Skip to main content

Dinuclear Reactivity Between the Two Metal Centers

  • Chapter
  • First Online:
Modes of Cooperative Effects in Dinuclear Complexes

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 70))

  • 245 Accesses

Abstract

In the field of metal-mediated selective and easier organic reactions, the present chapter focuses on the activation of at least one main step in the cleft of a dinuclear platform, in which a 1e-1e process occurs. This contribution emphasizes on the concepts that govern the conception of the coordination sphere in order to maintain the two metal centers at the right distance and which plays a central role in the electronic and steric effects. An analysis is done on systems operating in the absence of bridging ligands, particularly for the action of alkynes. A second part is devoted to the presence of ligands, which do not play a significant redox role. A third part concerns the use of redox-active bridging ligands. Many spectrometric characterizations, crystal structures, and theoretical calculations allow focusing this search on the main features that govern the reactivity of one metal center or the simultaneous two metal centers in the activation, selectivity, as well as original reactivity of a reactant or an intermediate in a catalytic step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sternberg HW, Greenfield H, Friedel RA, Wotiz J, Markby R, Wender I (1954) Metallo-organic complex derived from dicobalt octacarbonyl and acetylenes. J Am Chem Soc 76:1457–1458

    CAS  Google Scholar 

  2. Sly WG (1959) The molecular configuration of dicobalt hexacarbonyl diphenylacetylene. J Am Chem Soc 81:18–20

    CAS  Google Scholar 

  3. Dickson RS, Fraser PJ (1974) Compounds derived from alkynes and carbonyl complexes of cobalt. Adv Organometal Chem 12:323–377

    CAS  Google Scholar 

  4. Dickson RS, Yawney DBW (1967) Transition metal complexes of substituted alkynes. I. 3,3,3-Trifluoropropyne complexes of iron and cobalt. Aust J Chem 20:77–84

    CAS  Google Scholar 

  5. Dickson RS, Yawney DBW (1968) Transition metal complexes of substituted alkynes. II Pentafluorophenylacetylene complexes of iron and cobalt. Aust J Chem 21:97–102

    CAS  Google Scholar 

  6. Dickson RS, Yawney DBW (1968) Transition metal complexes of substituted alkynes. III. A dicyanoacetylene cobalt carbonyl complex. Aust J Chem 21:1077–1080

    CAS  Google Scholar 

  7. Cotton FA, Jamerson JD, Stultz BR (1976) Metal-metal multiple bonds in organometallic compounds. I. (di-tert-butylacetylene)hexacarbonyldiiron and -dicobalt. J Am Chem Soc 98:1774–1779

    CAS  Google Scholar 

  8. Khand IU, Knox GR, Pauson PL, Watts WE (1973) Organocobalt complexes. I. Arene complexes derived from dodecacarbonyltetracobalt. J Chem Soc Perkin Trans 1:975–977

    Google Scholar 

  9. Pauson PL, Khand IU, Knox GR, Watts WE (1971) Cobalt-induced cleavage reaction and a new series of arenecobalt carbonyl complexes. J Chem Soc D Chem Comm 36

    Google Scholar 

  10. Khand IU, Knox GR, Pauson PL, Watts WE, Foreman MI, Organocobalt complexes. II. (1973) Reaction of acetylenehexacarbonyl dicobalt complexes, (RC2R1)Co2(CO)6, with norbornene and its derivatives. J Chem Soc Perkin Trans 1:977–981

    Google Scholar 

  11. Pauson PL (1985) The Khand reaction. A convenient and general route to a wide range of cyclopentenone derivatives. Tetrahedron 41:5855–5860

    CAS  Google Scholar 

  12. Rautenstrauch V, Megard P, Conesa J, Kuester W (1990) 2-pentyl-2-cyclopenten-1-one from catalytic Pauson-Khand reactions. Angew Chem Int Ed 29:1413–1416

    Google Scholar 

  13. Magnus P, Principe LM (1985) Origins of 1,2- and 1,3-stereoselectivity in dicobaltoctacarbonyl alkene-alkyne cyclizations for the synthesis of substituted bicyclo[3.3.0]octenones. Tetrahedron Lett 26:4851–4854

    CAS  Google Scholar 

  14. La Belle BE, Knudsen MJ, Olmstead MM, Hope H, Yanuck MD, Schore NE (1985) Synthesis of 11-oxatricyclo[5.3.1.02,6]undecane derivatives via organometallic cyclizations. J Org Chem 50:5215–5222

    Google Scholar 

  15. Li G, Li Q-S, Xie Y, King RB, Schaefer HFI (2009) (Acetylene)dicobalt carbonyl derivatives: decarbonylation of the H2C2Co2(CO)6 tetrahedrane. Organometallics 28:3390–3394

    CAS  Google Scholar 

  16. Moulton BE (2010) The Pauson-Khand reaction. Organometal Chem 36:93–120

    CAS  Google Scholar 

  17. Yamanaka M, Nakamura E (2001) Density functional studies on the Pauson-Khand reaction. J Am Chem Soc 123:1703–1708

    CAS  PubMed  Google Scholar 

  18. Lesage D, Milet A, Memboeuf A, Blu J, Greene AE, Tabet J-C, Gimbert Y (2014) The Pauson-Khand revisited: origin of CO in the final product. Angew Chem Int Ed 53:1939–1942

    CAS  Google Scholar 

  19. Manton JC, Cerpentier FJR, Harvey EC, Clark IP, Greetham GM, Long C, Pryce MT (2019) Photochemical or electrochemical bond breaking – exploring the chemistry of (μ2-alkyne)Co2(CO)6 complexes using time-resolved infrared spectroscopy, spectro-electrochemical and density functional methods. Dalton Trans 48:14642–14652

