Skip to main content

Visible-Light-Induced Redox Reactions by Ruthenium Photoredox Catalyst

  • Chapter
  • First Online:
Ruthenium in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 48))

Abstract

Photoredox catalysis by well-known ruthenium(II) polypyridine complexes is a versatile tool for redox reactions in synthetic organic chemistry, because they can effectively catalyze single-electron-transfer (SET) processes by irradiation with visible light. These favorable properties of the catalysts provide a new strategy for efficient and selective radical reactions. Salts of tris(2,2′-bipyridine)ruthenium(II), [Ru(bpy)3]2+, were first reported in 1936. Since then, a number of works related to artificial photosynthesis and photofunctional materials have been reported, but only limited efforts had been devoted to synthetic organic chemistry. Remarkably, since 2008, this photocatalytic system has gained importance in redox reactions. In this chapter, we will present a concise review of seminal works on ruthenium photoredox catalysis around 2008, which will be followed by our recent research topics on trifluoromethylation of alkenes by photoredox catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatgilialoglu C, Studer A (eds) (2012) Encyclopedia of radical in chemistry, biology and materials. Wiley, Chichester

    Google Scholar 

  2. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry and chemluminescence. Coord Chem Rev 84:85–277

    CAS  Google Scholar 

  3. Roundhill DM (1994) Photochemistry and photophysics of metal complexes. Plenum, New York

    Google Scholar 

  4. Hedstrand DM, Kruizinga WH, Kellog RM (1978) Light induced and dye accelerated reductions of phenyl onium salts by 1,4-dihydropyridines. Tetrahedron Lett 19:1255–1258

    Google Scholar 

  5. Pac C, Ihama M, Yasuda M, Miyauchi Y, Sakurai H (1981) Ru(bpy)3 2+-mediated photoreduction of olefins with l-benzyl-1,4-dihydronicotinamide: a mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds. J Am Chem Soc 103:6495–6497

    CAS  Google Scholar 

  6. Ishitani O, Pac C, Sakurai H (1984) Redox-photosensitized reactions. 11. Ru(bpy)3 2+-photosensitized reactions of 1-benzyl-1,4-dihydronicotinamide with aryl-substituted enones, derivatives of methyl cinnamate, and substituted cinnamonitriles: electron-transfer mechanism and structure-reactivity relationships. J Org Chem 49:26–34

    Google Scholar 

  7. Goren Z, Willner I (1983) Photochemical and chemical reduction of vicinal dibromides via phase transfer of 4,4′-bipyridinium radical: the role of radical disproportionation. J Am Chem Soc 105:7764–7765

    CAS  Google Scholar 

  8. Cano-Yelo H, Deronzier A (1984) Photocatalysis of the Pschorr reaction by tris-(2,2'-bipyridyl) ruthenium(II) in the phenanthrene series. J Chem Soc Perkin Trans 2:1093–1098

    Google Scholar 

  9. Hironaka K, Fukuzumi S, Tanaka T (1984) Tris(bipyridyl)ruthenium(II)-photosensitized reaction of 1-benzyl-1,4-dihydronicotinamide with benzyl bromide. J Chem Soc Perkin Trans 2:1705–1709

    Google Scholar 

  10. Mashraqui SH, Kellog RM (1985) 3-Methyl-2,3-dihydrobenzothiazoles as reducing agents. Dye enhanced photoreactions. Tetrahedron Lett 26:1453–1456

    CAS  Google Scholar 

  11. Tomioka H, Ueda K, Ohi H, Izawa Y (1986) Photochemical and chemical reduction of nitroalkenes using viologens as an electron phase-transfer catalyst. Chem Lett 1359–1362

    Google Scholar 

  12. Fukuzumi S, Mochizuki S, Tanaka T (1990) Photocatalytic reduction of phenacyl halides by 9,10-dihydro-10-methylacridine: control between the reductive and oxidative quenching pathways of tris(bipyridine)ruthenium complex utilizing an acid catalysis. J Phys Chem 94:722–726

