Skip to main content

Lanthanide-Based Materials for Electroluminescence

  • Chapter
  • First Online:
Modern Applications of Lanthanide Luminescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 19))

Abstract

Recent progress in electroluminescent lanthanide(III) complexes, luminescent polymers attached to lanthanide(III) complexes, and lanthanide(III) coordination polymers has been introduced for the fabrication of novel electroluminescence devices. A new electroluminescence system for future display and lighting devices is also described. Electroluminescence from lanthanide coordination compounds with high color purities (full widths at half maximum of emission bands <100 cm−1) is expected to open up a frontier field of future display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kido J, Nagai K, Ohashi Y (1990) Electroluminescence in a terbium complex. Chem Lett 19:657–660

    Article  Google Scholar 

  2. Kawamura Y, Wada Y, Hasegawa Y, Iwamuro M, Kitamura T, Yanagida S (1999) Observation of neodymium electroluminescence. Appl Phys Lett 74:3245–3247

    Article  CAS  Google Scholar 

  3. Wang L, Zhao Z, Wei C, Wei H, Liu Z (2019) Review on the electroluminescence study of lanthanide complexes. Adv Opt Mater 7:1801256

    Article  CAS  Google Scholar 

  4. Ibrahim-Ouali M, Dumur F (2019) Recent advances on metal-based near-infrared and infrared emitting OLEDs. Molecules 24:1412

    Article  CAS  PubMed Central  Google Scholar 

  5. Xu H, Sun O, An Z, Wei Y, Liu X (2015) Electroluminescence from europium(III) complexes, coordination chemistry reviews. Coord Chem Rev 293–294:228–249

    Article  CAS  Google Scholar 

  6. Hasegawa Y, Kitagawa Y, Nakanishi T (2018) Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes. NPG Asia Mater 10:52–70

    Article  CAS  Google Scholar 

  7. Ahmed Z, Iftikhar K (2015) Efficient layers of emitting ternary lanthanide complexes for fabricating red, green, and yellow OLEDs. Inorg Chem 54:11209–11225

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed Z, Iftikhar K (2019) Red, orange-red and near-infrared light emitting ternary lanthanide tris β-diketonate complexes with distorted C4v geometrical structures. Dalton Trans 48:4973–4986

    Article  CAS  PubMed  Google Scholar 

  9. Mikhalyova EA, Yakovenko AV, Zeller M, Kiskin MA, Kolomzarov YV, Eremenko IL, Addison AW, Pavlishchuk VV (2015) Manifestation of π−π stacking interactions in luminescence properties and energy transfer in aromatically-derived Tb, Eu and Gd tris(pyrazolyl)borate complexes. Inorg Chem 54:3125–3133

    Article  CAS  PubMed  Google Scholar 

  10. Behzad SK, Amini MM, Ghanbari M, Janghouri M, Anzenbacher Jr P, Ng SW (2017) Synthesis, structure, photoluminescence, and electroluminescence of four europium complexes: fabrication of pure red organic light-emitting diodes from europium complexes. Eur J Inorg Chem 2017:3644–3654

    Article  CAS  Google Scholar 

  11. Korshunov VM, Ambrozevich SA, Taydakov IV, Vashchenko AA, Goriachiy DO, Selyukov AS, Dmitrienko AO (2019) Novel β-diketonate complexes of Eu3+ bearing pyrazole moiety for bright. Dyes Pigments 163:291–299

    Article  CAS  Google Scholar 

  12. Shahalizad A, D’Aléo A, Andraud C, Sazzad MH, Kim D-H, Tsuchiya Y, Ribierre J-C, Nunzi J-M, Adachi C (2017) Near infrared electroluminescence from Nd(TTA)3phen in solution-processed small molecule organic light-emitting diodes. Org Electron 44:50–58

    Article  CAS  Google Scholar 

  13. Zhao B, Zhang H, Miao Y, Wang Z, Gao L, Wang H, Hao Y, Xu B, Li W (2017) Low turn-on voltage and low roll-off rare earth europium complex-based organic light-emitting diodes with exciplex as the host. J Mater Chem C 5:12182–12188

