Skip to main content

History and Outlook for Glyphosate-Resistant Crops

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 255

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 255))

Abstract

Glyphosate-resistant (GR) crops, commercially referred to as glyphosate-tolerant (GT), started the revolution in crop biotechnology in 1996. Growers rapidly accepted GR crops whenever they became available and made them the most rapidly adopted technology in agriculture history. Adoption usually meant sole reliance on glyphosate [N-(phosphonomethyl)glycine, CAS No. 1071-83-6] for weed control. Not surprisingly, weeds eventually evolved resistance and are forcing growers to change their weed management practices. Today, the widespread dissemination of GR weeds that are also resistant to other herbicide modes-of-action (MoA) has greatly reduced the value of the GR crop weed management systems. However, growers continue to use the technology widely in six major crops throughout North and South America. Integrated chemistry and seed providers seek to sustain glyphosate efficacy by promoting glyphosate combinations with other herbicides and stacking the traits necessary to enable the use of partner herbicides. These include glufosinate {4-[hydroxy(methyl)phosphinoyl]-DL-homoalanine, CAS No. 51276-47-2}, dicamba (3,6-dichloro-2-methoxybenzoic acid, CAS No. 1918-00-9), 2,4-D [2-(2,4-dichlorophenoxy)acetic acid, CAS No. 94-75-7], 4-hydroxyphenyl pyruvate dioxygenase inhibitors, acetyl coenzyme A carboxylase (ACCase) inhibitors, and other herbicides. Unfortunately, herbicide companies have not commercialized a new MoA for over 30 years and have nearly exhausted the useful herbicide trait possibilities. Today, glyphosate-based crop systems are still mainstays of weed management, but they cannot keep up with the capacity of weeds to evolve resistance. Growers desperately need new technologies, but no technology with the impact of glyphosate and GR crops is on the horizon. Although the expansion of GR crop traits is possible into new geographic areas and crops such as wheat and sugarcane and could have high value, the Roundup Ready® revolution is over. Its future is at a nexus and dependent on a variety of issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACCase:

Acetyl coenzyme A carboxylase

ALS:

Acetolactate synthase

EFSA:

European Food Safety Authority

EPA:

Environmental Protection Agency

GM:

Genetically modified

GST:

Glutathione-S-transferase

HPPD:

4-Hydroxyphenyl pyruvate dioxygenase

HR:

Herbicide-resistant

HT:

Herbicide-tolerant

IP:

Intellectual property

ISAAA:

International Service for the Acquisition of Agri-Biotech Applications

NTO:

Nontarget organism

NTSR:

Non-target site resistance

PDS:

Phytoene desaturase

PPO:

Protoporphyrinogen oxidase

PSII:

Photosystem II

References

  • Abnewswire (2016) Global glyphosate market is expected to cross US$ 10.0 Billion by 2021. Abnewswire http://www.abnewswire.com/pressreleases/global-glyphosate-market-is-expected-to-cross-us-100-billion-by-2021-by-market-research-engine_52900.html

  • Allen J, Hinz J, Essner FJ, Van Wert S (2012) Introducing a new soybean event with glyphosate and HPPD tolerance. Abstr Weed Sci Soc Am 52:190

    Google Scholar 

  • Baek Y, Bobadilla LK, Giacomini DA, Montgomery JS, Murphy BP, Tranel PJ (2021) Evolution of glyphosate-resistant weeds. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2020_55

  • Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM (2002) Glyphosate-resistant goosegrass: identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barry GF, Kishore GA (1995) Glyphosate tolerant plants. 5,463,175. US Patent

    Google Scholar 

  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher D, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, pp 139–145

    Google Scholar 

  • Beckie HJ, Flower KC, Ashworth MB (2020) Farming without glyphosate. Plan Theory 9:96. https://doi.org/10.3390/plants9010096

    Article  CAS  Google Scholar 

  • Behrens MR, Mutlu N, Cjalrabprtu S, Dumitru R, Jiang WZ, LaVallee BJ, Herman PL, Clemente TE, Weeks DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188

    CAS  PubMed  ADS  Google Scholar 

  • Binimelis R, Pengue W, Monterroso I (2009) “Transgenic treadmill”: responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina. Geoforum 40:623–633

    Google Scholar 

  • Bøhn T, Millstone E (2019) The introduction of thousands of tonnes of glyphosate in the food chain – an evaluation of glyphosate tolerant soybeans. Foods 8:669. https://doi.org/10.3390/foods8120669