    CAS  Google Scholar 

  13. Okada K, Okamoto K, Morita N, Okubo K, Oda M (1991) Photosensitized decarboxylative Michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J Am Chem Soc 113:9401–9402

    CAS  Google Scholar 

  14. Hamada T, Ishida H, Usui S, Watanabe Y, Tsumura K, Ohkubo K (1993) A novel photocatalytic asymmetric synthesis of (R)-(+)-1,1'-bi-2-naphthol derivatives by oxidative coupling of 3-substituted-2-naphthol with Δ-[Ru(menbpy)3]2+[menbpy = 4,4'-di(1R,2S,5R)-(-)-menthoxycarbonyl-2,2'-bipyridine], which posseses molecular helicity. J Chem Soc Chem Commun 909–911

    Google Scholar 

  15. Barton DHR, Csiba MA, Jaszberenyi JC (1994) Ru(bpy)3 2+-mediated addition of Se-phenyl p-tolueneselenosulfonate to electron rich olefins. Tetrahedron Lett 35:2869–2872

    CAS  Google Scholar 

  16. Zen JM, Liou SL, Kumar AS, Hsia MS (2003) An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides. Angew Chem Int Ed 42:577–579

    CAS  Google Scholar 

  17. Hasegawa E, Takizawa S, Seida T, Yamaguchi A, Yamaguchi N, Chiba N, Takahashi T, Ikeda H, Akiyama K (2006) Photoinduced electron-transfer systems consisting of electron-donating pyrenes or anthracenes and benzimidazolines for reductive transformation of carbonyl compounds. Tetrahedron 62:6581–6588

    CAS  Google Scholar 

  18. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532

    CAS  Google Scholar 

  19. Narayanam JMR, Stephenson CRJ (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113

    CAS  Google Scholar 

  20. Teplý F (2011) Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect Czech Chem Commun 76:859–917

    Google Scholar 

  21. Tucker JW, Stephenson CRJ (2012) Shining light on photoredox catalysis: theory and synthetic applications. J Org Chem 77:1617–1622

    CAS  Google Scholar 

  22. Xuan J, Xiao W-J (2012) Visible-light photoredox catalysis. Angew Chem Int Ed 51:6828–6838

    CAS  Google Scholar 

  23. Maity S, Zheng N (2012) A photo touch on amines: new synthetic adventures of nitrogen radical cations. Synlett 23:1851–1856

    CAS  Google Scholar 

  24. Shi L, Xia W (2012) Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem Soc Rev 41:7687–7697

    CAS  Google Scholar 

  25. Xi Y, Yi H, Lei A (2013) Synthetic applications of photoredox catalysis with visible light. Org Biomol Chem 11:2387–2403

    CAS  Google Scholar 

  26. Hari DP, König B (2013) The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light. Angew Chem Int Ed 52:4734–4743

    CAS  Google Scholar 

  27. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363

    CAS  Google Scholar 

  28. Reckenthäler M, Griesbeck AG (2013) Photoredox catalysis for organic syntheses. Adv Synth Catal 355:2727–2744

    Google Scholar 

  29. Koike T, Akita M (2013) Visible-light-induced photoredox catalysis: an easy access to green radical chemistry. Synlett 24:2492–2505

    CAS  Google Scholar 

  30. Nicewicz DA, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322:77–80

    CAS  Google Scholar 

  31. Lelais G, MacMillan DWC (2006) Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichimica Acta 39:79–87

    CAS  Google Scholar 

  32. MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455:304–308

    CAS  Google Scholar 

  33. Beeson TD, Mastracchio A, Hong J-B, Ashton K, MacMillan DWC (2007) Enantioselective organocatalysis using SOMO activation. Science 316:582–585

    CAS  Google Scholar 

  34. Nagib DA, Scott ME, MacMillan DWC (2009) Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J Am Chem Soc 131:10875–10877