    Article  CAS  Google Scholar 

  14. Aslandukov AN, Utochnikova VV, Goriachiy DO, Vashchenko AA, Tsymbarenko DM, Hoffmann M, Pietraszkiewicz M, Kuzmina NP (2018) The development of a new approach toward lanthanide-based OLED fabrication: new host materials for Tb-based emitters. Dalton Trans 47:16350–16357

    Article  CAS  PubMed  Google Scholar 

  15. Zinna F, Pasini M, Galeotti F, Botta C, Di Bari L, Giovanella U (2017) Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. Adv Funct Mater 27:1603719

    Article  CAS  Google Scholar 

  16. Brandt JR, Wang X, Yang Y, Campbell AJ, Fuchter MJ (2016) Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J Am Chem Soc 138:9743–9746

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed Z, Aderne RE, Kai J, Resende JALC, Cremona M (2016) Synthesis and NIR-optoelectronic properties of a seven-coordinate ytterbium tris β-diketonate complex with C3v geometrical structure. Polyhedron 117:518–525

    Article  CAS  Google Scholar 

  18. Ahmed Z, Aderne RE, Kai J, Resende JALC (2017) Near infrared organic light emitting devices based on a new erbium(III) β-diketonate complex: synthesis and optoelectronic investigations. RSC Adv 7:18239–18251

    Article  CAS  Google Scholar 

  19. Yanagisawa K, Nakanishi T, Kitagawa Y, Seki T, Akama T, Kobayashi M, Taketsugu T, Ito H, Fushimi K, Hasegawa Y (2015) Seven-coordinate luminophores: brilliant luminescence of lanthanide complexes with C 3v geometrical structures. Eur J Inorg Chem 2015:4769–4774

    Article  CAS  Google Scholar 

  20. Yanagisawa K, Nakanishi T, Kitagawa Y, Seki T, Akama T, Kobayashi M, Fushimi K, Ito H, Taketsugu T, Hasegawa Y (2017) Enhanced luminescence of asymmetrical seven-coordinate EuIII complexes including LMCT perturbation. Eur J Inorg Chem 2017:3843–3848

    Article  CAS  Google Scholar 

  21. Ferreira da Rosa PP, Kitagawa Y, Hasegawa Y (2020) Luminescent lanthanide complex with seven-coordination geometry. Coord Chem Rev 406:213153

    Article  CAS  Google Scholar 

  22. Santos HP, Gomes ES, dos Santos MV, D'Oliveira KA, Cuin A, Martins JS, Quirino WG, Marques LF (2019) Synthesis, structures and spectroscopy of three new lanthanide β-diketonate complexes with 4,4′-dimethyl-2,2′-bipyridine. Near-infrared electroluminescence of ytterbium(III) complex in OLED. Inorg Chim Acta 484:60–68

    Article  CAS  Google Scholar 

  23. Kovalenko A, Rublev PO, Tcelykh LO, Goloveshkin AS, Lepnev LS, Burlov AS, Vashchenko AA, Marciniak Ł, Magerramov AM, Shikhaliyev NG, Vatsadze SZ, Utochnikova VV (2019) Lanthanide complexes with 2-(tosylamino)-benzylidene-N-(aryloyl)hydrazones: universal luminescent materials. Chem Mater 31:759–773

    Article  CAS  Google Scholar 

  24. Utochnikova VV, Kalyakina AS, Bushmarinov IS, Vashchenko AA, Marciniak L, Kaczmarek AM, Van Deun R, Bräse S, Kuzmina NPJ (2016) Lanthanide 9-anthracenate: solution processable emitters for efficient purely NIR emitting host-free OLEDs. J Mater Chem C 4:9848–9855

    Article  CAS  Google Scholar 

  25. Kozlov MI, Aslandukov A, Vashchenko AA, Medvedko AV, Aleksandrov AE, Grzibovskis R, Goloveshkin AS, Lepnev LS, Tameev AR, Vembris A, Utochnikova VV (2019) On the development of a new approach to the design of lanthanide-based materials for solution processed OLEDs. Dalton Trans 48:17298–17309