    CAS  PubMed  Google Scholar 

  20. Boyle NM, Coleman AC, Long C, Ronayne KL, Browne WR, Feringa BL, Pryce MT (2010) Evidence for cobalt-cobalt bond homolysis and wavelength-dependent CO loss in (μ2-alkyne)Co2(CO)6 complexes. Inorg Chem 49:10214–10216

    CAS  PubMed  Google Scholar 

  21. Dominguez G, Perez-Castells J (2011) Recent advances in [2+2+2] cycloaddition reactions. Chem Soc Rev 40:3430–3444

    CAS  PubMed  Google Scholar 

  22. Agenet N, Gandon V, Vollhardt KPC, Malacria M, Aubert C (2007) Cobalt-catalyzed cyclotrimerization of alkynes: the answer to the puzzle of parallel reaction pathways. J Am Chem Soc 129:8860–8871

    CAS  PubMed  Google Scholar 

  23. Yamamoto K, Nagae H, Tsurugi H, Mashima K (2016) Mechanistic understanding of alkyne cyclotrimerization on mononuclear and dinuclear scaffolds: [4 + 2] cycloaddition of the third alkyne onto metallacyclopentadienes and dimetallacyclopentadienes. Dalton Trans 45:17072–17081

    CAS  PubMed  Google Scholar 

  24. Wu P, Zeng Y, Fan Q, Feng H, Xie Y, King RB, Schaefer HFI (2014) Flyover compounds and bridging bent benzene derivatives as intermediates in the cobalt carbonyl cyclotrimerization of alkynes. Organometallics 33:2352–2357

    CAS  Google Scholar 

  25. Roglans A, Pla-Quintana A, Sola M (2021) Mechanistic studies of transition-metal-catalyzed [2 + 2 + 2] cycloaddition reactions. Chem Rev 121:1894–1979

    CAS  PubMed  Google Scholar 

  26. Mills OS, Robinson G (1964) The structure of an organocobalt intermediary in the synthesis of ortho-substituted t-butylbenzenes. Proc Chem Soc 187

    Google Scholar 

  27. Dickson RS, Yawney DBW (1969) Transition metal complexes of substituted alkynes. IV. Some bridging alkyne-cobalt complexes. Aust J Chem 22:533–541

    CAS  Google Scholar 

  28. Dickson RS, Fraser PJ (1970) Transition metal complexes of substituted alkynes. VI. Substituent arrangement in some bridging tris(alkyne)-cobalt complexes. Aust J Chem 23:475–480

    CAS  Google Scholar 

  29. Dickson RS, Fraser PJ, Gatehouse BM (1972) Crystal and molecular structure of a racemic complex: μ-[1-3,6-η: 1,4-6-η-1,3,6-tris(trifluoromethyl)-1,3,5-hexatriene-1,6-diyl]bis(dicarbonylcobalt)(Co-Co). J Chem Soc Dalton Trans 20:2278–2282

    Google Scholar 

  30. Hübel W, Braye EH, Clauss A, Weiss E, Krüerke U, Brown DA, King GSD, Hoogzand C (1959) Organometallic complexes. I. Reaction of metal carbonyls with acetylenic compounds. J Inorg Nucl Chem 9:204–210

    Google Scholar 

  31. Hübel W, Hoogzand C (1960) Die cyclisierende Trimerisierung von Alkinen mit Hilfe von Metallcarbonyl-Verbindungen. Chem Ber 93:103–115

    Google Scholar 

  32. Krüerke U, Hübel W (1961) Über Organometall-Komplexe. VIII. Reaktionen von Kobaltcarbonyl-Verbindungen mit Alkinen. Chem Ber 94:2829–2856

    Google Scholar 

  33. Krüerke U, Hoogzand C, Hübel W, Vanhee G (1961) Über Organometall-Komplexe. VI. 1,2,4-tri-tert-butylbenzol. Chem Ber 94:2817–2820

    Google Scholar 

  34. Bennett MA, Donaldson PB (1978) Isolation of intermediates in the dicobalt octacarbonyl-catalyzed cyclotrimerization of cyclooctyne. Crystal and molecular structure of a cobaltacyclopentadiene complex. Inorg Chem 17:1995–2000

    CAS  Google Scholar 

  35. Battaglia LP, Delledonne D, Nardelli M, Predieri G, Chiusoli GP, Costa M, Pelizzi C (1989) Activation of unsaturated substrates by cobalt complexes. Crystal structure and reactivity of a complex of dicobalt octacarbonyl with N-methylbis(α,α-dimethylpropargyl)amine. J Organomet Chem 363:209–222

    CAS  Google Scholar 

  36. Predieri G, Tiripicchio A, Tiripicchio Camellini M, Costa M, Sappa E (1992) Formation of metallacycles from terminal diynes with geminal methyl groups α to the triple bonds. Synthesis and crystal structure of Co2(CO)5[(HC≡CCMe2)2NMe], an intermediate in cobalt-catalyzed organic syntheses. J Organomet Chem 423:129–139

    CAS  Google Scholar 

  37. Moldes I, Papworth T, Ros J, Alvarez-Larena A, Piniella JF (1995) The structure of [Co2(CO)524-CPhCHCHCPh)] a cobalt analog of the ‘ferroles’. J Organomet Chem 489:C65–C67

    CAS  Google Scholar 

  38. Henkel T, Klauck A, Seppelt K (1995) Pentafluoro-λ6-sulfanylacetylene complexes of cobalt. J Organomet Chem 501:1–6

    CAS  Google Scholar 

  39. Gervasio G, Sappa E, Marko L (1993) Synthesis and crystal structure of [Co2(CO)4(PhCCC(O)CH3)3]. Its role in the cyclotrimerization of 1-phenylbut-1-yn-3-one to 1,3,5-triphenyltris(carboxymethyl)benzene. J Organomet Chem 444:203–209

