Skip to main content

Multilayer Assembly for Solar Energy Conversion

  • Chapter
  • First Online:
Fullerenes and Other Carbon-Rich Nanostructures

Part of the book series: Structure and Bonding ((STRUCTURE,volume 159))

Abstract

Organizing molecular thin films of electro- and photoactive building blocks provides a versatile platform to the nanoscale control of assembled multilayers and paves the way for the design of functional electronic devices and/or efficient photoenergy conversion devices. Assembly methods, including the Langmuir–Blodgett and the layer-by-layer technique, offer elegant means to realize well-ordered multifunctional thin films on variable surfaces. In this chapter, the fundamental factors and driving forces that govern the adsorption processes of multilayered assemblies are highlighted and numerous intriguing contributions to the field of template-assisted assemblies are presented. Owing to the applicability of these concepts to carbon-based materials – fullerenes and carbon nanotubes – particular attention is paid to the integration of these exceptionally materials combined with light absorbing constituents into nanostructured thin films en route towards versatile electron donor–acceptor nanohybrids for photoconversion schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

AFM:

Atomic force microscopy

CNT:

Carbon nanotubes

CT:

Charge transfer

DCE:

1,2 Dichloroethane

FF:

Fill factor

IPCE:

Incident photon to current efficiency

I SC :

Short circuit current

ITO:

Indium tin oxide

LB:

Langmuir–Blodgett

LbL:

Layer-by-layer

LS:

Langmuir–Schaefer

MV2+ :

Dimethylviologen

MWNT:

Multi wall carbon nanotubes

ODA:

Octadecylamine

PAA:

Poly(acrylic acid)

PDDA:

Poly(diallyl dimethylammonium)

PEI:

Poly(ethyleneimine)

PmPV:

M-phenylenevinylene co-2,5-dioctoxy-p-phenylenevinylene

POPT:

Poly(2,5-dioctyloxy-1,4-phenylene-alt-2,5-thienylene)

PSS:

Polystyrene sulfonate

SDS:

Sodium dodecyl sulfate

SWNT:

Single wall carbon nanotubes

V OC :

Open circuit voltage

References

  1. Lewis NS (1983) Nature 305:671

    Google Scholar 

  2. O’Regan B, Graetzel M (1991) Nature 353:737

    Google Scholar 

  3. Graetzel M (2001) Nature 414:338

    Google Scholar 

  4. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Science 258:1474

    CAS  Google Scholar 

  5. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    CAS  Google Scholar 

  6. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15

    CAS  Google Scholar 

  7. Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H (1999) Science 285:692

    CAS  Google Scholar 

  8. Peumans P, Uchida S, Forrest SR (2003) Nature 425:158

    CAS  Google Scholar 

  9. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498

    CAS  Google Scholar 

  10. Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A (2000) Nature 404:478

    CAS  Google Scholar 

  11. Nelson J (2001) Science 293:1059

    CAS  Google Scholar 

  12. Kern R, Van Der Burg N, Chmiel G, Ferber J, Hasenhindl G, Hinsch A, Kinderman R, Kroon J, Meyer A, Meyer T, Niepmann R, Van Roosmalen J, Schill C, Sommeling P, Spath M, Uhlendorf I (2000) Opto-Electron Rev 8:284

    CAS  Google Scholar 

  13. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85

    CAS  Google Scholar 

  14. Fendler JH, Dekany I (1996) Nanoparticles in solids and solutions. Kluwer, Dordrecht

    Google Scholar 

  15. Kamat PV, Meisel D (1997) Semiconductor nanoclusters. Elsevier, Amsterdam

    Google Scholar 

  16. Fendler JH (1998) Nanoparticle and nanostructured films. Wiley-VCH, Weinheim

    Google Scholar 

  17. Hagfeldt A, Grätzel M (1995) Chem Rev 95:49

    CAS  Google Scholar 

  18. Vögtle F (1991) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  19. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. Wiley-VCH, Weinheim

    Google Scholar 

  20. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  21. Poole CP, Owens J (2003) Introduction to nanotechnology. Wiley, Weinheim

    Google Scholar 

  22. Harris P (2001) Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge University Press, Cambridge

    Google Scholar 

  23. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  24. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  25. Taylor R (1999) Lecture notes on fullerenes chemistry. Imperial College, London

