Skip to main content

Historical Introduction

  • Chapter
  • First Online:
Bond Valences

Part of the book series: Structure and Bonding ((STRUCTURE,volume 158))

Abstract

The bond valence theory grew out of Linus Pauling’s electrostatic valence principle, but its development was slow until crystal structure determination became sufficiently accurate to make clear how the valence of a bond correlates with its length. Armed with this quantitative link with experiment, the theory has subsequently found many uses in analysing, modelling and predicting the structures of complex crystals, surfaces and liquids. Its theorems show how the physical properties of complex materials can be understood as the consequence of their chemical structure. The theory is increasingly finding new uses in solid-state chemistry and condensed matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauling L (1929) J Am Chem Soc 51:1010–1026

    Article  CAS  Google Scholar 

  2. Born M, Landé A (1918) Sitzungber Preuss Akad Wissen Berlin 45:1048–1068

    Google Scholar 

  3. Bragg WL (1920) Phil Mag Six Ser 40:169–189

    Google Scholar 

  4. Baur WH (1970) Trans Am Crystallogr Ass 6:129–155

    CAS  Google Scholar 

  5. Pauling L (1947) J Am Chem Soc 69:542–552

    Article  CAS  Google Scholar 

  6. Byström A, Wilhelmi AK (1951) Acta Chem Scand 5:1003–1010

    Article  Google Scholar 

  7. Zachariasen WH (1954) Acta Cryst 7:795–799

    Article  CAS  Google Scholar 

  8. Zachariasen WH (1963) Acta Cryst 16:385–389

    Article  CAS  Google Scholar 

  9. Zachariasen WH, Plettinger HA (1959) Acta Cryst 12:526–530

    Article  CAS  Google Scholar 

  10. Evans HT Jr (1960) Z Kristallogr 114:257–277

    Article  CAS  Google Scholar 

  11. Kihlborg L (1964) Arkiv Kemi 21:471–495

    Google Scholar 

  12. Clark JR, Appleman D, Papike J (1969) Miner Soc Am Spec Pap 2:31–50

    Google Scholar 

  13. Slater JC (1964) J Chem Phys 41:3199–3204

    Article  CAS  Google Scholar 

  14. Shannon RD, Prewitt CT (1969) Acta Cryst B25:925–946

    Article  Google Scholar 

  15. Shannon RD (1976) Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  16. O’Keeffe M, Brese NE (1991) J Am Chem Soc 113:3226–3229

    Article  Google Scholar 

  17. Donnay G, Allmann R (1970) Am Min 55:1003–1013

    CAS  Google Scholar 

  18. Brown ID, Shannon RD (1973) Acta Cryst A29:266–282

    Article  Google Scholar 

  19. Brown ID, Wu KK (1976) Acta Cryst B32:1957–1959

    Article  CAS  Google Scholar 

  20. Slupecki O, Brown ID (1982) Acta Cryst B38:1078–1079

    Article  CAS  Google Scholar 

  21. Brown ID (1974) J Solid State Chem 11:214–233

    Article  CAS  Google Scholar 

  22. Brown ID (1976) Acta Cryst A32:24–31

    Article  Google Scholar 

  23. Brown ID (1976) Acta Cryst A32:786–792

    Article  CAS  Google Scholar 

  24. Brown ID (1980) J Chem Soc Dalton Trans 1118–1123

    Google Scholar 

  25. McGuire NK, O’Keefe M (1984) J Solid State Chem 54:49–53

    Article  CAS  Google Scholar 

  26. Brese NE, O’Keeffe M (1992) Struct Bond 79:307–378

    Article  CAS  Google Scholar 

  27. Mackay AL, Finney JL (1973) J Appl Cryst 6:284–289

    Article  CAS  Google Scholar 

  28. Brown ID (1977) Acta Cryst B33:1305–1310

    Article  CAS  Google Scholar 

  29. Brown ID (1987) Phys Chem Miner 15:30–34

    Article  CAS  Google Scholar 

  30. O’Keeffe M (1989) Struct Bond 71:161–190

    Article  Google Scholar 

  31. Preiser C, Loesel J, Brown ID, Kunz M, Skowron A (1999) Acta Cryst B55:698–711

    Article  CAS  Google Scholar 

  32. Brown ID (2002) The chemical bond in inorganic chemistry; the bond valence model. Oxford University Press, Oxford

    Google Scholar 

  33. Dent-Glasser L (1979) Z Kristallogr 149:291–325

    Article  CAS  Google Scholar 

  34. Brown ID (1981) The bond valence method: an empirical approach to chemical structure and bonding. In: O’Keeffe M, Navrosky A (eds) Structure and bonding in crystals, vol II. Academic Press, New York, pp 1–30