    CAS  Google Scholar 

  40. Giordano R, Sappa E, Predieri G (1995) Reactions of Co2(CO)8 with RC2R' alkynes. Part II . Synthesis of Co2(CO)6(RC2R') complexes; oligomerization or cyclotrimerization reactions of substituted acetylenes. Inorg Chim Acta 228:139–146

    CAS  Google Scholar 

  41. Baxter RJ, Knox GR, Pauson PL, Spicer MD (1999) Synthesis of dicarbonyl(η4-tricarbonylcobaltacyclopentadiene)cobalt complexes from Co2(CO)8. A general route to intermediates in cobalt carbonyl mediated alkyne trimerization. Organometallics 18:197–205

    CAS  Google Scholar 

  42. Baxter RJ, Knox GR, Moir JH, Pauson PL, Spicer MD (1999) Formation of arenes and of tetracarbonyl(hexatrienediyl)dicobalt (“Flyover”) complexes from Co2(CO)8. Organometallics 18:206–214

    CAS  Google Scholar 

  43. Tsurugi H, Laskar P, Yamamoto K, Mashima K (2018) Bonding and structural features of metal-metal bonded homo- and hetero-dinuclear complexes supported by unsaturated hydrocarbon ligands. J Organomet Chem 869:251–263

    CAS  Google Scholar 

  44. Hollingsworth RL, Beattie JW, Grass A, Martin PD, Groysman S, Lord RL (2018) Reactions of dicobalt octacarbonyl with dinucleating and mononucleating bis(imino)pyridine ligands. Dalton Trans 47:15353–15363

    CAS  PubMed  Google Scholar 

  45. Nicholas K, Bray LS, Davis RE, Pettit R (1971) Tetracarbonyldi-μ-2,2,5,5-tetramethylhex-3-yne-di-iron. A novel complex containing an iron-iron double bond. Chem Commun 12:608

    Google Scholar 

  46. Lipschutz MI, Chantarojsiri T, Dong Y, Tilley TD (2015) Synthesis, characterization, and alkyne trimerization catalysis of a heteroleptic two-coordinate FeI complex. J Am Chem Soc 137:6366–6372

    CAS  PubMed  Google Scholar 

  47. Witzke RJ, Hait D, Chakarawet K, Head-Gordon M, Don Tilley T (2020) Bimetallic mechanism for alkyne cyclotrimerization with a two-coordinate Fe precatalyst. ACS Catal 10:7800–7807

    CAS  Google Scholar 

  48. Doerksen RS, Hodik T, Hu G, Huynh NO, Shuler WG, Krische MJ (2021) Ruthenium-catalyzed cycloadditions to form 5-, 6- and 7-membered rings. Chem Rev 121:4045–4083

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lindner E, Jansen RM, Mayer HA, Hiller W, Fawzi R (1989) Preparation, properties, and reactions of metal-containing heterocycles. 65. The behavior of tetracarbonyl(η2-ethene)ruthenium toward activated alkenes and alkynes. Organometallics 8:2355–2360

    CAS  Google Scholar 

  50. Yamamoto Y, Miyabe Y, Itoh K (2004) Synthesis of a dinuclear ruthenabicyclic complex and its ligand-substitution reactions. Eur J Inorg Chem:3651–3661

    Google Scholar 

  51. Tilney-Bassett JF, Mills OS (1959) Cyclopentadienylnickel-acetylene complexes. J Am Chem Soc 81:4757–4758

    CAS  Google Scholar 

  52. Tilney-Bassett JF (1961) Cyclopentadienylnickel-acetylene complexes. J Chem Soc:577–581

    Google Scholar 

  53. Fischer EO, Palm C (1958) Aromatic complexes of metals. XVII. Cyclopentadienyt-metal carbonyls of nickel. Chem Ber 91:1725–1731

    CAS  Google Scholar 

  54. Mills OS, Shaw BW (1968) Carbon compounds of the transition metals. XI. The structure of (diphenylacetylene)bis(cyclopentadienylnickel). J Organomet Chem 11:595–600

    CAS  Google Scholar 

  55. Lin C-Y, Power PP (2017) Complexes of Ni(I): a “rare” oxidation state of growing importance. Chem Soc Rev 46:5347–5399

    CAS  PubMed  Google Scholar 

  56. Day VW, Abdel-Meguid SS, Dabestani S, Thomas MG, Pretzer WR, Muetterties EL (1976) Metal clusters in catalysis. 7. Molecular structure and chemical properties of a novel metal-metal bonded nickel complex. J Am Chem Soc 98:8289–8291

    CAS  Google Scholar 

  57. Eckert NA, Bones EM, Lachicotte RJ, Holland PL (2003) Nickel complexes of a bulky β-diketiminate ligand. Inorg Chem 42:1720–1725

    CAS  PubMed  Google Scholar 

  58. Pfirrmann S, Yao S, Ziemer B, Stosser R, Driess M, Limberg C (2009) β-Diketiminato nickel(I) complexes with very weak ligation allowing for H2 and N2 activation. Organometallics 28:6855–6860

    CAS  Google Scholar 

  59. Bai G, Wei P, Stephan DW (2005) A β-diketiminato-nickel(II) synthon for nickel(I) complexes. Organometallics 24:5901–5908

    CAS  Google Scholar 

  60. Yao S, Driess M (2012) Lessons from isolable nickel(I) precursor complexes for small molecule activation. Acc Chem Res 45:276–287

    CAS  PubMed  Google Scholar 

  61. Czerny F, Searles K, Sot P, Teichert JF, Menezes PW, Copéret C, Driess M (2021) Well-defined, silica-supported homobimetallic nickel hydride hydrogenation catalyst. Inorg Chem 60:5483–5487

    CAS  PubMed  Google Scholar 

  62. Bottomley F, Brintzinger HH (1978) Reactions of nitrogen oxides with di(cyclopentadienyl)titanium complexes. JCS Chem Comm:234–235