    Google Scholar 

  26. Hirsch A (1999) Fullerenes and related structures, topics in current chemistry 199. Springer, Berlin

    Google Scholar 

  27. Guldi DM, Martin N (2002) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic, Dordrecht

    Google Scholar 

  28. Roberts G (1990) Langmuir–Blodgett films. Plenum, New York

    Google Scholar 

  29. Ulman A (1991) An introduction to ultrathin organic films. Academic, Boston

    Google Scholar 

  30. Tredgold RH (1994) Order in thin organic films. Cambridge University Press, Cambridge

    Google Scholar 

  31. Moebius D, Miller R (2001) Novel methods to study interfacial layers. Elsevier, Amsterdam

    Google Scholar 

  32. Blodgett KB (1934) J Am Chem Soc 56:495

    CAS  Google Scholar 

  33. Blodgett KB, Langmuir I (1937) Phys Rev 51:964

    CAS  Google Scholar 

  34. Luo C, Guldi DM, Maggini M, Manna E, Mondini S, Kotov NA, Prato M (2000) Angew Chem Int Ed 39:3905

    CAS  Google Scholar 

  35. Franklin B (1774) Phil Trans R Soc 64:445

    Google Scholar 

  36. Rayleigh Lord (1899) Phil Mag 48:321

    Google Scholar 

  37. Pockels A (1891) Nature 43:437

    Google Scholar 

  38. Deveaux H (1932) Kolloid Z 58:260

    Google Scholar 

  39. Hardy WB (1913) Pros R Soc London 88:303

    CAS  Google Scholar 

  40. Roberts GG (1985) Adv Phys 34:475

    CAS  Google Scholar 

  41. Langmuir I (1917) J Am Chem Soc 39:1848

    CAS  Google Scholar 

  42. Langmuir I (1920) Trans Faraday Soc 15:62

    CAS  Google Scholar 

  43. Blodgett KB (1935) J Am Chem Soc 57:1007

    CAS  Google Scholar 

  44. Gaines GL (1966) Insoluble monolayers at liquid–gas interface. Wiley, New York

    Google Scholar 

  45. Roberts GG (1984) Sens Actuat 4:131

    Google Scholar 

  46. Cotton FA, Rice CE, Rice GW (1977) J Am Chem Soc 99:4704

    CAS  Google Scholar 

  47. Sagiv J (1980) J Am Chem Soc 102:92

    CAS  Google Scholar 

  48. Netzer L, Sagiv J (1983) J Am Chem Soc 105:674

    CAS  Google Scholar 

  49. Iler R (1966) J Colloid Interface Sci 21:569

    CAS  Google Scholar 

  50. Decher G, Hong J D, Schmitt J (1992) Thin Solid Films 210/211:831

    Google Scholar 

  51. Decher G (1997) Science 277:1232

    CAS  Google Scholar 

  52. Decher G, Hong JD (1991) Makromol Chem Macromol Symp 46:321

    CAS  Google Scholar 

  53. Schmitt J (1992) Thin Solid Films 210/211:831

    Google Scholar 

  54. Decher G (1996) Comprehensive supramolecular chemistry, vol 9 templating, self-assembly, and self-organization. Pergamon, Oxford, 507

    Google Scholar 

  55. Knoll W (1996) Curr Opin Colloid Interface Sci 1:137

    CAS  Google Scholar 

  56. Ferreira M, Cheung JH, Rubner MF (1994) Thin Solid Films 244:806

    CAS  Google Scholar 

  57. Tripathy SK, Katagi H, Kasai H, Balasubramanian S, Oshikiri H, Kumar J, Oikawa H, Okada S, Nakanishi H (1998) Jpn J Appl Phys 37:343

    Google Scholar 

  58. Zucolotto V, Gattás-Asfura KM, Tumolo T, Perinotto AC, Antunes PA, Constantino CJL, Baptista MS, Leblanc RM, Oliveira Jr ON (2005) Appl Surface Sci 246:397

    Google Scholar 

  59. Fendler JH (1996) Chem Mater 8:1616

    CAS  Google Scholar 

  60. Cassagneau T, Fendler JH (1999) J Phys Chem B 103:1789

    CAS  Google Scholar 

  61. He J-A, Valluzzi R, Yang K, Dolukhanyan T, Sung CM, Kumar J, Tripathy SK, Samuelson L, Balogh L, Tomalia DA (1999) Chem Mater 11:3268

