CN)10]4+ and 17O NMR investigation of aqueous solutions of [Rh2(H2O)10]4+. Inorg Chim Acta 206:135–140

    Article  CAS  Google Scholar 

  59. Fu PK-L, Bradley PM, Turro C (2001) DNA cleavage by photogenerated Rh2(O2CCH3)4(H2O)2+. Inorg Chem 40:2476–2477

    Article  CAS  Google Scholar 

  60. Bradley PM, Bursten BE, Turro C (2001) Excited-state properties of Rh2(O2CCH3)4(L)2 (L = CH3OH, THF, PPh3, py). Inorg Chem 40:1376–1379

    Article  CAS  Google Scholar 

  61. Bradley PM, Angeles-Boza AM, Dunbar KR, Turro C (2004) Direct DNA photocleavage by a new intercalating dirhodium(II/II)complex: comparison to Rh2(μ-O2CCH3)4. Inorg Chem 43:2450–2452

    Article  CAS  Google Scholar 

  62. Angeles-Boza AM, Bradley PM, Fu PK-L, Wicke SE, Bacsa J, Dunbar KR, Turro C (2004) DNA binding and photocleavage in vitro by new dirhodium(II) dppz complexes: correlation to cytotoxicity and photocytotoxicity. Inorg Chem 43:8510–8519

    Article  CAS  Google Scholar 

  63. Angeles-Boza AM, Bradley PM, Fu PK-L, Shatruk M, Hilfiger MG, Dunbar KR, Turro C (2005) Photocytotoxicity of a new Rh2 (II, II) complex: increase in cytotoxicity upon irradiation similar to that of PDT agent hematoporphyrin. Inorg Chem 44:7262–7264

    Article  CAS  Google Scholar 

  64. Lutterman DA, Fu PK-L, Turro C (2006) Cis-[Rh2(μ-O2CCH3)2(CH3CN)6]2+ as a photoactivated cisplatin analog. J Am Chem Soc 128:738–739

    Article  CAS  Google Scholar 

  65. Li Z, Burya SJ, Turro C, Dunbar KR (2013) Photochemistry and DNA photocleavage by a new unsupported dirhodium(II, II) complex. Philos Trans R Soc A 371:20120128

    Article  Google Scholar 

  66. Palmer AM, Burya SJ, Gallucci JC, Turro C (2014) Photoinduced intercalation and coordination of a dirhodium complex to DNA: dual DNA binding. ChemMedChem 9:1260–1265

    Article  CAS  Google Scholar 

  67. Mahnken RE, Bina M, Deibel RM, Luebke K, Morrison H (1989) Photochemically induced binding of [Rh(phen)2Cl]2+ to DNA. Photochem Photobiol 49(4):519–522

    Article  CAS  Google Scholar 

  68. Harmon HL, Momson H (1995) Anaerobic photoinduced N7-binding of cis-dichlorobis(1,10-phenanthroline)rhodium(III) chloride to 2′-deoxyguanosine process. Inorg Chem 34:4937–4938

    Article  CAS  Google Scholar 

  69. Menon EL, Perera R, Navarro M, Kuhn RJ, Morrison H (2004) Phototoxicity against tumor cells and sindbis virus by an octahedral rhodium bisbipyridyl complex and evidence for the genome as a target in viral photoinactivation. Inorg Chem 43:5373–5381

    Article  CAS  Google Scholar 

  70. Loganathan D, Morrison H (2006) Effect of ring methylation on the photophysical, photochemical and photobiological properties of cis-dichlorobis(1,10-phenanthroline)rhodium(III)chloride. Photochem Photobiol 82:237–247

    Article  CAS  Google Scholar 

  71. Kim MR, Morrison H, Mohammeda SI (2011) Effect of a photoactivated rhodium complex in melanoma. Anticancer Drugs 2011(22):896–904

    Article  Google Scholar 

  72. Magennis SW, Habtemariam A, Novakova O, Henry JB, Meier S, Parsons S, Oswald IDH, Brabec V, Sadler PJ (2007) Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex. Inorg Chem 46:5059–5068

    Article  CAS  Google Scholar 

  73. Betanzos-Lara S, Salassa L, Habtemariam A, Sadler PJ (2009) Photocontrolled nucleobase binding to an organometallic RuII arene complex. Chem Commun 43:6622–6624