    Google Scholar 

  63. Fachinetti G, Floriani C, Chiesi-Villa A, Guastini C (1979) Carbon dioxide activation. Deoxygenation and disproportionation of carbon dioxide promoted by bis(cyclopentadienyl)titanium and -zirconium derivatives. A novel bonding mode of the carbonato and a trimer of the zirconyl unit. J Am Chem Soc 101:1767–1775

    CAS  Google Scholar 

  64. Brennan JG, Andersen RA, Zalkin A (1986) Chemistry of trivalent uranium metallocenes: electron-transfer reactions with carbon disulfide. Formation of [(RC5H4)3U]2[μ-η12-CS2]. Inorg Chem 25:1756–1760

    CAS  Google Scholar 

  65. Brennan JG, Andersen RA, Zalkin A (1986) Chemistry of trivalent uranium metallocenes: electron-transfer reactions. Synthesis and characterization of [(MeC5H4)3U]2E (E = S, Se, Te) and the crystal structures of hexakis(methylcyclopentadienyl)sulfidodiuranium and tris(methylcyclopentadienyl)(triphenylphosphine oxide)uranium. Inorg Chem 25:1761–1765

    CAS  Google Scholar 

  66. Berthet J-C, Le Maréchal J-F, Nierlich M, Lance M, Vigner J, Ephritikhine M (1991) Synthesis and crystal structure of the oxo-bridged bimetallic organouranium complex [(Me3SiC5H4)3U]2[μ-O]. J Organomet Chem 408:335–341

    CAS  Google Scholar 

  67. Castro-Rodriguez I, Meyer K (2005) Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(III) complex. J Am Chem Soc 127:11242–11243

    CAS  PubMed  Google Scholar 

  68. Castro L, Lam OP, Bart SC, Meyer K, Maron L (2010) Carbonate formation from CO2 via oxo versus oxalate pathway: theoretical investigations into the mechanism of uranium-mediated carbonate formation. Organometallics 29:5504–5510

    CAS  Google Scholar 

  69. Labouille S, Nief F, Maron L (2011) Theoretical treatment of redox processes involving lanthanide(II) compounds: reactivity of organosamarium(II) and organothulium(II) complexes with CO2 and pyridine. J Phys Chem A 115:8295–8301

    CAS  PubMed  Google Scholar 

  70. Green SP, Jones C, Stasch A (2007) Stable magnesium(I) compounds with Mg-Mg bonds. Science 318:1754–1757

    CAS  PubMed  Google Scholar 

  71. Platts JA, Overgaard J, Jones C, Iversen BB, Stasch A (2011) First experimental characterization of a non-nuclear attractor in a dimeric magnesium(I) compound. J Phys Chem A 115:194–200

    CAS  PubMed  Google Scholar 

  72. Kefalidis CE, Stasch A, Jones C, Maron L (2014) On the mechanism of the reaction of a magnesium(I) complex with CO2: a concerted type of pathway. Chem Commun 50:12318–12321

    CAS  Google Scholar 

  73. Bonyhady SJ, Green SP, Jones C, Nembenna S, Stasch A (2009) A dimeric magnesium(I) compound as a facile two-center/two-electron reductant. Angew Chem Int Ed 48:2973–2977

    CAS  Google Scholar 

  74. Jones C, McDyre L, Murphy DM, Stasch A (2010) Magnesium(I) reduction of benzophenone and anthracene: first structural characterisation of a magnesium ketyl. Chem Commun 46:1511–1513

    CAS  Google Scholar 

  75. Bonyhady SJ, Jones C, Nembenna S, Stasch A, Edwards AJ, McIntyre GJ (2010) β-Diketiminate-stabilized magnesium(I) dimers and magnesium(II) hydride complexes: synthesis, characterization, adduct formation, and reactivity studies. Chem A Eur J 16:938–955

    CAS  Google Scholar 

  76. Stasch A, Jones C (2011) Stable dimeric magnesium(I) compounds: from chemical landmarks to versatile reagents. Dalton Trans 40:5659–5672

    CAS  PubMed  Google Scholar 

  77. Gentner TX, Rösch B, Ballmann G, Langer J, Elsen H, Harder S (2019) Low valent magnesium chemistry with a super bulky β-diketiminate ligand. Angew Chem Int Ed 58:607–611

    CAS  Google Scholar 

  78. Rösch B, Gentner TX, Eyselein J, Friedrich A, Langer J, Harder S (2020) Mg-Mg bond polarization induced by a superbulky β-diketiminate ligand. Chem Commun 56:11402–11405

    Google Scholar 

  79. Rösch B, Gentner TX, Langer J, Färber C, Eyselein J, Zhao L, Ding C, Frenking G, Harder S (2021) Dinitrogen complexation and reduction at low-valent calcium. Science 371:1125–1128

    PubMed  Google Scholar 

  80. de Bruin-Dickason CN, Rosengarten CA, Deacon GB, Jones C (2021) Enantiopure dimagnesium(I) and magnesium(II) hydride complexes incorporating chiral amidinate or β-diketiminate ligands. Chem Commun 57:1599–1602

    Google Scholar 

  81. Goswami VE, Walli A, Förster M, Dechert S, Demeshko S, Holthausen MC, Meyer F (2017) Acid/base triggered interconversion of μ-η22-peroxido and bis(μ-oxido) dicopper intermediates capped by proton-responsive ligands. Chem Sci 8:3031–3037

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sigman MS, Harper KC, Bess EN, Milo A (2016) The development of multidimensional analysis tools for asymmetric catalysis and beyond. Acc Chem Res 49:1292–1301

    CAS  PubMed  Google Scholar 

  83. Jeong N, Sung BK, Kim JS, Park SB, Seo SD, Shin JY, In KY, Choi YK (2002) Pauson-Khand-type reaction mediated by Rh(I) catalysts. Pure Appl Chem 74:85–91