    Article  CAS  PubMed Central  Google Scholar 

  • Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154:127–133

    CAS  PubMed  Google Scholar 

  • Bradley K (2018) July 15 dicamba injury update. Different year, same questions. University of Missouri Integrated Pest Management, Columbia. https://ipm.missouri.edu/ipcm/2018/7/July-15-Dicamba-injury-update-different-year-same-questions/

    Google Scholar 

  • Brookes G, Taheripour F, Tyner W (2017) The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops Food 8:216–228

    PubMed  PubMed Central  Google Scholar 

  • Castle LA, Siehl DL, Gorton DL, Patten PA, Chen YH, Certain S, Cho H-J, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of glyphosate tolerance gene. Science 304:1151–1154

    CAS  PubMed  ADS  Google Scholar 

  • Charles D (2001) Lords of the harvest: biotech, big money, and the future of food. Perseus Publishing, Cambridge, 348 pp

    Google Scholar 

  • Chen J, Huang H, Zhang C, Wei S, Huang Z, Chen J, Wang X (2015) Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica). Planta 242:859–868

    CAS  PubMed  Google Scholar 

  • Crop Life America (2012) Getting a biotech crop to the market. Crop Life America, Washington. http://croplife.org/wp-content/uploads/2014/04/Fact-Sheet-Getting-a-Biotech-Crop-to-Market.pdf

    Google Scholar 

  • Crop Life America (2016) A consultancy study for CropLife America. Crop Life America, Washington. http://croplifeamerica.org/wpcontent/uploads/2016/04/Phillips-McDougall-Final-Report_4.6.16.pdf

    Google Scholar 

  • Dayan FE (2019) Current status and future prospects in herbicide discovery. Plan Theory 8(9):341. https://doi.org/10.3390/plants8090341

    Article  CAS  Google Scholar 

  • Délye C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176–187

    PubMed  Google Scholar 

  • Dong Y, Ng E, Lu J, Fenwick T, Tao Y, Bertain S, Sandoval M, Bermudez E, Hou Z, Patten P, Lassner M, Siehl D (2019) Desensitizing plant EPSP synthase to glyphosate: optimized global sequence context accommodates a glycine-to-alanine change in the active site. J Biol Chem 294:716–725

    CAS  PubMed  Google Scholar 

  • Duke SO (2011) Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds. J Agric Food Chem 59:5835–5841

    CAS  PubMed  Google Scholar 

  • Duke SO (2021) Glyphosate: uses other than in glyphosate-resistant crops, mode of action, degradation in plants, and effects on non-target plants and agricultural microbe. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2020_53

  • Duke SO, Powles SB (2008) Glyphosate: A once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Google Scholar 

  • Duke SO, Powles SB (2009) Glyphosate-resistant crops and weeds: now and in the future. AgBioforum 12:346–357

    Google Scholar 

  • Eschenburg S, Healy ML, Priestman MA, Lushington GH, Schönbrunn E (2002) How the mutation glycine96 to alanine confers glyphosate insensitivity to 5-enolpyruvyl shikimate-3-phosphate synthase from Escherichia coli. Planta 216:129–135

    Google Scholar 

  • Egan JF, Barlow KM, Mortensen DA (2014) A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62:193–206

    CAS  Google Scholar 

  • Elmore GA, Roeth FW, Nelson LA, Shapiro CA, Klein RN, Knezevic SZ et al (2001) Glyphosate-resistant soybean cultivar yields compared with sister lines. Agron J 93:408–412

    Google Scholar 

  • EPA (2018) EPA announces changes to dicamba registration. https://www.epa.gov/newsreleases/epa-announces-changes-dicamba-registration

  • EPA (2020) EPA announces 2020 dicamba registration decision. https://www.epa.gov/newsreleases/epa-announces-2020-dicamba-registration-decision

  • Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E (2006) Molecular basis for the herbicide resistance of roundup ready crops. Proc Natl Acad Sci U S A 103:13010–13015

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Funke T, Yang Y, Han H, Healy-Fried M, Olesen S, Becker A, Schönbrunn E (2009) Structural basis of glyphosate resistance resulting from the double mutation Thr-97 3 Ile and Pro-101 3 Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli. J Biol Chem 284:9854–9860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–1105

    CAS  PubMed  Google Scholar 

  • Green JM (2009) Evolution of glyphosate-resistant crop technology. Weed Sci 57:108–117