    Article  Google Scholar 

  74. Betanzos-Lara S, Salassa L, Habtemariam A, Novakova O, Pizarro AM, Clarkson GJ, Liskova B, Brabec V, Sadler PJ (2012) Photoactivatable organometallic pyridyl ruthenium(II) arene complexes. Organometallics 31:3466–3479

    Article  CAS  Google Scholar 

  75. Barragan F, Lopez-Senin P, Salassa L, Betanzos-Lara S, Habtemariam A, Moreno V, Sadler PJ, Marchan V (2011) Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(II) complex. J Am Chem Soc 133:14098–14108

    Article  CAS  Google Scholar 

  76. Betanzos-Lara S, Habtemariam A, Sadler PJ (2013) Transfer hydrogenation reactions of photoactivatable N,N′-chelated ruthenium(II) arene complexes. J Mex Chem Soc 57:160–168

    CAS  Google Scholar 

  77. Lin S-J, Guarente L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246

    Article  CAS  Google Scholar 

  78. Romero-Canelón I, Sadler PJ (2013) Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorg Chem 52:12276–12291

    Article  Google Scholar 

  79. Watson J (2013) Perspective: oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 3:2046–2441

    Article  Google Scholar 

  80. Sasmal PK, Carregal-Romero S, Parak WJ, Meggers E (2012) Light-triggered ruthenium-catalyzed allylcarbamate cleavage in biological environments. Organometallics 31:5968–5970

    Article  CAS  Google Scholar 

  81. Singh TN, Turro C (2004) Photoinitiated DNA binding by cis- [Ru(bpy)2(NH3)2]2+. Inorg Chem 43:7260–7262

    Article  CAS  Google Scholar 

  82. Sears RB, Joyce LE, Ojaimi M, Gallucci JC, Thummel RP, Turro C (2013) Photoinduced ligand exchange and DNA binding of cis-[Ru(phpy)(phen)(CH3CN)2]+ with long wavelength visible light. J Inorg Biochem 121:77–87

    Article  CAS  Google Scholar 

  83. Palmer AM, Peña B, Sears RB, Chen O, Ojaimi ME, Thummel RP, Dunbar KR, Turro C (2013) Cytotoxicity of cyclometallated ruthenium complexes: the role of ligand exchange on the activity. Philos Trans R Soc 371:20120135

    Article  Google Scholar 

  84. Wachter E, Heidary DK, Howerton BS, Parkin S, Glazer EC (2012) Light-activated ruthenium complexes photobind DNA and are cytotoxic in the photodynamic therapy window. Chem Commun 48:9649–9651

    Article  CAS  Google Scholar 

  85. Howerton BS, Heidary DK, Glazer EC (2012) Strained ruthenium complexes are potent light-activated anticancer agents. J Am Chem Soc 134:8324–8327

    Article  CAS  Google Scholar 

  86. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324

    Article  CAS  Google Scholar 

  87. Sgambellone MA, David A, Garner RN, Dunbar KR, Turro C (2013) Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex. J Am Chem Soc 135:11274–11282

    Article  CAS  Google Scholar 

  88. Joshi T, Pierroz V, Mari C, Gemperle L, Ferrari S, Gasser G (2014) A bis(dipyridophenazine)(2-(2-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) complex with anticancer action upon photodeprotection. Angew Chem Int 126(11):3004–3007

    Article  Google Scholar 

  89. Salassa L (2011) Polypyridyl metal complexes with biological activity. Eur J Inorg Chem 32:4931–4947

    Article  Google Scholar 

  90. Barolet D (2008) Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 27:227–238

    Article  CAS  Google Scholar 

  91. Del Mármol J, Filevich O, Etchenique R (2010) A ruthenium−rhodamine complex as an activatable fluorescent probe. Anal Chem 82:6259–6264

    Article  Google Scholar 

  92. Rose MJ, Betterley NM, Mascharak PK (2009) Thiolate S-oxygenation controls nitric oxide (NO) photolability of a synthetic iron nitrile hydratase (Fe-NHase) model derived from mixed carboxamide/thiolate ligand. J Am Chem Soc 131:8340–8341

    Article  CAS  Google Scholar 

  93. Arguinzoniz AG, Ruggiero E, Habtemariam A, Hernández-Gil J, Salassa L, Mareque-Rivas JC (2014) Light harvesting and photoemission by nanoparticles for photodynamic therapy. Part Part Syst Charact 31:46–75