    CAS  Google Scholar 

  62. Ferreira M, Rubner MF, Hsieh BR (1994) Mater Res Soc Proc Symp 328:119

    CAS  Google Scholar 

  63. Fou AC, Onitsuka O, Ferreira M, Rubner MF, Hsieh BR (1995) Mater Res Soc Proc Symp 369:575

    CAS  Google Scholar 

  64. Onoda M, Yoshino K (1995) Jpn J Appl Phys 34:260

    Google Scholar 

  65. Fou AC, Onitsuka O, Ferreira M, Rubner MF, Hsieh BR (1996) J Appl Phys 79:7501

    CAS  Google Scholar 

  66. Lehr B, Seufert M, Wenz G, Decher G (1996) Supramol Sci 2:199

    Google Scholar 

  67. Stroeve P, Vasquez V, Coelho MAN, Rabolt JF (1996) Thin Solid Films 284:708

    Google Scholar 

  68. Levasalmi J, McCarthy TJ (1997) Macromolecules 30:1752

    Google Scholar 

  69. Laschewsky A, Mayer B, Wischerhoff E, Arys X, Bertrand P, Delcorte A, Jonas A (1996) Thin Solid Films 284:334

    Google Scholar 

  70. Lvov Y, Yamada S (1997) Kunitake T Thin Solid Films 300:107

    CAS  Google Scholar 

  71. Hammond P T, Whitesides G M (1995) Macromolecules 28:7569

    Google Scholar 

  72. Stepp J, Schlenoff JB (1997) J Electrochem Soc 144:155

    Google Scholar 

  73. Laurent D (1997) Schlenoff J B. Langmuir 13:1552

    CAS  Google Scholar 

  74. Sun Y, Zhang X, Sun C, Wang B, Shen J (1996) Macromol Chem Phys 197:147

    CAS  Google Scholar 

  75. Stockton WB, Rubner MF (1997) Macromolecules 30:2717

    CAS  Google Scholar 

  76. Wang LY, Wang ZQ, Zhang X, Shen JC (1997) Macromol Rapid Commun 18:509

    CAS  Google Scholar 

  77. Wang LY, Cui SX, Wang ZQ, Zhang X (2000) Langmuir 16:10490

    CAS  Google Scholar 

  78. Fu Y, Chen H, Qiu DL, Wang ZQ, Zhang X (2002) Langmuir 18:4989

    CAS  Google Scholar 

  79. Lee H, Kepley LJ, Hong HG, Mallouk TE (1988) J Am Chem Soc 110:618

    CAS  Google Scholar 

  80. Ichinose I, Senzu H, Kunitake T (1996) Chem Lett 10:831

    Google Scholar 

  81. Ichinose I, Senzu H, Kunitake T (1997) Chem Mater 9:1296

    CAS  Google Scholar 

  82. Lee S, Ichinose I, Kunitake T (1998) Langmuir 14:2857

    CAS  Google Scholar 

  83. Shimazaki Y, Mitsuishi M, Ito S, Yamamoto M (1997) Langmuir 13:1385

    CAS  Google Scholar 

  84. Serizawa T, Hamada K, Kitayama T, Fujimoto N, Hatadaand K, Akashi M (2000) J Am Chem Soc 122:1891

    CAS  Google Scholar 

  85. Serizawa T, Hamada K, Kitayama T, Katsukawa K, Hatadaand K, Akashi M (2000) Langmuir 16:7112

    CAS  Google Scholar 

  86. Hamada K, Serizawa T, Kitayama T, Fujimoto N, Hatadaand K, Akashi M (2001) Langmuir 17:5513

    CAS  Google Scholar 

  87. Cheng L, Dong SJ (1999) Electrochem Commun 1:159

    CAS  Google Scholar 

  88. Cheng L, Dong SJ (2000) J Electroanal Chem 481:168

    CAS  Google Scholar 

  89. Zhang D, Zhang K, Yao YL, Xia XH, Chen HY (2004) Langmuir 20:7303

    CAS  Google Scholar 

  90. Sun JQ, Gao MY, Zhu M, Feldmann J (2001) J Nanosci Nanotechnol 1:133

    CAS  Google Scholar 

  91. Ikeda A, Hatano T, Shinkai S, Akiyama T, Yamada S (2001) J Am Chem Soc 123:4855

    CAS  Google Scholar 

  92. Nakashima N, Tomonari Y, Murakami H (2002) Chem Lett 6:638

    Google Scholar 

  93. Guldi DM, Rahman GMA, Jux N, Tagmatarchis N, Prato M (2004) Angew Chem Int Ed 43:5526

    CAS  Google Scholar 

  94. Schütte M, Kurth DG, Linford MR, Cölfen H, Möhwald H (1998) Angew Chem Int Ed 37:2891

    Google Scholar 

  95. Kurth DG, Osterhout R (1999) Langmuir 15:4842

    CAS  Google Scholar 

  96. Emoto K, Iijima M, Nagasaki Y, Kataoka K (2000) J Am Chem Soc 122:2653

    Google Scholar 

  97. Ma N, Zhang HY, Song B, Wang ZQ, Zhang X (2005) Chem Mater 17:5065

    CAS  Google Scholar 