    CAS  Google Scholar 

  84. Shibata T, Takagi K (2000) Iridium-chiral diphosphine complex catalyzed highly enantioselective Pauson-Khand-type reaction. J Am Chem Soc 122:9852–9853

    CAS  Google Scholar 

  85. Shibata T, Kobayashi Y, Maekawa S, Toshida N, Takagi K (2005) Iridium-catalyzed enantioselective cycloisomerization of nitrogen-bridged 1,6-enynes to 3-azabicylo[4.1.0]heptenes. Tetrahedron 61:9018–9024

    CAS  Google Scholar 

  86. Derdau V, Laschat S, Dix I, Jones PG (1999) Cobalt-alkyne complexes with diphosphine ligands as mechanistic probes for the Pauson-Khand reaction. Organometallics 18:3859–3864

    CAS  Google Scholar 

  87. Orgué S, Leon T, Riera A, Verdaguer X (2015) Asymmetric intermolecular cobalt-catalyzed Pauson-Khand reaction using a P-stereogenic bis-phosphane. Org Lett 17:250–253

    PubMed  Google Scholar 

  88. Imamoto T, Sugita K, Yoshida K (2005) An air-stable P-chiral phosphine ligand for highly enantioselective transition-metal-catalyzed reactions. J Am Chem Soc 127:11934–11935

    CAS  PubMed  Google Scholar 

  89. Garçon M, Cabre A, Verdaguer X, Riera A (2017) Synthesis, coordination study, and catalytic Pauson-Khand reactions of QuinoxP*(CO)4-μ-alkyne dicobalt complexes. Organometallics 36:1056–1065

    Google Scholar 

  90. Hiroi K, Watanabe T, Kawagishi R, Abe I (2000) Asymmetric catalytic Pauson-Khand reactions with chiral phosphine ligands: dramatic effects of substituents in 1,6-enyne systems. Tetrahedron Lett 41:891–895

    CAS  Google Scholar 

  91. Hiroi K, Watanabe T, Kawagishi R, Abe I (2000) Catalytic use of chiral phosphine ligands in asymmetric Pauson-Khand reactions. Tetrahedron Asymm 11:797–808

    CAS  Google Scholar 

  92. Sturla S, Buchwald SL (2002) Cobalt-phosphite-catalyzed asymmetric Pauson-Khand reaction. J Org Chem 67:3398–3403

    CAS  PubMed  Google Scholar 

  93. Schmid TM, Consiglio G (2004) Asymmetric cyclocarbonylation of 1,6-enynes with cobalt catalysts. Tetrahedron Asym 15:2205–2208

    CAS  Google Scholar 

  94. Gibson SE, Kaufmann KAC, Loch JA, Steed JW, White AJP (2005) A study of [Co2(alkyne)(binap)(CO)4] complexes (BINAP=(1,1′-binaphtalene)-2,2′-diylbis(diphenylphosphine)). Chem A Eur J 11:2566–2576

    CAS  Google Scholar 

  95. Pellissier H, Clavier H (2014) Enantioselective cobalt-catalyzed transformations. Chem Rev 114:2775–2823

    CAS  PubMed  Google Scholar 

  96. Simeonov SP, Nunes JPM, Guerra K, Kurteva VB, Afonso CAM (2016) Synthesis of chiral cyclopentenones. Chem Rev 116:5744–5893

    CAS  PubMed  Google Scholar 

  97. Pellissier H (2018) Recent developments in enantioselective cobalt-catalyzed transformations. Coord Chem Rev 360:122–168

    CAS  Google Scholar 

  98. Pellissier H (2020) Enantioselective cobalt-catalysed transformations. In: Hapke M, Hilt G (eds) Cobalt catalysis in organic synthesis. Wiley Online Library, pp 337–416

    Google Scholar 

  99. Yoshikai N (2019) Recent advances in enantioselective C-C bond formation via organocobalt species. Synthesis 51:135–145

    CAS  Google Scholar 

  100. Cabré A, Riera A, Verdaguer X (2020) P-Stereogenic amino-phosphines as chiral ligands: from privileged intermediates to asymmetric catalysis. Acc Chem Res 53:676–689

    PubMed  Google Scholar 

  101. Man ML, Lam KC, Sit WN, Ng SM, Zhou Z, Lin Z, Lau CP (2006) Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes. Chem A Eur J 12:1004–1015

    CAS  Google Scholar 

  102. Buonerba A, De Nisi A, Grassi A, Milione S, Capacchione C, Vagin S, Rieger B (2015) Novel iron(III) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to form cyclic carbonates. Cat Sci Technol 5:118–123

    CAS  Google Scholar 

  103. Miyazaki T, Tanabe Y, Yuki M, Miyake Y, Nishibayashi Y (2011) Synthesis of group IV (Zr, Hf)-group VIII (Fe, Ru) heterobimetallic complexes bearing metallocenyl diphosphine moieties and their application to catalytic dehydrogenation of amine-boranes. Organometallics 30:2394–2404

    CAS  Google Scholar 

  104. Miyake Y, Nomaguchi Y, Yuki M, Nishibayashi Y (2007) Synthesis and reactivity of diphosphine-bridged diruthenium complexes. Organometallics 26:3611–3613

    CAS  Google Scholar 

  105. Nguyen T, Sutton AD, Brynda M, Fettinger JC, Long GJ, Power PP (2005) Synthesis of a sable compound with fivefold bonding between two chromium(I) centers. Science 310:844–847

    CAS  PubMed  Google Scholar 

  106. Tsai Y-C, Chen H-Z, Chang C-C, Yu J-SK, Lee G-H, Wang Y, Kuo T-S (2009) Journey from Mo-Mo quadruple bonds to quintuple bonds. J Am Chem Soc 131:12534–12535

