Skip to main content

Pincerlike Cyclic Systems for Unraveling Fundamental Coinage Metal Redox Processes

  • Chapter
  • First Online:
The Privileged Pincer-Metal Platform: Coordination Chemistry & Applications

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 54))

Abstract

Pincerlike cyclic ligands have overcome the high instability of transition metals in their higher oxidation states and have permitted the isolation of such species and the exhaustive study of their properties and reactivity. The formation and isolation of organometallic CuII and MIII (M=Cu, Ag, Au) complexes stabilized by NCPs, carbaporphyrins, carbaporphyrinoids, heterocalixarenes, and triaza macrocyclic ligands will be discussed in this chapter. The study of these complexes have led to the discovery of unprecedented reactivity and proved the plausibility of often invoked pathways in copper-catalyzed cross-coupling reactions. Aryl-MIII (M=Cu, Ag) stable species have been implicated as the key intermediate species that operate in coupling catalysis through two-electron redox cycles involving oxidative addition and reductive elimination fundamental steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

Ar:

Aryl

AT:

Atom transfer

cal:

Calories

cat:

Catalytic

Cp:

Cyclopentadienyl

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DFT:

Density functional theory

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

equiv:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

i-Bu:

Isobutyl

L:

Ligand

Me:

Methyl

min:

Minute(s)

mol:

Mole(s)

N2CP:

Doubly N-confused porphyrin

Naph:

Naphthalene

n-Bu:

Butyl

NCP:

N-confused porphyrin

NMR:

Nuclear magnetic resonance

n-Pr:

Propyl

Nuc:

Nucleophile

[O]:

Oxidant

Ph:

Phenyl

phen:

Phenanthroline

py:

Pyridine

rt:

Room temperature

s:

Second(s)

SET:

Single-electron transfer

t-Bu:

Tert-butyl

TEMPO:

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl

Tf:

Trifluoromethanesulfonyl (triflyl)

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

Tol:

4-Methylphenyl

UV–Vis:

Ultraviolet–visible spectroscopy

V:

Volt(s)

xyl:

Xylyl

References

  1. Harvey JD, Ziegler CJ (2003) Coord Chem Rev 247:1

    Article  CAS  Google Scholar 

  2. Chmielewski PJ, Latos-Grażyński L (2005) Coord Chem Rev 249:2510

    Article  CAS  Google Scholar 

  3. Stepień M, Latos- Grażyński L (2005) Acc Chem Res 38:88

    Google Scholar 

  4. Srinivasan A, Furuta H (2005) Acc Chem Res 38:10

    Article  CAS  Google Scholar 

  5. Ribas X, Casitas A (2010) The bioinorganic and organometallic chemistry of copper(III). In: Pignataro B (ed) Ideas in chemistry and molecular science. Where chemistry meets life. Wiley-VCH, Weinheim

    Google Scholar 

  6. Wang M-X (2012) Acc Chem Res 45:182

    Article  CAS  Google Scholar 

  7. Casitas A, Ribas X (2013) Chem Sci 4:2301

    Article  CAS  Google Scholar 

  8. Casitas A (2013) Mechanistic understanding of copper-catalyzed aryl-heteroatom bond formation: dependence on ancillary ligands. In: Ribas X (ed) C-H C-X bond functionalization: transition metal mediation. Royal Society of Chemistry, Cambridge

    Google Scholar 

  9. Casitas A, Ribas X (2014) Aromatic/vinylic Finkelstein reaction. In: Evano G, Blanchard N (eds) Copper-mediated cross-coupling reactions. Wiley, Hoboken

    Google Scholar 

  10. Casitas A, Ribas X (2014) Insights into the mechanism of modern Ullmann-Goldberg coupling reactions. In: Evano G, Blanchard N (eds) Copper-mediated cross-coupling reactions. Wiley, Hoboken