    Google Scholar 

  35. O’Keeffe M, Hyde BG (1982) J Solid State Chem 44:24–31

    Article  Google Scholar 

  36. Hawthorne FC (1985) Am Min 70:455–573

    CAS  Google Scholar 

  37. Hawthorne FC (1992) Z Kristallog 201:183–206

    Article  CAS  Google Scholar 

  38. Hawthorne FC, Della Ventura G, Oberti R, Robert J-L, Iezzi G (2005) Canad Miner 43:1895–1920

    Article  CAS  Google Scholar 

  39. Brown ID, Altermatt D (1985) Acta Cryst B41:244–247

    Article  CAS  Google Scholar 

  40. Brese NE, O’Keeffe M (1991) Acta Cryst B47:192–197

    Article  CAS  Google Scholar 

  41. O’Keeffe M, Brese NE (1992) Acta Cryst B48:152–154

    Article  Google Scholar 

  42. Ziolkowski J (1985) J Solid State Chem 57:267–290

    Article  Google Scholar 

  43. Naskar JP, Hati S, Datta D (1997) Acta Cryst B53:885–894

    Article  CAS  Google Scholar 

  44. Valach F (1996) Polyhedron 116:699–706

    Google Scholar 

  45. Mohri F (2000) Acta Cryst B56:626–638

    Article  CAS  Google Scholar 

  46. Adams S (2001) Acta Cryst B57:278–287

    Article  CAS  Google Scholar 

  47. Krivovichev SV, Brown ID (2001) Z Kristallogr 216:245–247

    Article  CAS  Google Scholar 

  48. Locock AJ, Burns PC (2004) Z Kristallogr 219:259–266

    Article  CAS  Google Scholar 

  49. Hu S-Z (2007) Acta Phys-Chem Sin 23:786–789

    CAS  Google Scholar 

  50. Brown ID (2009) Acta Cryst B65:684–693

    Article  Google Scholar 

  51. Mills SJ, Christy AG, Chen ECC, Raudsepp M (2009) Z Kristallogr 224:423–431

    Article  CAS  Google Scholar 

  52. Sidey V (2010) Acta Cryst B66:307–314

    Article  Google Scholar 

  53. Krivovichev SV (2012) Z Kristallogr 227:575–579

    Article  CAS  Google Scholar 

  54. O’Keeffe M, Hanson S (1988) J Am Chem Soc 110:1506–1510

    Article  Google Scholar 

  55. Brown ID (1989) J Solid State Chem 82:122–131

    Article  CAS  Google Scholar 

  56. Brown ID (1992) Acta Cryst B48:553–572

    Article  CAS  Google Scholar 

  57. Garcia-Muñoz JL, Rodriguez-Carvajál J (1995) J Solid State Chem 115:324–331

    Article  Google Scholar 

  58. Lufaso MW, Woodward PM (2001) Acta Cryst B57:725–738

    Article  CAS  Google Scholar 

  59. Waltersson K (1978) Acta Cryst A34:901–905

    Article  CAS  Google Scholar 

  60. Adams S (2000) Solid State Ion 136–137:1351–1361

    Article  Google Scholar 

  61. Adams S, Swenson J (2000) Phys Rev Lett 84:4144–4147

    Article  CAS  Google Scholar 

  62. Adams S, Swenson J (2000) Phys Rev B63:054201

    Article  Google Scholar 

  63. Adams S, Swenson J (2001) Phys Rev B64:023204

    Google Scholar 

  64. Adams S, Swenson J (2002) J Solid State Ionics 154(5):151–159

    Article  Google Scholar 

  65. Adams S, Swenson J (2005) J Phys Condensed Matter 17:S87–S101

    Article  CAS  Google Scholar 

  66. Gonzáles-Platas J, Gonzáles-Silgo C, Ruiz-Péres C (1999) J Appl Cryst 32:341–344

    Article  Google Scholar 

  67. Harvey MA, Baggio S, Baggio R (2006) Acta Cryst B62:1038–1042

    Article  Google Scholar 

  68. Zachara J (2007) Inorg Chem 46:9760–9767

    Article  CAS  Google Scholar 

  69. Bickmore BR, Wander MFC, Edwards J, Maurer J, Shepherd K, Meyer E, Johanson, WJ Frank RA, Andros C, David M (2013) Am. Min. 98:340–349

    Google Scholar 

  70. Rossano S, Farges F, Ramos A, Delaye J-M, Brown GE Jr (2002) J Non Cryst Solids 204:167–173

    Article  Google Scholar 

  71. Bickmore BR, Rosso KM, Brown ID, Kerisit SJ (2009) J Phys Chem A 113:1847–1857

    Article  CAS  Google Scholar 

  72. Norberg ST, Tucker MG, Hull S (2009) J Appl Cryst 2:179–184

    Article  Google Scholar 

  73. Bickmore BR, Rosso KM, Nagy KL, Cygan RT, Tadanier CJ (2003) Clays Clay Miner 51:359–371

    Article  CAS  Google Scholar 

  74. Bickmore BR, Tadanier CJ, Rosso KM, Monn WD, Eggett DL (2004) Geochim Cosmochim Acta 68:2025–2042

    Article  CAS  Google Scholar 

  75. Bickmore BR, Rosso KM, Tadanier CJ, Bylaska EJ, Doud D (2006) Geochim Cosmochim Acta 70:4057–4071

    Article  CAS  Google Scholar 

  76. Brown ID (2009) Chem Rev 109:6858–6919

    Article  CAS  Google Scholar 

  77. Bragg WL (1930) Z Kristallogr 74:237–305

    CAS  Google Scholar 

  78. Brown ID (2013) paper ‘Bond Valence Theory’ in this S&B volume

    Google Scholar 

  79. Hawthorne FC, Schindler M (2013) ‘Crystallization and dissociation in aqueous solution: a bond valence approach’ in this S&B volume

    Google Scholar 

  80. Lufaso MW, Woodward PM (2013) ‘Using bond valences to model the structures of ternary and quaternary oxides’ in the current S&B volume

    Google Scholar 

  81. Bickmore BR (2013) ‘Structure and acidity in aqueous solutions and oxide-water interfaces’

    Google Scholar 

  82. Poeppelmeier K, Enterkin J (2013) ‘Bonding at Oxide Surfaces’ both in this S&B volume

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. David Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, I.D. (2013). Historical Introduction. In: Brown, I., Poeppelmeier, K. (eds) Bond Valences. Structure and Bonding, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_134

Download citation

Publish with us

Policies and ethics