    CAS  PubMed  Google Scholar 

  107. Brynda M, Gagliardi L, Widmark P-O, Power PP, Roos BO (2006) A quantum chemical study of the quintuple bond between two chromium centers in [PhCrCrPh]: trans-bent versus linear geometry. Angew Chem Int Ed 45:3804–3807

    CAS  Google Scholar 

  108. La Macchia G, Li Manni G, Todorova TK, Brynda M, Aquilante F, Roos BO, Gagliardi L (2010) On the analysis of the Cr-Cr multiple bond in several classes of dichromium compounds. Inorg Chem 49:5216–5222

    PubMed  Google Scholar 

  109. Noor A, Tamne ES, Qayyum S, Bauer T, Kempe R (2011) Cycloaddition reactions of a chromium-chromium quintuple bond. Chem A Eur J 17:6900–6903

    CAS  Google Scholar 

  110. Shen J, Yap GPA, Werner J-P, Theopold KH (2011) Reactions of a quintuply bonded chromium dimer with alkynes. Chem Commun 47:12191–12193

    CAS  Google Scholar 

  111. Huang Y-S, Huang G-T, Liu Y-L, Yu J-SK, Tsai Y-C (2017) Reversible cleavage/formation of the chromium-chromium quintuple bond in the highly regioselective alkyne cyclotrimerization. Angew Chem Int Ed 56:15427–15431

    CAS  Google Scholar 

  112. Chen H-Z, Liu S-C, Yen C-H, Yu J-SK, Shieh Y-J, Kuo T-S, Tsai Y-C (2012) Reactions of metal-metal quintuple bonds with alkynes: [2+2+2] and [2+2] cycloadditions. Angew Chem Int Ed 51:10342–10346

    CAS  Google Scholar 

  113. Bosch BE, Bruemmer I, Kunz K, Erker G, Froehlich R, Kotila S (2000) Structural characterization of heterodimetallic Zr/Pd and Zr/Rh catalyst precursors containing the C5H4PPh2 ligand. Organometallics 19:1255–1261

    CAS  Google Scholar 

  114. Cornelissen C, Erker G, Kehr G, Froehlich R (2005) Chemistry of metal-metal-bonded early-late heterobimetallics: cooperative reactions of functional groups at a persistent organometallic Zr-Rh framework. Organometallics 24:214–225

    CAS  Google Scholar 

  115. Cornelissen C, Erker G, Kehr G, Froehlich R (2004) Formation and reactions of metal-metal bonded heterobimetallic (C5H4PR2)-bridged (Zr-Ir) and (Zr-Rh) complexes: evidence for the participation of metal hydride intermediates. Dalton Trans:4059–4063

    Google Scholar 

  116. Erker G, Kehr G, Froehlich R (2006) Group 4 bent metallocenes and functional groups — finding convenient pathways in a difficult terrain. Coord Chem Rev 250:36–46

    CAS  Google Scholar 

  117. Chirik PJ, Wieghardt K (2010) Radical ligands confer nobility on base-metal catalysts. Science 327:794–795

    CAS  PubMed  Google Scholar 

  118. Hollingsworth RL, Bheemaraju A, Lenca N, Lord RL, Groysman S (2017) Divergent reactivity of a new dinuclear xanthene-bridged bis(iminopyridine) di-nickel complex with alkynes. Dalton Trans 46:5605–5616

    CAS  PubMed  Google Scholar 

  119. Zhou Y-Y, Hartline DR, Steiman TJ, Fanwick PE, Uyeda C (2014) Dinuclear nickel complexes in five states of oxidation using a redox-active ligand. Inorg Chem 53:11770–11777

    CAS  PubMed  Google Scholar 

  120. Steiman TJ, Uyeda C (2015) Reversible substrate activation and catalysis at an intact metal–metal bond using a redox-active supporting ligand. J Am Chem Soc 137:6104–6110

    CAS  PubMed  Google Scholar 

  121. Hartline DR, Zeller M, Uyeda C (2016) Well-defined models for the elusive dinuclear intermediates of the Pauson-Khand reaction. Angew Chem Int Ed 55:6084–6087

    CAS  Google Scholar 

  122. Zhou Y-Y, Uyeda C (2019) Catalytic reductive [4+1]-cycloadditions of vinylidenes and dienes. Science 363:857–862

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhou Y-Y, Uyeda C (2016) Reductive cyclopropanations catalyzed by dinuclear nickel complexes. Angew Chem Int Ed 55:3171–3175

    CAS  Google Scholar 

  124. Pal S, Zhou Y-Y, Uyeda C (2017) Catalytic reductive vinylidene transfer reactions. J Am Chem Soc 139:11686–11689

    CAS  PubMed  Google Scholar 

  125. Powers IG, Kiattisewee C, Mullane KC, Schelter EJ, Uyeda C (2017) A 1,2-addition pathway for C(sp2)-H activation at a dinickel imide. Chem A Eur J 23:7694–7697

    CAS  Google Scholar 

  126. Powers IG, Andjaba JM, Zeller M, Uyeda C (2020) Catalytic C(sp2)-H amination reactions using dinickel imides. Organometallics 39:3794–3801

    CAS  Google Scholar 

  127. Hartline DR, Zeller M, Uyeda C (2017) Catalytic carbonylative rearrangement of norbornadiene via dinuclear carbon-carbon oxidative addition. J Am Chem Soc 139:13672–13675

    CAS  PubMed  Google Scholar 

  128. Braconi E, Cramer NA (2020) A chiral naphthyridine diimine ligand enables nickel-catalyzed asymmetric alkylidenecyclopropanations. Angew Chem Int Ed 59:16425–16429

    CAS  Google Scholar 

  129. Farley CM, Uyeda C (2019) Organic reactions enabled by catalytically active metal-metal bonds. Trends Chem 1:497–509