    CAS  Google Scholar 

  35. Koike T, Akita M (2009) Photoinduced oxyamination of enamines and aldehydes with TEMPO catalyzed by [Ru(bpy)3]2+. Chem Lett 38:166–167

    CAS  Google Scholar 

  36. Yasu Y, Koike T, Akita M (2012) Sunlight-driven synthesis of γ-diketones via oxidative coupling of enamines with silyl enol ethers catalyzed by [Ru(bpy)3]2+. Chem Commun 48:5355–5357

    CAS  Google Scholar 

  37. Ischay MA, Anzovino ME, Du J, Yoon TP (2008) Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc 130:12886–12887

    CAS  Google Scholar 

  38. Crimmins MT (1988) Synthetic applications of intramolecular enone-olefin photocycloadditions. Chem Rev 88:1453–1473

    CAS  Google Scholar 

  39. Bach T (1998) Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis. Synthesis 683–708

    Google Scholar 

  40. Roh Y, Jang H-Y, Lynch V, Bauld NL, Krische MJ (2002) Anion radical chain cycloaddition of tethered enones: intramolecular cyclobutanation and Diels−Alder cycloaddition. Org Lett 4:611–613

    CAS  Google Scholar 

  41. Du J, Yoon TP (2009) Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. J Am Chem Soc 131:14604–14605

    CAS  Google Scholar 

  42. Lu Z, Shen M, Yoon TP (2011) [3+2] Cycloadditions of aryl cyclopropyl ketone by visible light photocatalysis. J Am Chem Soc 133:1162–1164

    CAS  Google Scholar 

  43. Ischay MA, Lu Z, Yoon TP (2010) [2+2] Cycloadditions by oxidative visible light photocatalysis. J Am Chem Soc 132:8572–8574

    CAS  Google Scholar 

  44. Ischay MA, Ament MS, Yoon TP (2012) Crossed intermolecular [2 + 2] cycloaddtion of styrenes by visible light photocatalysis. Chem Sci 3:2807–2811

    CAS  Google Scholar 

  45. Narayanam JMR, Tucker JW, Stephenson CRJ (2009) Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J Am Chem Soc 131:8756–8757

    CAS  Google Scholar 

  46. Tucker JW, Nguyen JD, Narayanam JMR, Krabbe SW, Stephenson CRJ (2010) Tin-free radical cyclization reactions initiated by visible light photoredox catalysis. Chem Commun 46:4985–4987

    CAS  Google Scholar 

  47. Tucker JW, Narayanam JMR, Krabbe SW, Stephenson CRJ (2010) Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org Lett 12:368–371

    CAS  Google Scholar 

  48. Furst L, Matsuura BS, Narayanam JMR, Tucker JW, Stephenson CRJ (2010) Visible light-mediated intermolecular C-H functionalization of electron-rich heterocycles with malonates. Org Lett 12:3104–3107

    CAS  Google Scholar 

  49. Andrew RS, Becker JJ, Gagné MR (2010) Intermolecular addition of glycosyl halides to alkenes mediated by visible light. Angew Chem Int Ed 49:7274–7276

    Google Scholar 

  50. Condie AG, González-Gómez JC, Stephenson CRJ (2010) Visible-light photoredox catalysis: Aza-Henry reactions via C-H functionalization. J Am Chem Soc 132:1464–1465

    CAS  Google Scholar 

  51. Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC (2011) Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. Chem Commun 47:2360–2362

    CAS  Google Scholar 

  52. Xuan J, Cheng Y, An J, Lu L-Q, Zhang X-X, Xiao W-J (2011) Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles. Chem Commun 47:8337–8339

    CAS  Google Scholar 

  53. Rueping M, Zhu S, Koenigs RM (2011) Photoredox catalyzed C–P bond forming reactions—visible light mediated oxidative phosphonylations of amines. Chem Commun 47:8679–8681