    CAS  Google Scholar 

  • Green JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68:1323–1331

    Google Scholar 

  • Green JM (2014) Current state of herbicides in herbicide-resistant crops. Pest Manag Sci 70:1351–1367

    CAS  PubMed  Google Scholar 

  • Green JM (2018) The rise and future of glyphosate and glyphosate-resistant crops. Pest Manag Sci 74:1035–1039

    CAS  PubMed  Google Scholar 

  • Green JM, Castle LA (2010) Transitioning from single to multiple herbicide-resistant crops. In: Nandula VK (ed) Glyphosate resistance in crops and weeds: history, development, and management. Wiley, Hoboken, pp 67–91

    Google Scholar 

  • Green JM, Owen MDK (2011) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem 59:5819–5829

    CAS  PubMed  Google Scholar 

  • Green JM, Hale T, Pagano MA, Andreassi JL II, Gutteridge SA (2009) Response of 98140 corn with gat4621 and hra transgenes to glyphosate and ALS-inhibiting herbicides. Weed Sci 57:142–148

    CAS  Google Scholar 

  • Hager A (2019) Observations from the field: dicamba. The bulletin. University of Illinois Extension, Urbana. http://bulletin.ipm.illinois.edu/?page_id=1196&pf=4834

    Google Scholar 

  • Hammond B, Kough J, Herouet-Guicheney H, Jez JM (2013) Toxicological evaluation of proteins introduced into food crops. Crit Rev Toxicol 43:25–42. https://doi.org/10.3109/10408444.2013.842956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han H, Yu Q, Owen MJ, Cawthray GR, Powles SB (2016) Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations. Pest Manag Sci 72:255–263

    CAS  PubMed  Google Scholar 

  • Han H, Vila-Aiub MM, Jalaludin A, Yu Q, Powles SB (2017) A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. Plant Cell Environ 40:3031–3042

    CAS  PubMed  Google Scholar 

  • Heacox L (2015) Spray drift enters more complex era. CropLife. http://www.croplife.com/crop-inputs/adjuvants/spray-drift-enters-more-complex-era/

  • Healy-Fried ML, Funke T, Priestman MA, Han H, Schönbrunn E (2007) Structural basis of glyphosate tolerance resulting from mutations of Pro-101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. J Biol Chem 282:32949–32955

    CAS  PubMed  Google Scholar 

  • Heap I (2020) International survey of herbicide resistant weeds. http://www.weedscience.org/summary/Species.aspx. Accessed 14 May 2020

  • Hove-Jensen B, Zechel DL, Jochimsen B (2014) Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 78:176–197

    PubMed  PubMed Central  Google Scholar 

  • Huffman JL, Riggins CW, Steckel LE, Tranel PJ (2016) The EPSPS Pro106Ser substitution solely accounts for glyphosate resistance in a goosegrass (Eleusine indica) population from Tennessee, United States. J Integr Agric 15:1304–1312

    Google Scholar 

  • ISAAA (2020) GM approval database http://www.isaaa.org/gmapprovaldatabase/

  • Kabat B (2019) Who’s afraid of roundup. Iss Sci Technol 36:64–73

    Google Scholar 

  • Kaskey J, Mulvany L (2016) Monsanto seeds unleash unintended consequences across US farms. Bloomberg. http://www.bloomberg.com/news/articles/2016-09-01/a-soybean-killing-pesticide-spreads-across-america-s-farm-belt

  • Kaundun SS, Dale RP, Zelaya IA, Dinelli G, Marotti I, McIndoe E, Cairns A (2011) A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a south African Lolium rigidum population. J Agric Food Chem 59:3227–3233

    CAS  PubMed  Google Scholar 

  • Kirkwood R, Hetherington R, Reynolds TL, Marshall G (2000) Absorption, localisation, translocation and activity of glyphosate in barnyard grass (Echinochloa crus-galli (L) Beauv): influence of herbicide and surfactant concentration. Pest Manag Sci 56:359–367

    CAS  Google Scholar 

  • Kishore G, Padgette S, Fraley R (1992) History of herbicide-tolerant crops, methods of development and current state of the art – emphasis on glyphosate tolerance. Weed Technol 6:626–634

    CAS  Google Scholar 

  • Komossa D, Gennity I, Sanderman H (1992) Plant metabolism of herbicides with C-P bonds: Glyphosate. Pestic Biochem Physiol 43:85–94