    CAS  Google Scholar 

  130. Uyeda C, Farley CM (2021) Dinickel active sites supported by redox-active ligands. Acc Chem Res 54:3710–3719

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Behlen MJ, Zhou Y-Y, Steiman TJ, Pal S, Hartline DR, Zeller M, Uyeda C (2017) Dinuclear oxidative addition reactions using an isostructural series of Ni2, Co2, and Fe2 complexes. Dalton Trans 46:5493–5497

    CAS  PubMed  Google Scholar 

  132. Dutta I, De S, Yadav S, Mondol R, Bera JK (2017) Aerobic oxidative coupling of alcohols and amines towards imine formation by a dicopper(I,I) catalyst. J Organomet Chem 849–850:117–124

    Google Scholar 

  133. Dutta I, Sarbajna A, Pandey P, Rahaman SMW, Singh K, Bera JK (2016) Acceptorless dehydrogenation of alcohols on a diruthenium(II,II) platform. Organometallics 35:1505–1513

    CAS  Google Scholar 

  134. Davenport TC, Tilley TD (2011) Dinucleating naphthyridine-based ligand for assembly bridged dicopper(I) centers: three-center two electron bonding involving an acetonitrile donor. Angew Chem Int Ed 50:12205–12208

    CAS  Google Scholar 

  135. Davenport TC, Ahn HS, Ziegler MS, Tilley TD (2014) A molecular structural analog of proposed dinuclear active sites in cobalt-based water oxidation catalysts. Chem Commun 50:6326–6329

    CAS  Google Scholar 

  136. Brodsky CN, Passard G, Ullman AM, Jaramillo DE, Bloch ED, Huynh M, Gygi D, Costentin C, Nocera DG (2018) Oxygen activation at a dicobalt centre of a dipyridylethane naphthyridine complex. Dalton Trans 47:11903–11908

    CAS  PubMed  Google Scholar 

  137. Ziegler MS, Levine DS, Lakshmi KV, Tilley TD (2016) Aryl group transfer from tetraarylborato anions to an electrophilic dicopper(I) center and mixed-valence μ-aryl dicopper(I,II) complexes. J Am Chem Soc 138:6484–6491

    CAS  PubMed  Google Scholar 

  138. Ziegler MS, Torquato NA, Levine DS, Nicolay A, Celik H, Tilley TD (2018) Dicopper alkyl complexes: synthesis, structure, and unexpected persistence. Organometallics 37:2807–2823

    CAS  Google Scholar 

  139. Ziegler MS, Lakshmi KV, Tilley TD (2017) Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) complexes in copper-catalyzed azide−alkyne cycloaddition. J Am Chem Soc 139(15):5378–5386

    CAS  PubMed  Google Scholar 

  140. Desnoyer AN, Nicolay A, Rios P, Ziegler MS, Tilley TD (2020) Bimetallics in a nutshell: complexes supported by chelating naphthyridine-based ligands. Acc Chem Res 53:1944–1956

    CAS  PubMed  Google Scholar 

  141. Wang Q, Brooks SH, Liu T, Tomson NC (2021) Tuning metal–metal interactions for cooperative small molecule activation. Chem Commun 57:2839–2853

    CAS  Google Scholar 

  142. Arima H, Wada M, Nakazono T, Wada T (2021) Tuning oxygen reduction catalysis of dinuclear cobalt polypyridyl complexes by the bridging structure. Inorg Chem

    Google Scholar 

  143. Gimbert-Suriñach C, Moonshiram D, Francàs L, Planas N, Bernales V, Bozoglian F, Guda A, Mognon L, López I, Hoque MA, Gagliardi L, Cramer CJ, Llobet A (2016) Structural and spectroscopic characterization of reaction intermediates involved in a dinuclear Co−hbpp water oxidation catalyst. J Am Chem Soc 138:15291–15294

    PubMed  Google Scholar 

  144. Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA (2019) Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem Rev 119:2453–2523

    CAS  PubMed  Google Scholar 

  145. Neudeck S, Maji S, Lopez I, Meyer S, Meyer F, Llobet A (2014) New powerful and oxidatively rugged dinuclear Ru water oxidation catalyst: control of mechanistic pathways by tailored ligand design. J Am Chem Soc 136:24–27

    CAS  PubMed  Google Scholar 

  146. Di Giovanni C, Gimbert-Surinach C, Nippe M, Benet-Buchholz J, Long JR, Sala X, Llobet A (2016) Dinuclear cobalt complexes with a decadentate ligand scaffold: hydrogen evolution and oxygen reduction catalysis. Chem A Eur J 22:361–369

    Google Scholar 

  147. König H, Eickmeier C, Möller M, Rodewald U, Franck B (1990) Synthesis of a bisvinylogous octaethylporphyrin. Angew Chem Int Ed 29:1393–1395

    Google Scholar 

  148. Saha R, Chattaraj PK (2018) Acivation of small molecules (H2, CO2, N2O, CH4, and C6H6) by a porphyrinoid-based dimagnesium(I) complex, an electride. ACS Omega 3:17199–17211

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Manz D-H, Duan P-C, Dechert S, Demeshko S, Oswald R, John M, Mata RA, Meyer F (2017) Pairwise H2/D2 exchange and H2 substitution at a bimetallic dinickel(II) complex featuring two terminal hydrides. J Am Chem Soc 139:16720–16731

    CAS  PubMed  Google Scholar 

  150. Duan P-C, Schulz RA, Römer A, Van Kuiken BE, Dechert S, Demeshko S, Cutsail III GE, De Boer S, Mata RA, Meyer F (2021) Ligand protonation triggers H2 release from a dinickel dihydride complex to give a doubly “T”-shaped dinickel(I) metallodiradical. Angew Chem Int Ed 60:1891–1896

    CAS  Google Scholar 

  151. Duan P-C, Manz D-H, Dechert S, Demeshko S, Meyer F (2018) Reductive O2 binding at a dihydride complex leading to redox interconvertible μ-1,2-peroxo and μ-1,2-superoxo dinickel(II) intermediates. J Am Chem Soc 140:4929–4939