    Article  CAS  Google Scholar 

  94. Maldonado CR, Salassa L, Gomez-Blanco N, Mareque-Rivas JC (2013) Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coord Chem Rev 257:2668–2688

    Article  CAS  Google Scholar 

  95. Burks PT, Ostrowski AD, Mikhailovsky AA, Chan EM, Wagenknecht PS, Ford PC (2012) Quantum dot photoluminescence quenching by Cr(III) complexes. Photosensitized reactions and evidence for a FRET mechanism. J Am Chem Soc 134:13266–13275

    Article  CAS  Google Scholar 

  96. Neuman D, Ostrowski AD, Mikhailovsky AA, Absalonson RO, Strouse GF, Ford PC (2008) Quantum dot fluorescence quenching pathways with Cr(III) complexes. Photosensitized NO production from trans-Cr(cyclam)(ONO)2+. J Am Chem Soc 130:168–175

    Article  CAS  Google Scholar 

  97. Blanco NG, Maldonado CR, Mareque-Rivas JC (2009) Effective photoreduction of a Pt(IV) complex with quantum dots: a feasible new light-induced method of releasing anticancer Pt(II) drugs. Chem Commun 35:5257–5259

    Article  Google Scholar 

  98. Hernández-Gil J, Llusar SF, Maldonado CR, Mareque-Rivas JC (2011) Synergy between quantum dots and 1,10-phenanthroline–copper(II) complex towards cleaving DNA. Chem Commun 47:2955–2957

    Article  Google Scholar 

  99. Infante I, Azpiroz JM, Blanco NG, Ruggiero E, Ugalde JM, Mareque-Rivas JC, Salassa L (2014) Quantum dot photoactivation of Pt(IV) anticancer agents: evidence of an electron transfer mechanism driven by electronic coupling. J Phys Chem C 118:8712–8721

    Article  CAS  Google Scholar 

  100. Maldonado CR, Gómez-Blanco N, Jauregui-Osoro M, Brunton VG, Yate L, Mareque-Rivas JC (2013) QD-filled micelles which combine SPECT and optical imaging with light-induced activation of a platinum(IV) prodrug for anticancer applications. Chem Commun 49:3985–3987

    Article  CAS  Google Scholar 

  101. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323–1349

    Article  CAS  Google Scholar 

  102. Burks PT, Garcia JV, Gonzalez Irias R, Tillman JT, Niu M, Mikhailovsky AA, Zhang J, Zhang F, Ford PC (2013) Nitric oxide releasing materials triggered by near-infrared excitation through tissue filters. J Am Chem Soc 135:18145–18152

    Article  CAS  Google Scholar 

  103. Garcia JV, Yang J, Shen D, Yao C, Li X, Wang R, Stucky GD, Zhao D, Ford PC, Zhang F (2012) NIR-triggered release of caged nitric oxide using upconverting nanostructured materials. Small 8:3800–3805

    Article  CAS  Google Scholar 

  104. Ruggiero E, Habtemariam A, Yate L, Mareque-Rivas JC, Salassa L (2014) Near infrared photolysis of a Ru polypyridyl complex by upconverting nanoparticles. Chem Commun 50:1715–1718

    Article  CAS  Google Scholar 

  105. Frasconi M, Liu Z, Lei J, Wu Y, Strekalova E, Malin D, Ambrogio MW, Chen X, Botros YY, Cryns VL, Sauvage J-P, Stoddart JF (2013) Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J Am Chem Soc 135:11603–11613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish Ministry of Economy and Competitiveness (grant CTQ2012-39315), the Department of Industry of the Basque Country (grant ETORTEK), the MICINN of Spain with the Ramón y Cajal Fellowship RYC-2011-07787, and by the MC CIG fellowship UCnanomat4iPACT (grant n. 321791). S.A. thanks the Spanish Ministry of Economy and Competitiveness for funding her PhD fellowship (BES-2013-065642). We gratefully acknowledge IKERBASQUE for the Visiting Professor Fellowship to A.H. and members of the European COST Action CM1105 for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Salassa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruggiero, E., Alonso-de Castro, S., Habtemariam, A., Salassa, L. (2014). The Photochemistry of Transition Metal Complexes and Its Application in Biology and Medicine. In: Lo, KW. (eds) Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents. Structure and Bonding, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_165

Download citation

Publish with us

Policies and ethics