    Google Scholar 

  • Li X, Nicholl D (2005) Development of PPO inhibitor-resistant cultures and crops. Pest Manag Sci 61:277–285

    CAS  PubMed  Google Scholar 

  • Li M, Tank H, Kennedy A, Zhang H, Downer B, Ouse D, Liu L (2013) Enlist duo herbicide: a novel 2,4-D plus glyphosate premix formulation with low potential for off-target movement. In: Bernards ML (ed) Pesticide formulations and delivery systems: 32nd volume, innovating legacy products for new uses. American Society for Testing Materials International, West Conshohocken, pp 125–161

    Google Scholar 

  • Li J, Peng Q, Han H, Nyporko A, Kulynych T, Yu Q, Powles S (2018) Glyphosate resistance in Tridax procumbens via a novel EPSPS Thr-102-Ser substitution. J Agric Food Chem 66:7880–7888

    CAS  PubMed  Google Scholar 

  • Lu J, Dong Y, Ng EC, Siehl DL (2017) Novel form of the Michaelis-Menten equation that enables accurate estimation of (Kcat/Km)*Ki with just two rate measurements: utility in directed evolution. Protein Eng Des Sel 30:295–299

    Google Scholar 

  • Meyer JJ (2006) Petition for the determination of nonregulated status for roundup RReady2Yield™ Soybean MON 89788. https://www.aphis.usda.gov/brs/aphisdocs/06_17801p.pdf

  • Mezzomo BP, Miranda-Vilela A-L, de Souza FI, Barbosa LCP, Portilho FA, Lacava ZGM, Grisolia CK (2013) Hematotoxicity of Bacillus thuringiensis as spore-crystal strains Cry1Aa, Cry1Ab, Cry1Ac or Cry2Aa in Swiss Albino Mice. J Hematol Thromb Dis 1:104

    Google Scholar 

  • Miller B, Manley BA, Terpstra K, Vail G, Silverstone A, Allen J, Fischer J, Hinz J, Bloomberg J (2013) Development of next generation herbicide tolerant traits to enable enhanced weed management. Abstr Weed Sci Soc Am 53:279

    Google Scholar 

  • Moehs CP, Austill WJ, Facciotti D, Holm A, Loeffler D, Lu Z, Mullenberg JC, Slade AJ, Steine MN, van Boxtel J, McGuire C (2020) Development of non-transgenic glyphosate tolerant wheat by TILLING. bioRxiv. https://doi.org/10.1101/2020.07.23.218883

  • Mulvany L, Decker S (2019) Post-chemical world takes shape as agribusiness goes green. Bloomberg. https://www.bloombergquint.com/business/agribusiness-goes-green-with-eco-friendly-fertilizer-pesticides

  • Nandula VK (2019) Herbicide resistance traits in maize and soybean: current status and future outlook. Plan Theory 8(9):337. https://doi.org/10.3390/plants8090337

    Article  CAS  Google Scholar 

  • Ngo TD, Krishnan M, Boutsalis P, Gill G, Preston C (2018) Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia. Pest Manag Sci 74:1094–1100

    CAS  PubMed  Google Scholar 

  • Nicolia A, Ferradini N, Molla G, Biagetti E, Pollegioni L, Veronesi F, Rosellini D (2014) Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa. J Biotechnol 184:201–208

    Google Scholar 

  • Padgette SR, Re DB, Gasser CS, Eichholtz DA, Frazier RB, Hironaka CM, Levine EB, Shah DM, Fraley RT, Kishore GM (1991) Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site. J Biol Chem 266:22364–22369

    CAS  PubMed  Google Scholar 

  • Padgette SR, Kolacz KH, Delanny X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    CAS  Google Scholar 

  • PAN (2016) The pesticide treadmill. Pesticide Action Network. http://www.panna.org/gmos-pesticides-profit/pesticide-treadmill

  • Pan L, Yu Q, Han H, Mao L, Nyporko A, Fan L, Bai L, Powles SB (2019) Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol 181:1–16

    Google Scholar 

  • Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone B, Pollegioni L (2009) Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J Biol Chem 284:36415–36423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry ED, Ciliberto F, Hennessy DA, Moschini GC (2016) Genetically engineered crops and pesticide use in US maize and soybeans. Sci Adv 2(8):e1600850