    Article  CAS  PubMed  Google Scholar 

  26. Jinnai K, Kabe R, Adachi C (2017) A near-infrared organic light-emitting diode based on an Yb(III) complex synthesized by vacuum co-deposition. Chem Commun 53:5457–5460

    Article  CAS  Google Scholar 

  27. Zhou L, Li L, Jiang Y, Cui R, Li Y, Zhao X, Zhang H (2015) Rare earth complex as electron trapper and energy transfer ladder for efficient red iridium complex based electroluminescent devices. ACS Appl Mater Interfaces 7:16046–16053

    Article  CAS  PubMed  Google Scholar 

  28. Cui R, Liu W, Zhou L, Zhao X, Jiang Y, Zheng Y, Zhang H (2017) High performance red phosphorescent organic electroluminescent devices with characteristic mechanisms by utilizing terbium or gadolinium complexes as sensitizers. J Mater Chem C 5:2066–2073

    Article  CAS  Google Scholar 

  29. Ilmi R, Khan MS, Li Z, Zhou L, Wong WY, Marken F, Raithby PR (2019) Utilization of ternary europium complex for organic electroluminescent devices and as a sensitizer to improve electroluminescence of red-emitting iridium complex. Inorg Chem 58:8316–8331

    Article  CAS  PubMed  Google Scholar 

  30. Xu H, Zhu R, Zhao P, Huang W (2011) Monochromic red-emitting nonconjugated copolymers containing double-carrier-trapping phosphine oxide Eu3+ segments: toward bright and efficient electroluminescence. J Phys Chem C 115:15627–15638

    Article  CAS  Google Scholar 

  31. Xu H, Zhu R, Zhao P, Xie L, Huang W (2011) Photophysical and electroluminescent properties of a series of monochromatic red-emitting europioum-complexed nonconjugated copolymers based on diphenylphosphine oxide modified polyvinylcarbazole. Polymer 52:804–813

    Article  CAS  Google Scholar 

  32. Yang C, Xu J, Zhang Y, Li Y, Zheng J, Lianga L, Lu M, Lianga L, Lu M (2013) Efficient monochromatic red-light-emitting PLEDs based on a series of nonconjugated Eu-polymers containing a neutral terpyridyl ligand. J Mater Chem C 1:4885–4901

    Article  CAS  Google Scholar 

  33. Fu G, Guan J, Li B, Liu L, He Y, Yu C, Zhang Z, Lu X (2018) An efficient and weak efficiency-roll-off nearinfrared (NIR) polymer light-emitting diode (PLED) based on a PVK-supported Zn2+–Yb3+-containing metallopolymer. J Mater Chem C 6:4114–4121. 2018

    Article  CAS  Google Scholar 

  34. Rocha J, Carlos LD, Paza FAA, Ananias D (2011) Chem Soc Rev 40:926–940

    Article  CAS  PubMed  Google Scholar 

  35. Harbuzaru BV, Corma A, Rey F, Atienzar P, Jord JL, Garc H, Ananias D, Carlos LDJ, Rocha J (2008) Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew Chem Int Ed 47:1080–1083

    Article  CAS  Google Scholar 

  36. Miyata K, Ohba T, Kobayashi A, Kato M, Nakanishi T, Fushimi K, Hasegawa Y (2012) Thermostable organo-phosphor: low-vibrational coordination polymers that exhibit different intermolecular interactions. ChemPlusChem 77:277–280

    Article  CAS  Google Scholar 

  37. Miyata K, Konno Y, Nakanishi T, Kobayashi A, Kato M, Fushimi K, Hasegawa Y (2013) Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. Angew Chem Int Ed 52:6413–6416

    Article  CAS  Google Scholar 

  38. Nakajima A, Nakanishi T, Kitagawa Y, Seki T, Ito H, Fushimi K, Hasegawa Y (2016) Hyper-stable organo-EuIII luminophore under high temperature for photo-industrial application. Sci Rep 6:24458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirai Y, Nakanishi T, Kitagawa Y, Fushimi K, Seki T, Ito H, Hasegawa Y (2016) Luminescent EuIII coordination zippers linked with thiophene-based bridges. Angew Chem Int Ed 55:12059–12062