    CAS  Google Scholar 

  54. Zou Y-Q, Lu L-Q, Fu L, Chang N-J, Rong J, Chen J-R, Xiao W-J (2011) Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew Chem Int Ed 50:7171–7175

    CAS  Google Scholar 

  55. Freeman DB, Furst L, Condie AG, Stephenson CRJ (2012) Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. Org Lett 14:94–97

    CAS  Google Scholar 

  56. Maity S, Zhu M, Shinabery RS, Zheng N (2012) Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. Angew Chem Int Ed 51:222–226

    CAS  Google Scholar 

  57. Rueping M, Koenigs RM, Poscharny K, Fabry DC, Leonori D, Vila C (2012) Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions—C–C bond formation using visible light. Chem Eur J 18:5170–5174

    CAS  Google Scholar 

  58. Cai S, Zhao X, Wang X, Liu Q, Li Z, Wang DZ (2012) Visible-light-promoted C–C bond cleavage: photocatalytic generation of iminium ions and amino radicals. Angew Chem Int Ed 51:8050–8053

    CAS  Google Scholar 

  59. Zhao G, Yang C, Guo L, Sun H, Chen C, Xia W (2012) Visible light-induced oxidative coupling reaction: easy access to Mannich-type products. Chem Commun 48:2337–2339

    CAS  Google Scholar 

  60. DiRocco DA, Rovis T (2012) Catalytic asymmetric α-acylation of tertiary amines mediated by a dual catalysis mode: N-Heterocyclic carbene and photoredox catalysis. J Am Chem Soc 134:8094–8097

    CAS  Google Scholar 

  61. McNally A, Prier CK, MacMillan DWC (2011) Discovery of an α-amino CH arylation reaction using the strategy of accelerated serendipity. Science 334:1114–1117

    CAS  Google Scholar 

  62. Kohls P, Jadhav D, Pandey G, Reiser O (2012) Visible light photoredox catalysis: generation and addition of N-aryltetrahydroisoquinoline-derived α-amino radicals to Michael acceptors. Org Lett 14:672–675

    CAS  Google Scholar 

  63. Miyake Y, Nakajima K, Nishibayashi Y (2012) Visible-light-mediated utilization of α-aminoalkyl radicals: addition to electron-deficient alkenes using photoredox catalysts. J Am Chem Soc 134:3338–3341

    CAS  Google Scholar 

  64. Ju X, Li D, Li W, Yu W, Bian F (2012) The reaction of tertiary anilines with maleimides under visible light redox catalysis. Adv Synth Catal 354:3561–3567

    CAS  Google Scholar 

  65. Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M (2013) Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected CC-bond cleavage reactions. J Am Chem Soc 135:1823–1829

    CAS  Google Scholar 

  66. Hiyama T (2000) Organofluorine compounds: chemistry and applications. Springer, Berlin

    Google Scholar 

  67. Ojima I (ed) (2009) Fluorine in medicinal chemistry and chemical biology. Wiley, Oxford

    Google Scholar 

  68. Ma J-A, Cahard D (2004) Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem Rev 104:6119–6146

    CAS  Google Scholar 

  69. Shimizu M, Hiyama T (2005) Modern synthetic methods for fluorine-substituted target molecules. Angew Chem Int Ed 44:214–231

    CAS  Google Scholar 

  70. Ma J-A, Cahard D (2007) Strategies for nucleophilic, electrophilic, and radical trifluoromethylations. J Fluorine Chem 128:975–996

    CAS  Google Scholar 

  71. Tomashenko OA, Grushin VV (2011) Aromatic trifluoromethylation with metal complexes. Chem Rev 111:4475–4521

    CAS  Google Scholar 

  72. Furuya T, Kamlet AS, Ritter T (2011) Catalysis for fluorination and trifluoromethylation. Nature 473:470–477

    CAS  Google Scholar 

  73. Besset T, Schneider C, Cahard D (2012) Tamed arene and heteroarene trifluoromethylation. Angew Chem Int Ed 51:5048–5050