  98. Anzai J, Kobayashi Y, Nakamura N, Nishimura M, Hoshi T (1999) Langmuir 15:221

    CAS  Google Scholar 

  99. Ichinose I, Tagawa H, Mizuki S, Lvov Y, Kunitake T (1998) Langmuir 14:187

    CAS  Google Scholar 

  100. Langmuir I, Schaefer VJ (1938) J Am Chem Soc 60:1351

    CAS  Google Scholar 

  101. Schulman JH, Waterhouse RB, Spink JA (1956) Kolloid Z 146:77

    CAS  Google Scholar 

  102. Day D, Lando JB (1980) Macromelcules 13:1478

    CAS  Google Scholar 

  103. Gaines GL Jr (1980) Thin Solid Films 68:1

    CAS  Google Scholar 

  104. Barraud A, Rosilio C, Ruaudel-Teixier A (1980) Thin Solid Films 68:7

    CAS  Google Scholar 

  105. Bonnerot A, Chollet PA, Frisby H, Hoclet M (1985) Chem Phys 97:365

    CAS  Google Scholar 

  106. Kimura F, Umemura J, Takenaka T (1985) Langmuir 2:96

    Google Scholar 

  107. Clint JH, Walker T (1974) J Colloid Interface Sci 47:172

    CAS  Google Scholar 

  108. Petty MC (1996) Langmuir–Blodgett films – an introduction. Cambridge University Press, Cambridge p, 43

    Google Scholar 

  109. Laschewsky A (1997) European Chemistry Chronicle 2:13

    Google Scholar 

  110. Shiratori SS, Rubner MF (2000) Macromolecules 33:4213

    CAS  Google Scholar 

  111. Crespilho FN, Zucolotto V, Oliveira Jr ON, Nart FC (2006) Int J Electrochem Sci 1194

    Google Scholar 

  112. Yoo D, Shiratori S, Rubner MF (1998) Macromolecules 31:4309

    CAS  Google Scholar 

  113. Dubas ST, Schlenoff JB (2001) Macromolecules 34:3736

    CAS  Google Scholar 

  114. Dubas ST, Schlenoff JB (1999) Macromolecules 32:8153

    Google Scholar 

  115. Schoeler B, Kumaraswamy G, Caruso F (2002) Macromolecules 35:889

    CAS  Google Scholar 

  116. Steitz R, Jaeger W, Klitzing R (2001) Langmuir 17:4471

    Google Scholar 

  117. Decher G, Schlenoff JB (2002) Multilayer thin films. Wiley-VCH, Weinheim, 394

    Google Scholar 

  118. Hoogeveen NG, Stuart MAC, Fleer G, Böhmer MR (1996) Langmuir 12:3675

    CAS  Google Scholar 

  119. Diederich F, Kessinger R (1999) Acc Chem Res 32:537

    CAS  Google Scholar 

  120. Hirsch A (1999) Fullerenes and related structures. Top Curr Chem 199:1

    Google Scholar 

  121. Prato M, Maggini M (1998) Acc Chem Res 31:519

    CAS  Google Scholar 

  122. Haddon RC, Rao CNR, Govindaraj A, Andrews R, Jacques D, Qian D, Rantell T, Ouyang M, Huang JL, Lieber CM, Avouris P, Dai H, Zhou O, Shimoda H, Gao B, Oh S, Fleming L, Yue G, Sloan J, Kirkland AI, Hutchison JL, Green MLH, Charlier JC, Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Pimenta MA, Saito R, Fischer JE, Khabashesku VN, Billups WE, Margrave JL, Sun YP, Fu K, Lin Y, Huang W, Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME (2002) Special issue on carbon nanotubes. Acc Chem Res 35:997

    CAS  Google Scholar 

  123. Prato M (1997) J Mater Chem 7:1097

    CAS  Google Scholar 

  124. Prato M (1999) Top Curr Chem 199:173

    CAS  Google Scholar 

  125. Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Nature 350:600

    CAS  Google Scholar 

  126. Wang P, Metzger RM, Bandow S, Maruyama Y (1993) J Phys Chem 97:2926

    CAS  Google Scholar 

  127. Wang P, Maruyama Y, Metzger RM (1996) Langmuir 12:3932

    CAS  Google Scholar 

  128. Jehoulet C, Obeng YS, Kim YT, Zhou F, Bard AJ (1992) J Am Chem Soc 114:4237

    CAS  Google Scholar 

  129. Bulhoes LOS, Obeng YS, Bard AJ (1993) Chem Mater 5:110

    CAS  Google Scholar 

  130. Hirsch A (1994) The chemistry of the fullerenes. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  131. Martin N, Sanchez L, Illescas B, Perez I (1998) Chem Rev 98:2527