    Google Scholar 

  11. Naumann D, Roy T, Tebbe K-F, Crump W (1993) Angew Chem Int Ed Engl 32:1482

    Article  Google Scholar 

  12. Chmielewski PJ, Latos-Grazyński L, Schmidt I (2000) Inorg Chem 39:5475

    Article  CAS  Google Scholar 

  13. Mitrikas G, Calle C, Schweiger A (2005) Angew Chem Int Ed Engl 44:3301

    Article  CAS  Google Scholar 

  14. Calle C, Schweiger A, Mitrikas G (2007) Inorg Chem 46:1847

    Article  CAS  Google Scholar 

  15. Furuta H, Ishizuka T, Osuka A, Uwatoko Y, Ishikawa Y (2001) Angew Chem Int Ed Engl 40:2323

    Article  CAS  Google Scholar 

  16. Maeda H, Osuka A, Ishikawa Y, Aritome I, Hisaeda Y, Furuta H (2003) Org Lett 5:1293

    Article  CAS  Google Scholar 

  17. Furuta H, Maeda H, Osuka A (2000) J Am Chem Soc 122:803

    Article  CAS  Google Scholar 

  18. Maeda H, Osuka A, Furuta H (2003) J Am Chem Soc 125:15690

    Article  CAS  Google Scholar 

  19. Araki K, Winnischofer H, Toma HE, Maeda H, Osuka A, Furuta H (2001) Inorg Chem 40:2020

    Google Scholar 

  20. Furuta H, Ogawa T, Uwatoko Y, Araki K (1999) Inorg Chem 38:2676

    Google Scholar 

  21. Grzegorzek N, Latos-Grażyński L, Szterenberg L (2012) Org Biomol Chem 10:8064

    Article  CAS  Google Scholar 

  22. Lash TD, von Ruden AL (2008) J Org Chem 73:9417

    Article  CAS  Google Scholar 

  23. Toganoh M, Niino T, Furuta H (2008) Chem Commun 4070

    Google Scholar 

  24. Pawlicki M, Kańska I, Latos-Grażyński L (2007) Inorg Chem 46:6575

    Article  CAS  Google Scholar 

  25. Grzegorzek N, Pawlicki M, Szterenberg L, Latos-Grażyński L (2009) J Am Chem Soc 131:7224

    Article  CAS  Google Scholar 

  26. Grzegorzek N, Nojman E, Szterenberg L, Latos-Grażyński L (2013) Inorg Chem 52:2599

    Article  CAS  Google Scholar 

  27. Muckey MA, Szczepura LF, Ferrence GM, Lash TD (2002) Inorg Chem 41:4840–4842

    Article  CAS  Google Scholar 

  28. Lash TD, Colby DA, Szczepura LF (2004) Inorg Chem 43:1246

    Article  Google Scholar 

  29. Lash TD, Rasmussen JM, Bergman KM, Colby DA (2004) Org Lett 6:549

    Article  CAS  Google Scholar 

  30. Bergman KM, Ferrence GM, Lash TD (2004) J Org Chem 69:7888

    Article  CAS  Google Scholar 

  31. Miyake K, Lash TD (2004) Chem Commun 178

    Google Scholar 

  32. El-beck JA, Lash TD (2006) Org Lett 8:5263

    Google Scholar 

  33. Pawlicki M, Latos-Grażyński L (2003) Chem Eur J 9:4650

    Google Scholar 

  34. Pawlicki M, Latos-Grażyński L (2005) J Org Chem 70:9123

    Article  CAS  Google Scholar 

  35. Chmielewski PJ (2005) Org Lett 7:1789

    Article  CAS  Google Scholar 

  36. Szyszko B, Kupietz K, Szterenberg L, Latos-Grażyński L (2014) Chem Eur J 20:1376

    Article  CAS  Google Scholar 

  37. Ribas X, Jackson DA, Donnadieu B, Mahía J, Parella T, Xifra R, Hedman B, Hodgson KO, Llobet A, Stack TDP (2002) Angew Chem Int Ed Engl 41:2991

    Article  CAS  Google Scholar 

  38. Xifra R, Ribas X, Llobet A, Poater A, Duran M, Solà M, Stack TDP, Benet-Buchholz J, Donnadieu B, Mahía J, Parella T (2005) Chem Eur J 11:5146

    Article  CAS  Google Scholar 

  39. Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X (2010) Chem Sci 1:326

    Article  CAS  Google Scholar 

  40. King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS (2010) J Am Chem Soc 132:12068

    Article  CAS  Google Scholar 

  41. Huffman LM, Stahl SS (2008) J Am Chem Soc 130:9196

    Article  CAS  Google Scholar 

  42. Ribas X, Calle C, Poater A, Casitas A, Gómez L, Xifra R, Parella T, Benet-Buchholz J, Schweiger A, Mitrikas G, Solà M, Llobet A, Stack TDP (2010) J Am Chem Soc 132:12299

    Article  CAS  Google Scholar 

  43. Casitas A, Canta M, Solà M, Costas M, Ribas X (2011) J Am Chem Soc 133:19386

    Article  CAS  Google Scholar 

  44. Font M, Acuña-Parés F, Parella T, Serra J, Luis JM, Lloret-Fillol J, Costas M, Ribas X (2014) Nat Commun 5:4373. doi:10.1038/ncomms5373