    Article  CAS  Google Scholar 

  40. Hasegawa Y, Tateno S, Yamamoto M, Nakanishi T, Kitagawa Y, Seki T, Ito H, Fushimi K (2017) Effective photo- and triboluminescent EuIII coordination polymers with rigid triangular spacer ligands. Chem Eur J 23:2666–2672

    Article  CAS  PubMed  Google Scholar 

  41. Hirai Y, Nakanishi T, Kitagawa Y, Fushimi K, Seki T, Ito H, Hasegawa Y (2017) Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents. Angew Chem Int Ed 56:7171–7175

    Article  CAS  Google Scholar 

  42. Yamamoto M, Kitagawa Y, Nakanishi T, Fushimi K, Hasegawa Y (2018) Ligand-assisted back energy transfer in luminescent Tb(III) complexes for thermo-sensing properties. Chem Eur J 24:17719–17726

    Article  CAS  PubMed  Google Scholar 

  43. Hasegawa Y, Miura Y, Kitagawa Y, Wada S, Nakanishi T, Fushimi K, Seki T, Ito H, Iwasa T, Taketsugu T, Gon M, Tanaka K, Chujo Y, Hattori S, Karasawa M, Ishii K (2018) Spiral Eu(III) coordination polymers with circularly polarized luminescence. Chem Commun 54:10695–10697

    Article  CAS  Google Scholar 

  44. Hasegawa Y, Matsui T, Kitagawa Y, Nakanishi T, Seki T, Ito H, Nakasaka Y, Masuda T, Fushimi K (2019) Near-IR luminescent Yb(III) coordination polymers composed of pyrene derivatives for thermo-stable oxygen sensors. Chem Eur J 25:12308–12315

    Article  CAS  PubMed  Google Scholar 

  45. Hasegawa Y, Nakanishi T (2015) Luminescent lanthanide coordination polymers for photonic applications. RSC Adv 5:338–353

    Article  CAS  Google Scholar 

  46. Nishiyabu R, Hashimoto N, Cho T, Watanabe K, Yasunaga T, Endo A, Kaneko K, Niidome T, Murata M, Adachi C, Katayama Y, Hashizume M, Kimizuka N (2009) Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J Am Chem Soc 131:2151–2158

    Article  CAS  PubMed  Google Scholar 

  47. Hiromitsu O, Nakanishi T, Fushimi K, Hasegawa Y (2014) Thermo-stable lanthanoid coordination nanoparticles composed of luminescent Eu(III) complexes and organic joint ligands using micelle techniques in water. Bull Chem Soc Jpn 87:1386–1390

    Article  CAS  Google Scholar 

  48. Saji T, Hoshino K, Ishii Y, Goto M (1991) Formation of organic thin films by electrolysis of surfactants with the ferrocenyl moiety. J Am Chem Soc 113:450–456

    Article  CAS  Google Scholar 

  49. Hasegawa Y, Sugawara T, Nakanishi T, Kitagawa Y, Takada M, Niwa A, Naito H, Fushimi K (2016) Luminescent thin films composed of nanosized europium coordination polymers on glass electrodes. ChemPlusChem 81:187–193

    Article  CAS  PubMed  Google Scholar 

  50. Hasegawa Y, Natori S, Fukudome J, Nagase T, Kobayashi T, Nakanishi T, Kitagawa Y, Fushimi K, Naito H (2018) Effective europium coordination luminophores linked with bi- and tridentate carbazole phosphine oxides for organic electroluminescent devices. J Phys Chem C 122:9599–9605

    Article  CAS  Google Scholar 

  51. Xu H, Wang J, Wei Y, Xie G, Xue Q, Denga Z, Huang WA (2015) A unique white electroluminescent one-dimensional europium(III) coordination polymer. J Mater Chem C 3:1893–1903

    Article  CAS  Google Scholar 

  52. Niikura K, Metzger A, Anslyn EV (1998) Chemosensor ensemble with selectivity for inositol-trisphosphate. J Am Chem Soc 120:8533–8534