    CAS  Google Scholar 

  132. Back R, Lennox RB (1992) J Phys Chem 96:8149

    CAS  Google Scholar 

  133. Brousseau JL, Tian K, Gauvin S, Leblanc RM, Delhaes P (1994) Chem Phys Lett 202:521

    Google Scholar 

  134. Cardullo F, Diederich F, Echegoyen L, Habicher T, Jayaraman N, Leblanc RM, Stoddart JF, Wang S (1998) Langmuir 14:1955

    CAS  Google Scholar 

  135. Guldi DM, Tian Y, Fendler JH, Hungerbühler H, Asmus KD (1995) J Phys Chem 99:17673

    CAS  Google Scholar 

  136. Guldi DM, Tian Y, Fendler JH, Hungerbühler H, Asmus KD (1996) J Phys Chem 100:2753

    CAS  Google Scholar 

  137. Guldi D M, Asmus K D, Tian Y, Fendler J H (1996) Proc Electrochem Soc 3(96):501

    Google Scholar 

  138. Maggini M, Karlsson A, Pasimeni L, Scorrano G, Prato M, Valli L (1994) Tetrahedron Lett 35:2985

    CAS  Google Scholar 

  139. Maggini M, Pasimeni L, Prato M, Scorrano G, Valli L (1994) Langmuir 10:4164

    CAS  Google Scholar 

  140. Obeng YS, Bard AJ (1991) J Am Chem Soc 113:6279

    CAS  Google Scholar 

  141. Ravaine S, Agricole B, Mingotaud C, Cousseau J, Delhaes P (1995) Chem Phys Lett 242:478

    CAS  Google Scholar 

  142. Ravaine S, Mingotaud C, Delhaes P (1996) Synth Met 81:271

    CAS  Google Scholar 

  143. Ravaine S, Mingotaud C, Delhaes P (1996) Thin Solid Films 285:76

    Google Scholar 

  144. Tomioka Y, Ishibashi M, Kajiyama H, Taniguchi Y (1993) Langmuir 9:32

    CAS  Google Scholar 

  145. Vaknin D, Wang JY, Uphaus RA (1995) Langmuir 11:1435

    CAS  Google Scholar 

  146. Wang P, Chen B, Metzger RM, Da Ros T, Prato M (1997) J Mater Chem 7:2397

    CAS  Google Scholar 

  147. Wang S, Leblanc RM, Arias F, Echegoyen L (1997) Langmuir 13:1672

    CAS  Google Scholar 

  148. Wang S, Leblanc RM, Arias F, Echegoyen L (1998) Thin Solid Films 327:144

    Google Scholar 

  149. Shi X, Caldwell WB, Che K, Mirkin CA (1994) J Am Chem Soc 116:11598

    CAS  Google Scholar 

  150. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) J Phys Chem 97:3379

    CAS  Google Scholar 

  151. Felder D, Gallani JL, Guillon D, Heinrich B, Nicoud J-F, Nierengarten J-F (2000) Angew Chem Int Ed 39:201

    CAS  Google Scholar 

  152. Nierengarten J-F, Eckert J-F, Rio Y, del Pilar CM, Gallani J-L, Guillon D (2001) J Am Chem Soc 123:9743

    CAS  Google Scholar 

  153. Tkachenko NV, Guenther C, Imahori H, Tamaki K, Sakata Y, Fukuzumi S, Lemmetyinen H (2000) Chem Phys Lett 326:344

    CAS  Google Scholar 

  154. Lehtivuori H, Lemmetyinen H, Tkachenko NV (2006) J Am Chem Soc 128:16036

    CAS  Google Scholar 

  155. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College, London

    Google Scholar 

  156. Iijima S (1991) Nature London 354:56

    CAS  Google Scholar 

  157. de Heer WA, Bacsa WS, Châtelain A, Gerfin T, Humphrey-Baker R, Forro L, Ugarte D (1995) Science 268:845

    Google Scholar 

  158. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Science 280:1741

    Google Scholar 

  159. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    CAS  Google Scholar 

  160. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    CAS  Google Scholar 

  161. Wang QH, Setlur AA, Lauerhaas JM, Dai JY, Seelig EW, Chang RPH (1998) Appl Phys Lett 72:2912

    CAS  Google Scholar 

  162. Snow ES, Novak JP, Campbell PM, Park D (2003) Appl Phys Lett 82:2145

    CAS  Google Scholar 

  163. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Hadoon RC (1998) Science 282:95

    CAS  Google Scholar 

  164. O’Connel MJ (2001) Chem Phys Lett 342:265

    Google Scholar 

  165. Hirsch A (2002) Angew Chem Int Ed 41:1853

    CAS  Google Scholar 

  166. Sohn JI, Lee S, Song Y-H, Choi S-Y, Cho K-I, Nam K-S (2001) Appl Phys Lett 78:901

    CAS  Google Scholar 

  167. Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) J Am Chem Soc 125:11186