    Article  CAS  Google Scholar 

  45. Yao B, Wang D-X, Huang Z-T, Wang M-X (2009) Chem Commun 2899

    Google Scholar 

  46. Zhang H, Yao B, Zhao L, Wang D, Xu B, Wang M (2014) J Am Chem Soc 136:6326

    Article  CAS  Google Scholar 

  47. Bertz SH, Cope S, Murphy M, Ogle CA, Taylor BJ (2007) J Am Chem Soc 129:7208

    Article  CAS  Google Scholar 

  48. Casitas A, Poater A, Solà M, Stahl SS, Costas M, Ribas X (2010) Dalton Trans 39:10458

    Article  CAS  Google Scholar 

  49. Fusi V, Llobet A, Mahía J, Micheloni M, Paoli P, Ribas X, Rossi P (2002) Eur J Inorg Chem 2002:987

    Google Scholar 

  50. Long C, Zhao L, You J, Wang M (2014) Organometallics 33:1061

    Article  CAS  Google Scholar 

  51. Evano G, Blanchard N, Toumi M (2008) Chem Rev 108:3054

    Article  CAS  Google Scholar 

  52. Huffman LM, Casitas A, Font M, Canta M, Costas M (2011) Chem Eur J 17:10643

    Google Scholar 

  53. Wang J, Sánchez-Roselló M, Aceña JL, Del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Chem Rev 114:2432

    Article  CAS  Google Scholar 

  54. Wang Z-L, Zhao L, Wang M-X (2011) Org Lett 13:6560

    Google Scholar 

  55. Font M, Parella T, Costas M, Ribas X (2012) Organometallics 31:7976

    Article  CAS  Google Scholar 

  56. Huffman LM, Stahl SS (2011) Dalton Trans 40:8959

    Article  CAS  Google Scholar 

  57. Hurtley WRH (1929) J Chem Soc 1929:1870

    Article  Google Scholar 

  58. Huang Z, Hartwig JF (2012) Angew Chem Int Ed Engl 51:1028

    Article  CAS  Google Scholar 

  59. Wang Z-L, Zhao L, Wang M-X (2012) Chem Commun 48:9418

    Google Scholar 

  60. Rovira M, Font M, Ribas X (2013) Chem Cat Chem 5:687

    CAS  Google Scholar 

  61. Stephens RD, Castro CE (1963) J Org Chem 28:3133

    Article  Google Scholar 

  62. Okuro K, Furuune M, Enna M, Miura M, Nomura M (1993) J Org Chem 58:4716

    Article  CAS  Google Scholar 

  63. Rovira M, Font M, Acuña-Parés F, Parella T, Luis JM, Lloret-Fillol J, Ribas X (2014) Chem Eur J 20:10005

    Article  CAS  Google Scholar 

  64. Saejueng P, Bates CG, Venkataraman D (2005) Synthesis 2005:1706

    Google Scholar 

  65. Yang Y, Ren H, Wang D, Shi F, Wu C (2013) RSC Adv 3:10434

    Article  CAS  Google Scholar 

  66. Chen X, Hao X-S, Goodhue CE, Yu J-Q (2006) J Am Chem Soc 128:6790

    Article  CAS  Google Scholar 

  67. Wendlandt AE, Suess AM, Stahl SS (2011) Angew Chem Int Ed Engl 50:11062

    Article  CAS  Google Scholar 

  68. Lipshutz BH, Yamamoto Y (2008) Chem Rev 108:2793

    Article  CAS  Google Scholar 

  69. Naodovic M, Yamamoto H (2008) Chem Rev 108:3132

    Article  CAS  Google Scholar 

  70. Weibel J-M, Blanc A, Pale P (2008) Chem Rev 108:3149

    Article  CAS  Google Scholar 

  71. Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I (2008) Chem Rev 108:3174

    Article  Google Scholar 

  72. Hashmi ASK (2010) A critical comparison: copper, silver and gold. In: Harmata M (ed) Silver in organic chemistry. Wiley, Hoboken

    Google Scholar 

  73. Tang P, Furuya T, Ritter T (2010) J Am Chem Soc 132:12150

    Article  CAS  Google Scholar 

  74. Seo S, Taylor JB, Greaney MF (2013) Chem Commun 49:6385

    Article  CAS  Google Scholar 

  75. Li P, Wang L (2006) Synlett 14:2261

    Google Scholar 

  76. Das R, Mandal M, Chakraborty D (2013) Asian J Org Chem 2:579

    Article  CAS  Google Scholar 

  77. Stepień M, Latos-Grażyński L (2003) Org Lett 5:3379

    Article  Google Scholar 

  78. Stepień M, Latos-Grażyński L (2001) Chem Eur J 7:5113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavi Ribas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Font, M., Ribas, X. (2015). Pincerlike Cyclic Systems for Unraveling Fundamental Coinage Metal Redox Processes. In: van Koten, G., Gossage, R. (eds) The Privileged Pincer-Metal Platform: Coordination Chemistry & Applications. Topics in Organometallic Chemistry, vol 54. Springer, Cham. https://doi.org/10.1007/3418_2015_112

Download citation

Publish with us

Policies and ethics