    Article  CAS  Google Scholar 

  53. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  PubMed  Google Scholar 

  54. De Silva AP, McClenaghan ND (2004) Molecular-scale logic gates. Chem Eur J 10:574–586

    Article  PubMed  CAS  Google Scholar 

  55. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) A digital fluorescent molecular photoswitch. Nature 420:759–760

    Article  CAS  PubMed  Google Scholar 

  56. Bechinger C, Ferrere S, Zaban A, Sprague J, Gregg BA (1996) Photoelectrochromic windows and displays. Nature 383:608–610

    Article  CAS  Google Scholar 

  57. Nakamura K, Kanazawa K, Kobayashi N (2011) Electrochemically controllable emission and coloration by using europium(III) complex and viologen derivatives. Chem Commun 47:10064–10066

    Article  CAS  Google Scholar 

  58. Kanazawa K, Komiya Y, Nakamura K, Kobayashi N (2017) Red luminescence control of Eu(III) complexes by utilizing the multi-colored electrochromism of viologen derivatives. Phys Chem Chem Phys 19:16979–16988

    Article  CAS  PubMed  Google Scholar 

  59. Li G, Tian Y, Zhao Y, Lin J (2015) Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem Soc Rev 44:8688–8713

    Article  CAS  PubMed  Google Scholar 

  60. Qin X, Liu X, Huang W, Bettinelli M, Liu X (2017) Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem Rev 117:4488–4527

    Article  CAS  PubMed  Google Scholar 

  61. Kim D, Kim S-C, Bae J-S, Kim S, Kim S-J, Park J-C (2016) Eu2+-activated alkaline-earth halophosphates, M5(PO4)3X:Eu2+ (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: site-selective crystal field effect. Inorg Chem 55:8359–8370

    Article  CAS  PubMed  Google Scholar 

  62. Xie R-J, Hirosaki N, Li H-L, Li Y-Q, Mitomo M (2007) Synthesis and photoluminescence properties of β-SIALON: Eu2+(Si6-zAlzOzN8-z:Eu2+) a promising green oxynitride phosphor for white light-emitting diodes. J Electrochem Soc 154:J314–J319

    Article  CAS  Google Scholar 

  63. Li Y-Q, van Steen JEJ, van Krevel JWH, Botty G, Delsing ACA, DiSalvo FJ, de With G, Hintzen HT (2006) Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors. J Alloys Compd 417:273–279

    Article  CAS  Google Scholar 

  64. Uheda K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H (2006) Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Solid-State Lett 9:H22–H25

    Article  CAS  Google Scholar 

  65. Qiu X, Lo JCC, Lee SWR (2017) Packaging of UV LED with a stacked silicon reflector for converged UV emission. In: ICEP proceedings, pp 259–263

    Google Scholar 

  66. Koizuka T, Yanagisawa K, Hirai Y, Kitagawa Y, Nakanishi T, Fushimi K, Hasegawa Y (2018) Red luminescent Eu(III) coordination bricks excited on blue LED. Inorg Chem 57:7097–7103

    Article  CAS  PubMed  Google Scholar 

  67. Hasegawa Y, Murakoshi K, Wada Y, Yanagida S, Kim J-O, Nakashima N, Yamanaka T (1996) Enhancement of luminescence of Nd3+ complexes with deuterated hexafluoroacetylacetonato ligands in organic solvent. Chem Phys Lett 248:8–12

    Article  CAS  Google Scholar 

  68. Hasegawa Y, Kimura Y, Murakoshi K, Wada Y, Kim J-O, Nakashima N, Yamanaka T, Yanagida S (1996) Enhanced emission of deuterated tris(hexafluoroacetylacetonato) neodymium(III) complex in solution by suppression of radiationless transition via vibrational excitation. J Phys Chem 100:10201–10205

    Article  CAS  Google Scholar 

  69. Yanagida S, Hasegawa Y, Murakoshi K, Wada Y, Nakashima N, Yamanaka T (1998) Strategies for enhancing photoluminescence of Nd3+ in liquid media. Coord Chem Rev 171:461–480