    CAS  Google Scholar 

  74. Studer A (2012) A “Renaissance” in radical trifluoromethylation. Angew Chem Int Ed 51:8950–8958

    CAS  Google Scholar 

  75. Hollingworth C, Gouverneur V (2012) Transition metal catalysis and nucleophilic fluorination. Chem Commun 48:2929–2942

    CAS  Google Scholar 

  76. Liu H, Gu Z, Jiang X (2013) Direct trifluoromethylation of the C–H bond. Adv Synth Catal 355:617–626

    CAS  Google Scholar 

  77. Liang T, Neumann CN, Ritter T (2013) Introduction of fluorine and fluorine-containing functional groups. Angew Chem Int Ed 52:8214–8264

    CAS  Google Scholar 

  78. Koike T, Akita M (2014) Trifluoromethylation by visible-light-driven photoredox catalysis. Top Catal. DOI: 10.1007/s11244-014-0259-7

    Google Scholar 

  79. Nagib DA, MacMillan DWC (2011) Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 480:224–228

    CAS  Google Scholar 

  80. Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CRJ (2011) Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J Am Chem Soc 133:4160–4163

    CAS  Google Scholar 

  81. Wallentin C-J, Nguyen JD, Finkbeiner P, Stephenson CRJ (2012) Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. J Am Chem Soc 134:8875–8884

    CAS  Google Scholar 

  82. Wilger DJ, Gesmundo NJ, Nicewicz DA (2013) Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system. Chem Sci 4:3160–3165

    CAS  Google Scholar 

  83. Iqbal N, Choi S, Ko E, Cho EJ (2012) Trifluoromethylation of heterocycles via visible light photoredox catalysis. Tetrahedron Lett 53:2005–2008

    CAS  Google Scholar 

  84. Iqbal N, Choi S, Kim E, Cho EJ (2012) Trifluoromethylation of alkenes by visible light photoredox catalysis. J Org Chem 77:11383–11387

    CAS  Google Scholar 

  85. Kim E, Choi S, Kim H, Cho EJ (2013) Generation of CF3-containing epoxides and aziridines by visible-light-driven trifluoromethylation of allylic alcohols and amines. Chem Eur J 19:6209–6212

    CAS  Google Scholar 

  86. Umemoto T (1996) Electrophilic perfluoroalkylating agents. Chem Rev 96:1757–1777

    CAS  Google Scholar 

  87. Eisenberger P, Gischig S, Togni A (2006) Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chem Eur J 12:2579–2586

    CAS  Google Scholar 

  88. Kieltsch I, Eisenberger P, Togni A (2007) Mild electrophilic trifluoromethylation of carbon- and sulfur-centered nucleophiles by a hypervalent iodine(III)–CF3 reagent. Angew Chem Int Ed 46:754–757

    CAS  Google Scholar 

  89. Wolfe JP (2008) Stereoselective synthesis of saturated heterocycles via palladium-catalyzed alkene carboetherification and carboamination reactions. Synlett 2913–2937

    Google Scholar 

  90. Jensen KH, Sigman MS (2008) Mechanistic approaches to palladium-catalyzed alkene difunctionalization reactions. Org Biomol Chem 6:4083–4088

    CAS  Google Scholar 

  91. McDonald RI, Liu G, Stahl SS (2011) Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem Rev 111:2981–3019

    CAS  Google Scholar 

  92. Fuchikami T, Shibata Y, Urata H (1987) Transition-metal complex catalyzed polyfluoroalkylation. A facile synthesis of fluorine-containing oxiranes and enynes. Chem Lett 521–524

    Google Scholar 

  93. Kamigata N, Fukushima T, Yoshida M (1989) Reaction of trifluoromethanesulphonyl chloride with alkenes catalysed by a ruthenium(II) complex. J Chem Soc Chem Commun 1559–1560