    CAS  Google Scholar 

  168. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Science 273:483

    CAS  Google Scholar 

  169. Li YL, Kinloch IA, Windle AH (2004) Science 304:276

    CAS  Google Scholar 

  170. Rao SG, Huang L, Setyawan W, Hong S (2003) Nature 425:36

    CAS  Google Scholar 

  171. Fischer JE, Zhou W, Vavro J, Llaguno MC, Guthy C, Haggenmueller R (2003) J Appl Phys 93:2157

    CAS  Google Scholar 

  172. Shimoda H, Fleming L, Horton K, Zhou O (2002) Physica B 323:135

    CAS  Google Scholar 

  173. Yamamoto K, Akita S, Nakayama Y (1998) J Phys 31:34

    Google Scholar 

  174. Kumar MS, Lee SH, Kim TY, Kim TH, Song SM, Yang JW, Nahm KS, Suh E-K (2003) Solid State Electron 47:2075

    Google Scholar 

  175. Gao J, Yu A, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004) J Am Chem Soc 126:16698

    CAS  Google Scholar 

  176. Armitage NP, Gabriel J-CP, Grüner G (2004) J Appl Phys 95:3228

    Google Scholar 

  177. Krstic V, Munster J, Duesberg GS, Philipp G, Burghard M, Roth S (2000) Synth Met 110:245

    CAS  Google Scholar 

  178. Hernández-López JL, Alvizo-Páez ER, Moya SE, Ruiz-Garcia J (2006) J Phys Chem B 110:23179

    Google Scholar 

  179. J Li, Zhang Y (2007) Carbon 45:493

    Google Scholar 

  180. Jia L, Zhang Y, Li J, You C, Xie E (2008) J Appl Phys 104:074318

    Google Scholar 

  181. Cui J, Daghlian CP, Gibson UJ (2005) J Phys Chem B 109:11456

    CAS  Google Scholar 

  182. Cui JB, Daghlian CP, Gibson UJ (2005) J Appl Phys 98:044320

    Google Scholar 

  183. Feng L, Li H, Li F, Shi Z, Gu Z (2003) Carbon 41:2385

    CAS  Google Scholar 

  184. Sun Q, Zorin NA, Chen D, Chen M, Liu T-X, Miyake J, Qian D-J (2010) Langmuir 26:10259

    CAS  Google Scholar 

  185. Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W-S, Dai H (2007) J Am Chem Soc 129:4890

    CAS  Google Scholar 

  186. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Nat Mater 1:190

    CAS  Google Scholar 

  187. Zhang M, Su L, Mao L (2006) Carbon 44:276

    CAS  Google Scholar 

  188. Lee SW, Kim B-S, Chen S, Shao-Horn Y, Hammond PT (2009) J Am Chem Soc 131:671

    CAS  Google Scholar 

  189. Brabec C, Dyakonov V, Parisi J, Sariciftci S (eds) (2003) In: Organic photovoltaics: concept and realization, Springer series in material science. Springer, Berlin

    Google Scholar 

  190. Brabec C, Scherf U, Dyakonov V (eds) (2008) In: Organic photovoltaics: materials, device physics, and manufacturing technologies, Wiley-VCH, New York

    Google Scholar 

  191. Archer MD, Nozik AJ (eds) (2009) In: Nanostructured and photoelectrochemical systems for solar photon conversion. Imperial College, London

    Google Scholar 

  192. Thimpson BC, Fréchet JM (2008) Angew Chem Int Ed 47:58

    Google Scholar 

  193. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617

    CAS  Google Scholar 

  194. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, Mcculloch I, Ha CS, Ree M (2006) Nat Mater 5:197

    CAS  Google Scholar 

  195. Balzani V (ed) (2001) In: Electron transfer in chemistry, Wiley-VCH, Weinheim

    Google Scholar 

  196. Blankenship R E (ed) (2002) In: Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  197. Collings A F, Critchley C (eds) (2006) In: Artificial photosynthesis: from basic biology to industrial application. Wiley-VCH, Weinheim

    Google Scholar 

  198. Chen HY, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Nature Photon 3:649

    CAS  Google Scholar 

  199. Mwaura JK, Pinto MR, Witker D, Ananthakrishnan N, Schanze KS, Reynolds JR (2005) Langmuir 21:10119

    CAS  Google Scholar 

  200. Sgobba V, Giancane G, Ruland A, Valli L, Manno D, Serra A, Farinola GM, Omar OH, Guldi DM (2010) Adv Funct Mat 20:2481