    Article  CAS  Google Scholar 

  70. Hasegawa Y, Ohkubo T, Sogabe K, Kawamura Y, Wada Y, Nakashima N, Yanagida S (2000) Luminescence of novel neodymium sulfonylaminate complexes in organic media. Angew Chem Int Ed 39:357–360

    Article  CAS  Google Scholar 

  71. Wada Y, Okubo T, Ryo M, Nakazawa T, Hasegawa Y, Yanagida S (2000) High efficiency near-IR emission of Nd(III) based on lowvibrational environment in cages of nanosized zeolites. J Am Chem Soc 122:8583–8584

    Article  CAS  Google Scholar 

  72. Hasegawa Y, Yamamuro M, Wada Y, Kanehisa N, Kai Y, Yanagida S (2003) Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency. J Phys Chem A 107:1697–1702

    Article  CAS  Google Scholar 

  73. Nakamura K, Hasegawa Y, Kawai H, Yasuda N, Kanehisa N, Kai Y, Nagamura T, Yanagida S, Wada Y (2007) Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands. J Phys Chem A 111:3029–3037

    Article  CAS  PubMed  Google Scholar 

  74. Miyata K, Nakagawa T, Kawakami R, Kita Y, Sugimito K, Nakashima T, Harada T, Kawai T, Hasegawa Y (2011) Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures. Chem Eur J 17:521–528

    Article  CAS  PubMed  Google Scholar 

  75. Hasegawa Y, Ohkubo T, Nakanishi T, Kobayashi A, Kato M, Seki T, Ito H, Fushimi K (2013) Effect of ligand polarization on asymmetric structural formation for strongly luminescent lanthanide complexes. Eur J Inorg Chem:5913–5918

    Google Scholar 

  76. Hasegawa Y, Sato N, Hirai Y, Nakanishi T, Kitagawa Y, Kobayashi A, Kato M, Seki T, Ito H, Fushimi K (2015) Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units. J Phys Chem A 119:4825–4833

    Article  CAS  PubMed  Google Scholar 

  77. Kitagawa Y, Kumagai M, Ferreira da Rosa PP, Fushimi K, Hasegawa Y (2020) First demonstration of the π–f orbital interaction depending on the coordination geometry in Eu(III) luminophores. Dalton Tran 49:3098. https://doi.org/10.1039/d0dt00528b

    Article  CAS  Google Scholar 

  78. Kataoka H, Kitano T, Takizawa T, Hirai Y, Nakanishi T, Hasegawa Y (2014) Photo- and thermo-stable luminescent beads composed of Eu(III) complexes and PMMA for enhancement of silicon solar cell efficiency. J Alloys Compd 601:293–297

    Article  CAS  Google Scholar 

  79. Kataoka H, Omagari S, Nakanishi T, Hasegawa Y (2015) EVA thin film with thermo- and moisture-stable luminescent copolymer beads composed of Eu(III) complexes for improvement of energy conversion efficiency on silicon solar cell. Opt Mater 42:411–416

    Article  CAS  Google Scholar 

  80. Kataoka H, Nakanishi T, Omagari S, Takabatake Y, Kitagawa Y, Hasegawa Y (2016) Drastically improved durability and efficiency of silicon solar cells using hyper-stable lanthanide coordination polymer beads. Bull Chem Soc Jpn 89:103–109

    Article  CAS  Google Scholar 

  81. Kitagawa Y, Suzue F, Nakanishi T, Fushimi K, Seki T, Ito H, Hasegawa Y (2020) Stacked nanocarbon photosensitizer for efficient blue light excited Eu(III) emission. Commun Chem. https://doi.org/10.1038/s42004-019-0251-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuchika Hasegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasegawa, Y., Kitagawa, Y. (2021). Lanthanide-Based Materials for Electroluminescence. In: de Bettencourt-Dias, A. (eds) Modern Applications of Lanthanide Luminescence. Springer Series on Fluorescence, vol 19. Springer, Cham. https://doi.org/10.1007/4243_2020_14

Download citation

Publish with us

Policies and ethics