    Google Scholar 

  94. Kamigata N, Fukushima T, Terakawa Y, Yoshida M, Sawada H (1991) Novel perfluoroalkylation of alkenes with perfluoroalkanesulphonyl chlorides catalysed by a ruthenium(II) complex. J Chem Soc Perkin Trans 1:627–633

    Google Scholar 

  95. Ignatowska J, Dmowski W (2007) Sodium dithionite initiated addition of CF2Br2, CF3I and (CF3)2CFI to allylaromatics synthesis and the reactivity of 4-aryl-1,1-difluorodienes and 4-aryl-1,1-bis(trifluoromethyl)dienes. J Fluorine Chem 128:997–1006

    CAS  Google Scholar 

  96. Mu X, Wu T, Wang H-Y, Guo Y-L, Liu G (2012) Palladium-catalyzed oxidative aryltrifluoromethylation of activated alkenes at room temperature. J Am Chem Soc 134:878–881

    CAS  Google Scholar 

  97. Janson PG, Ghoneim I, IIchenko NO, Szabó KJ (2012) Electrophilic trifluoromethylation by copper-catalyzed addition of CF3-transfer reagents to alkenes and alkynes. Org Lett 14:2882–2885

    CAS  Google Scholar 

  98. Zhu R, Buchwald SL (2012) Copper-catalyzed oxytrifluoromethylation of unactivated alkenes. J Am Chem Soc 134:12462–12465

    CAS  Google Scholar 

  99. Li Y, Studer A (2012) Transition-metal-free trifluoromethylaminoxylation of alkenes. Angew Chem Int Ed 51:8221–8224

    CAS  Google Scholar 

  100. Egami H, Shimizu R, Sodeoka M (2012) Oxytrifluoromethylation of multiple bonds using copper catalyst under mild conditions. Tetrahedron Lett 53:5503–5506

    CAS  Google Scholar 

  101. Feng C, Loh T-P (2012) Copper-catalyzed olefinic trifluoromethylation of enamides at room temperature. Chem Sci 3:3458–3462

    CAS  Google Scholar 

  102. Wu X, Chu L, Qing F-L (2013) Silver-catalyzed hydrotrifluoromethylation of unactivated alkenes with CF3SiMe3. Angew Chem Int Ed 52:2198–2202

    CAS  Google Scholar 

  103. Egami H, Shimizu R, Kawamura S, Sodeoka M (2013) Alkene trifluoromethylation coupled with C–C bond formation: construction of trifluoromethylated carbocycles and heterocycles. Angew Chem Int Ed 52:4000–4003

    CAS  Google Scholar 

  104. Egami H, Kawamura S, Miyazaki A, Sodeoka M (2013) Trifluoromethylation reactions for the synthesis of β-trifluoromethylamines. Angew Chem Int Ed 52:7841–7844

    CAS  Google Scholar 

  105. Mizuta S, Verhoog S, Engle KM, Khotavivattana T, O’Duill M, Wheelhouse K, Rassias G, Médebielle M, Gouverneur V (2011) Catalytic hydrotrifluoromethylation of unactivated alkenes. J Am Chem Soc 135:2505–2508

    Google Scholar 

  106. Nemeth G, Kapiller-Dezsofi R, Lax G, Simig G (1996) New practical synthesis of panomifene. The effect of 2-trifluoromethyl substituent on the stereoselectivity of dehydration of l, l,2-triarylethanols. Tetrahedron 52:12821–12830

    CAS  Google Scholar 

  107. Liu X, Shimizu M, Hiyama T (2004) A Facile stereocontrolled approach to CF3-substituted triarylethenes: synthesis of panomifene. Angew Chem Int Ed 43:879–882

    CAS  Google Scholar 

  108. Yasu Y, Koike T, Akita M (2012) Three-component oxytrifluoromethyation of alkenes: highly efficient and regioselective difunctionalization of C=C bonds mediated by photoreodx catalysts. Angew Chem Int Ed 51:9567–9571