    Google Scholar 

  201. Bottari G, de la Torre G, Guldi DM, Torres T (2010) Chem Rev 110:6768

    Google Scholar 

  202. Guldi DM, Rahman GMA, Ehli C, Sgobba V (2006) Chem Soc Rev 35:471

    CAS  Google Scholar 

  203. Imahori H, Fukuzumi S (2004) Adv Funct Mat 14:525

    CAS  Google Scholar 

  204. Hasobe T (2010) Phys Chem Chem Phys 12:44

    CAS  Google Scholar 

  205. Guldi DM (2003) Pure Appl Chem 75:1069

    CAS  Google Scholar 

  206. Kamat PV (2007) J Phys Chem C 111:2834

    CAS  Google Scholar 

  207. Zasadzinski JA, Viswanathan R, Madsen L, Garnaes J, Schwartz DK (1994) Science 263:1726

    CAS  Google Scholar 

  208. Alekseev AS, Tkachenko NV, Tauber AY, Hynninen PH, Osterbacka R, Stubb H, Lemmetyinen H (2002) Chem Phys 275:243

    CAS  Google Scholar 

  209. Guldi DM, Zilbermann I, Anderson GA, Kordatos K, Prato M, Tafuro R, Valli L (2004) J Mat Chem 14:303

    CAS  Google Scholar 

  210. Conoci S, Guldi DM, Nardis S, Paolesse R, Kordatos K, Prato M, Ricciardi G, Graça M, Vicente H, Zilbermann I, Valli L (2004) Chem Eur J 10:6523

    CAS  Google Scholar 

  211. Sgobba V, Guldi DM, Casilli S, Conoci S, Giancane G, Prato M, Ricciardi G, Valli L (2007) J Am Chem Soc 129:3148

    CAS  Google Scholar 

  212. Marczak R, Sgobba V, Kutner W, Gadde S, D’Souza F, Guldi DM (2007) Langmuir 23:1917

    CAS  Google Scholar 

  213. Sakakibara K, Nakatsubo F (2008) Macromol Chem Phys 209:1274

    CAS  Google Scholar 

  214. Vivo P, Vuorinen T, Chukharev V, Tolkki A, Kaunisto K, Ihalainen P, Peltonen J, Lemmetyinen H (2010) J Phys Chem C114:8559

    Google Scholar 

  215. Caruso F, Niikura K, Furlong N, Okahata Y (1997) Langmuir 13:3427

    CAS  Google Scholar 

  216. Sgobba V, Rahman GMA, Guldi DM, Jux N, Campidelli S, Prato M (2006) Adv Mater 18:2264

    CAS  Google Scholar 

  217. Srivastava S, Kotov NA (2008) Acc Chem Res 41:1831

    CAS  Google Scholar 

  218. Hoven CV, Garcia A, Bazan GC, Nguyen TQ (2008) Adv Mater 20:1

    Google Scholar 

  219. Durstocka MF, Taylor B, Sprya RJ, Chiang L, Reulbacha S, Heitfelda K, Baur JW (2001) Synth Met 116:373

    Google Scholar 

  220. Mattoussi H, Rubner MF, Zhou F, Kumar J, Tripathy SK, Chiang LY (2000) Appl Phys Lett 77:1540

    CAS  Google Scholar 

  221. Baur JW, Durstock MF, Taylor BE, Spry RJ, Reulbach S, Chiang LJ (2001) Synth Met 121:1547

    CAS  Google Scholar 

  222. Durstock MF, Spry RJ, Baur JW, Taylor BE, Chiang Long Y (2003) J Appl Phys 94:3253

    Google Scholar 

  223. Guldi DM, Luo C, Koktysh D, Kotov NA, Ros TD, Bosi S, Prato M (2002) Nano Lett 2:775

    CAS  Google Scholar 

  224. Guldi DM, Pellarini F, Prato M, Granito C, Troisi L (2002) Nano Lett 2:965

    CAS  Google Scholar 

  225. Zilbermann I, Lin A, Hatzimarinaki M, Hirsch A, Guldi DM (2004) Chem Commun 96

    Google Scholar 

  226. Guldi D M, Zilbermann I, Anderson G, Li A, Balbinot D, Jux N, Hatzimarinaki M, Hirsch A, Prato M (2004) Chem Commun 726