    CAS  PubMed  Google Scholar 

  152. Ferretti E, Dechert S, Meyer F (2019) Reductive binding and ligand-based redox transformations of nitrosobenzene at a dinickel(II) core. Inorg Chem 58:5154–5162

    CAS  PubMed  Google Scholar 

  153. Kothe T, U-Uyun K, Dechert S, Meyer F (2020) Reductive binding of nitro substrates at a masked dinickel(I) complex and proton-coupled conversion to reduced nitroso ligands. Inorg Chem 59:14207–14217

    CAS  PubMed  Google Scholar 

  154. Wang Q, Zhang S, Cui P, Weberg AB, Thierer LM, Manor BC, Gau MR, Carroll PJ, Tomson NC (2020) Interdependent metal-metal bonding and ligand redox-activity in a series of dinuclear macrocyclic complexes of iron, cobalt, and nickel. Inorg Chem 59:4200–4214

    CAS  PubMed  Google Scholar 

  155. Zhang S, Wang Q, Thierer LM, Weberg AB, Gau MR, Carroll PJ, Tomson NC (2019) Tuning metal−metal interactions through reversible ligand folding in a series of dinuclear iron complexes. Inorg Chem 58:12234–12244

    CAS  PubMed  Google Scholar 

  156. Liu T, Gau MR, Tomson NC (2020) Mimicking the constrained geometry of a nitrogen-fixation intermediate. J Am Chem Soc 142:8142–8146

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu T, Murphy RP, Carroll PJ, Gau MR, Tomson NC (2022) C−C σ-bond oxidative addition and hydrofunctionalization by a macrocycle-supported diiron complex. J Am Chem Soc 144:14037–14041

    CAS  PubMed  Google Scholar 

  158. Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC (2020) N-H bond formation at a diiron bridging nitride. Angew Chem Int Ed 59:15215–15219

    CAS  Google Scholar 

  159. Denny JA, Darensbourg MY (2015) Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem Rev 115:5248–5273

    CAS  PubMed  Google Scholar 

  160. Gennari M, Duboc C (2020) Bio-inspired, multifunctional metal−thiolate motif: from electron transfer to sulfur reactivity and small-molecule activation. Acc Chem Res 53:2753–2761

    CAS  PubMed  Google Scholar 

  161. Wang L, Gennari M, Barrozo A, Fize J, Philouze C, Demeshko S, Meyer F, Orio M, Artero V, Duboc C (2020) Role of the metal ion in bio-inspired hydrogenase models: investigation of a homodinuclear FeFe complex vs its heterodinuclear NiFe analogue. ACS Catal 10:177–186

    CAS  Google Scholar 

  162. Ghosh AC, Duboc C, Gennari M (2021) Synergy between metals for small molecule activation: enzymes and bio-inspired complexes. Coord Chem Rev 428:213606

    CAS  Google Scholar 

  163. Sun L, Adam SM, Mokdad W, David R, Milet A, Artero V, Duboc C (2022) A bio-inspired heterodinuclear hydrogenase CoFe complex. Faraday Discuss 234:34–41

    PubMed  Google Scholar 

  164. Wang L, Gennari M, Cantú Reinhard FG, Guttierrez J, Morozan A, Philouze C, Demeshko S, Artero V, Meyer F, de Visser SP, Duboc C (2019) A non-heme diiron complex for (electro)catalytic reduction of dioxygen: tuning the selectivity through electron delivery. J Am Chem Soc 141:8244–8253

    CAS  PubMed  Google Scholar 

  165. Wang L, Gennari M, Cantú Reinhard FG, Padamati SK, Philouze C, Flot D, Demeshko S, Browne R, Browne WR, Meyer F, de Visser SP, Duboc C (2020) O2 activation by non-heme thiolate-based dinuclear Fe complexes. Inorg Chem 59:3249–3259

    CAS  PubMed  Google Scholar 

  166. Kim RS, Nazemi A, Cundari TR, Surendranath Y (2020) A PdIII sulfate dimer initiates rapid methane monofunctionalization by H atom abstraction. ACS Catal 10:14782–14792

    CAS  Google Scholar 

  167. Fukuzumi S, Mandal S, Mase K, Ohkubo K, Park H, Benet-Buchholz J, Nam W, Llobet A (2012) Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-μ-1,2-peroxo complex. J Am Chem Soc 134:9906–9909

    CAS  PubMed  Google Scholar 

  168. Mandal S, Shikano S, Yamada Y, Lee Y-M, Nam W, Llobet A, Fukuzumi S (2013) Protonation equilibrium and hydrogen production by a dinuclear cobalt-hydride complex reduced by cobaltocene with trifluoroacetic acid. J Am Chem Soc 135:15294–15297

    CAS  PubMed  Google Scholar 

  169. Aguiló J, Francàs L, Bofill R, Gil-Sepulcre M, García-Antón J, Poater A, Llobet A, Escriche L, Meyer F, Sala X (2015) Powerful bis-facially pyrazolate-bridged dinuclear ruthenium epoxidation catalyst. Inorg Chem 54:6782–6791

    PubMed  Google Scholar 

  170. Farras P, Di Giovanni C, Clifford JN, Garrido-Barros P, Palomares E, Llobet A (2016) Light driven styrene epoxidation and hydrogen generation using H2O as an oxygen source in a photoelectrosynthesis cell. Green Chem 18:255–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurent Maron or Philippe Kalck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maron, L., Kalck, P. (2023). Dinuclear Reactivity Between the Two Metal Centers. In: Kalck, P. (eds) Modes of Cooperative Effects in Dinuclear Complexes. Topics in Organometallic Chemistry, vol 70. Springer, Cham. https://doi.org/10.1007/3418_2023_88

Download citation

Publish with us

Policies and ethics