    CAS  Google Scholar 

  109. Nie J, Guo H-C, Cahard D, Ma J-A (2011) Asymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substrates. Chem Rev 111:455–529

    CAS  Google Scholar 

  110. Qiu X-L, Qing F-L (2011) Recent advances in the synthesis of fluorinated amino acids. Eur J Org Chem 3261–3278

    Google Scholar 

  111. Yasu Y, Koike T, Akita M (2013) Intermolecular aminotrifluoromethylation of alkenes by visible-light- driven photoreodx catalysis. Org Lett 15:2136–2139

    CAS  Google Scholar 

  112. Rivkin A, Chou T-C, Danishefsky SJ (2005) On the remarkable antitumor properties of fludelone: how we got there. Angew Chem Int Ed 44:2838–2850

    CAS  Google Scholar 

  113. Shimizu M, Takeda Y, Higashi M, Hiyama T (2009) 1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: minimal fluorophores exhibiting highly efficient emission in the solid state. Angew Chem Int Ed 48:3653–3656

    CAS  Google Scholar 

  114. Shimizu M, Takeda Y, Higashi M, Hiyama T (2011) Synthesis and photophysical properties of dimethoxybis(3,3,3-trifluoropropen-1-yl)benzenes: compact chromophores exhibiting violet fluorescence in the solid state. Chem Asian J 6:2536–2544

    CAS  Google Scholar 

  115. Shi Z, Davies J, Jang S-H, Kaminsky W, Jen AK-Y (2012) Aggregation induced emission (AIE) of trifluoromethyl substituted distyrylbenzenes. Chem Commun 48:7880–7882

    CAS  Google Scholar 

  116. Selby TP (1995) Preparation of substituted fused heterocyclic herbicides. PCT international patent application US5,389,600 (A)

    Google Scholar 

  117. Xu J, Luo D-F, Xiao B, Liu Z-J, Gong T-J, Fu Y, Liu L (2011) Copper-catalyzed trifluoromethylation of aryl boronic acids using a CF3 + reagent. Chem Commun 47:4300–4302

    CAS  Google Scholar 

  118. Liu T, Shen Q (2011) Copper-catalyzed trifluoromethylation of aryl and vinyl boronic acids with an electrophilic trifluoromethylating reagent. Org Lett 13:2342–2345

    CAS  Google Scholar 

  119. Parsons AT, Senecal TD, Buchwald SL (2012) Iron(II)-catalyzed trifluoromethylation of potassium vinyltrifluoroborates. Angew Chem Int Ed 51:2947–2950

    CAS  Google Scholar 

  120. He Z, Luo T, Hu M, Cao Y, Hu J (2012) Copper-catalyzed di- and trifluoromethylation of α, β-unsaturated carboxylic acids: a protocol for vinylic fluoroalkylations. Angew Chem Int Ed 51:3944–3947

    CAS  Google Scholar 

  121. Li Y, Wu L, Neumann H, Beller M (2013) Copper-catalyzed trifluoromethylation of aryl- and vinylboronic acids with generation of CF3-radicals. Chem Commun 49:2628–2630

    CAS  Google Scholar 

  122. Kim H, MacMillan DWC (2008) Enantioselective organo-SOMO catalysis: the α-vinylation of aldehydes. J Am Chem Soc 130:398–399

    CAS  Google Scholar 

  123. Yasu Y, Koike T, Akita M (2013) Visible-light-induced synthesis of a variety of trifluoromethylated alkenes from potassium vinyltrifluoroborates by photoredox catalysis. Chem Commun 49:2037–2039

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported financially by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science of the Japanese Government (Nos. 23750174, 22350024, and 24108101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Koike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koike, T., Akita, M. (2014). Visible-Light-Induced Redox Reactions by Ruthenium Photoredox Catalyst. In: Dixneuf, P., Bruneau, C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/3418_2014_80

Download citation

Publish with us

Policies and ethics