    Google Scholar 

  227. Guldi DM, Zilbermann I, Anderson G, Kotov NA, Tagmatarchis N, Prato M (2005) J Mater Chem 15:114

    CAS  Google Scholar 

  228. Hatton RA, Miller AJ, Silva SRP (2008) J Mater Chem 18:1183

    Google Scholar 

  229. Sgobba V, Guldi DM (2008) J Mater Chem 18:153

    CAS  Google Scholar 

  230. Kymakis E, Amaratunga GAJ (2002) Appl Phys Lett 80:112

    CAS  Google Scholar 

  231. Kymakis E, Amaratunga GAJ (2003) Sol En Mater Sol Cells 80:465

    CAS  Google Scholar 

  232. Kymakis E, Alexandrou I, Amaratunga GAJ (2003) J Appl Phys 93:1764

    CAS  Google Scholar 

  233. Bhattachayya S, Kymakis E, Amaratunga GAJ (2004) Chem Mater 16:4819

    Google Scholar 

  234. Landi BJ, Raffaelle RP, Castro SL, Bailey G (2005) Prog Photovoltaics 13:165

    CAS  Google Scholar 

  235. Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) J Appl Phys 98:084314

    Google Scholar 

  236. Kymakis E, Koudoumas E, Franghiadakis I, Amaratunga GAJ (2006) J Phys D: Appl Phys 39:1058

    CAS  Google Scholar 

  237. Geng J, Zeng T (2006) J Am Chem Soc 128:16827

    CAS  Google Scholar 

  238. Nogueira AF, Lomba BS, Soto-Ovideo MA, Correia CRD, Corio P, Furtado CA, Hümmelegen IA (2007) J Phys Chem C 111:18431

    CAS  Google Scholar 

  239. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864

    CAS  Google Scholar 

  240. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Nat Mater 6:497

    CAS  Google Scholar 

  241. Ross RB, Cardona CM, Guldi DM, Gayathri Sankaranarayanan S, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M (2009) Nature Mat 8:208

    Google Scholar 

  242. Ross RB, Cardona CM, Swain FB, Guldi DM, Sankaranarayanan SG, Van Keuren E, Holloway BC, Drees M (2009) Adv Funct Mat 19:2332

    CAS  Google Scholar 

  243. Sgobba V, Guldi DM (2009) Chem Soc Rev 38:165

    CAS  Google Scholar 

  244. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Nature 382:54

    CAS  Google Scholar 

  245. Berber S, Kwon YK, Tománek D (2000) Phys Rev Lett 84:4613

    CAS  Google Scholar 

  246. Sgobba V, Guldi DM (2010) Electrochem Soc Interf 19:50

    CAS  Google Scholar 

  247. Cataldo F (2002) Fullerenes, Nanotubes. Carbon Nanostruct 10:293

    CAS  Google Scholar 

  248. Sgobba V, Rahman GMA, Guldi DM (2006) In: Carbon nanotubes in electron donor–acceptor nanocomposites – chemistry of carbon nanotubes. American Scientific Publishers, USA

    Google Scholar 

  249. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194

    Google Scholar 

  250. Guldi DM, Martin N (2010) (eds) In: Carbon nanotubes and related structures. Wiley-VCH, Weinheim

    Google Scholar 

  251. Langa de la Puente, F Nierengarten JF (eds) (2006) In: Fullerene, principles and applications. RSC Nanoscience and Nanotechnology Series, Cambridge

    Google Scholar 

  252. Guldi DM, Taieb H, Rahman GMA, Tagmatarchis N, Prato M (2005) Adv Mat 17:871

    CAS  Google Scholar 

  253. Didenko VV, Moore VC, Baskin DS, Smalley RE (2005) Nano Lett 5:1563

    CAS  Google Scholar 

  254. Guldi DM, Rahman GMA, Prato M, Jux N, Qin S, Ford W (2005) Angew Chem Int Ed 44:2015

    CAS  Google Scholar 

  255. Rahman GMA, Troeger A, Sgobba V, Guldi DM, Jux N, Tchoul MN, Ford WT, Mateo-Alonso A, Prato M (2008) Chem Eur J 14:8837

    CAS  Google Scholar 

  256. Guldi DM, Rahman GMA, Sgobba V, Kotov NA, Bonifazi D, Prato M (2006) J Am Chem Soc 128:2315

    CAS  Google Scholar 

  257. Rahman GMA, Guldi DM, Cagnoli R, Mucci A, Schenetti L, Vaccari L, Prato M (2005) J Am Chem Soc 127:10051

    CAS  Google Scholar 

  258. Sgobba V, Troeger A, Cagnoli R, Mateo-Alonso A, Prato M, Schenetti L, Guldi DM (2009) J Mat Chem 19:4319

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk M. Guldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Troeger, A., Sgobba, V., Guldi, D.M. (2013). Multilayer Assembly for Solar Energy Conversion. In: Nierengarten, JF. (eds) Fullerenes and Other Carbon-Rich Nanostructures. Structure and Bonding, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_112

Download citation

Publish with us

Policies and ethics