    PubMed  PubMed Central  ADS  Google Scholar 

  • Phillips MWA (2020) Agrochemical industry development, trends in R&D and the impact of regulation. Pest Manag Sci. https://doi.org/10.1002/ps.5728

  • Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance-different approaches through protein engineering. FEBS J 278:2753–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powles SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365

    CAS  PubMed  Google Scholar 

  • Que Q, Chilton M-DM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229

    PubMed  Google Scholar 

  • Sammons RD, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:1367–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sammons RD, Giacomini E, Ostrander E, Silva A, Xiang B, Wang D (2016) Mechanisms of glyphosate resistance. Abstr Am Chem Soc 252:96

    Google Scholar 

  • Schönbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN, Kabsch W (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A 98:1376–1380

    PubMed  PubMed Central  ADS  Google Scholar 

  • Sfiligoj E (2014) The resurgence of crop protection. CropLife. http://www.croplife.com/editorial/eric_sfiligoj/the-resurgence-of-crop-protection/

  • Shah DM, Rogers SG, Horsch RB, Fraley RT (1990) Glyphosate-resistant plants. US Patent 4,940,835

    Google Scholar 

  • Siehl DL (1997) Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. In: Roe RM et al (eds) Herbicide activity: toxicology, biochemistry and molecular biology. IOS Press, Amsterdam, pp 37–67

    Google Scholar 

  • Siehl DL, Castle LA, Gorton R, Keenan RJ (2007) The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J Biol Chem 282:11446–11455

    CAS  PubMed  Google Scholar 

  • Sost D, Amrhein N (1990) Substitution of Gly-96 to Ala in the 5-enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae results in a greatly reduced affinity for the herbicide glyphosate. Arch Biochem Biophys 282:433–436

    CAS  PubMed  Google Scholar 

  • Spencer M, Mumm R, Gwynn J (2000) Glyphosate resistant maize lines. U. S. Patent 6040497

    Google Scholar 

  • Stalker DM, Hiatt WR, Comai L (1985) A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem 260:4724–4728

    CAS  PubMed  Google Scholar 

  • Steinrucken HC, Amrhein N (1984) EPSPS of Klebsiella pneumoniae 2, inhibition by glyphosate. Eur J Biochem 143:351–357

    CAS  PubMed  Google Scholar 

  • Ungelesbee E (2019) A review of herbicide-tolerant soybean trait options for 2020. Farm Progress. https://www.dtnpf.com/agriculture/web/ag/crops/article/2019/10/17/review-herbicide-tolerant-soybean

  • Vencill WK, Nichols RL, Webster TM, Soteres JK, Mallory-Smith C, Burgos NR, Johnson WG, McClellan MR (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci 60:2–30

    CAS  Google Scholar 

  • Villareal-Chiu JF, Quinn JP, McGrath JW (2012) The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 3:1–13

    Google Scholar 

  • Westwood JH, Charudattan R, Duke SO, Fennimore SA, Marrone P, Slaughter DC, Swanton C, Zollinger R (2018) Weed Management in 2050: perspectives on the future of weed science. Weed Sci 66:275–285

    Google Scholar 

  • Wright TR, Guomin S, Walsh TA, Lira JM, Cui C, Song P, Zhuang M, Arnold NL, Lin G, Russell SM, Cicchillo RM, Peterson MA, Simpson DM, Zhou N, Ponsamuel J, Zhang Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. PNAS 107:20240–20245

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • WSSA (2019) WSSA board issues statement concerning registration of glyphosate. Weed Science Society of America, Westminster. http://wssa.net/2019/08/wssa-board-issues-statement-concerning-registration-of-glyphosate/

    Google Scholar 

  • Young BG (2015) Overlapping residual herbicides. FMC. http://www.fmccrop.com/Portals/_default/fmc_pdf/F100-37459_OverlapWhitePaper_MED.pdf?timestamp=1430496575694

  • Yu Q, Jalaludin A, Han H, Chen M, Sammons RD, Powles SB (2015) Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high level glyphosate resistance. Plant Physiol 167:1440–1447

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest Statement

The authors state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry M. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Green, J.M., Siehl, D.L. (2021). History and Outlook for Glyphosate-Resistant Crops. In: Knaak, J.B. (eds) Reviews of Environmental Contamination and Toxicology Volume 255. Reviews of Environmental Contamination and Toxicology, vol 255. Springer, Cham. https://doi.org/10.1007/398_2020_54

Download citation

Publish with us

Policies and ethics