Skip to main content

Hydrogenation of Polar Bonds Catalysed by Ruthenium-Pincer Complexes

  • Chapter
  • First Online:
Ruthenium in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 48))

Abstract

Catalytic hydrogenation of polar bonds using molecular hydrogen is an important, atom-economical synthetic reaction. Classical reduction methods of polar bond often require reactive metal-hydride reagents in stoichiometric amount and produce copious waste. Hydrogenation of carbonyl compounds in particular provides ‘green’ approaches to synthetically important building blocks, such as alcohols and amines. We have designed and synthesized several ruthenium-based pincer catalysts for unprecedented hydrogenation reactions including: (1) amides to alcohols and amines, (2) biomass-derived di-esters to 1,2-diols and (3) CO2 and CO derivatives to methanol. These atom-economical reactions operate under neutral, homogeneous conditions, at mild temperatures, mild hydrogen pressures, and can operate in absence of solvent with no generation of waste. The postulated mechanisms involve metal–ligand cooperation (MLC) by aromatization–dearomatization of the heteroaromatic pincer core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, Leazer HL, Linderman RJ Jr, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Green Chem 9:411

    Article  CAS  Google Scholar 

  2. Aldridge S (2008) Pharm Technol Eur 20:15

    Google Scholar 

  3. Seyden-Penne J (1997) Reductions by alumino- and borohydrides in organic synthesis. Wiley, New York

    Google Scholar 

  4. Gribble GW (1998) Chem Soc Rev 27:395

    Article  CAS  Google Scholar 

  5. Rothenberg G (2008) Catalysis: Concepts and Green Applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201

    Article  CAS  Google Scholar 

  7. Ito M, Ikariya T (2007) Chem Commun 5134

    Google Scholar 

  8. Kubas GJ (2007) Chem Rev 107:4152

    Article  CAS  Google Scholar 

  9. Wylie WNO, Lough AJ, Morris RH (2010) Chem Commun 46:8240

    Article  Google Scholar 

  10. Dub PA, Ikariya T (2012) ACS Catal 2:1718

    Article  CAS  Google Scholar 

  11. Noyori R (2002) Angew Chem Int Ed 41:2008

    Article  CAS  Google Scholar 

  12. Ohkuma T, Ooka H, Hashiguchi S, Ikariya T, Noyori R (1995) J Am Chem Soc 117:2675

    Article  CAS  Google Scholar 

  13. Ohkuma T, Noyori R (2001) Angew Chem Int Ed 40:40

    Article  Google Scholar 

  14. Albrecht M, Van Koten G (2001) Angew Chem Int Ed 40:3750

    Article  CAS  Google Scholar 

  15. van der Boom ME, Milstein D (2003) Chem Rev 103:1759

    Article  Google Scholar 

  16. Morales-Morales D, Jensen CM (eds) (2007) The chemistry of pincer compounds. Elsevier, Amsterdam

    Google Scholar 

  17. van Koten G, Milstein D (eds) (2013) Organometallic pincer chemistry. Springer-Verlag Berlin Heidelberg

    Google Scholar 

  18. Kanai M, Ikariya T, Ooi T, Ding K, Milstein D (2013) Recent topics in cooperative catalysis: asymmetric catalysis, polymerization, hydrogen activation, and water splitting. In: Ding K, Dai L-X (eds) Organic chemistry- breakthroughs and perspectives. Wiley-VCH, Weinheim, pp 385–412

    Google Scholar 

  19. Milstein D (2010) Top Catal 53:915

    Article  CAS  Google Scholar 

  20. Gunanathan C, Milstein D (2011) Top Organomet Chem 37:55

    CAS  Google Scholar 

  21. Gunanathan C, Milstein D (2011) Acc Chem Res 44:588

    Article  CAS  Google Scholar 

  22. Gunanathan C, Milstein D (2013) Science 341:249

    Article  CAS  Google Scholar 

  23. Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D (2011) Angew Chem Int Ed 50:9948

    Article  CAS  Google Scholar 

  24. Langer R, Leitus G, Ben-David Y, Milstein D (2011) Angew Chem Int Ed 50:2120

    Article  CAS  Google Scholar 

  25. Langer R, Iron MA, Konstantinovski L, Diskin-Posner Y, Leitus G, Ben-David Y, Milstein D (2012) Chem Eur J 18:7196

    Article  CAS  Google Scholar 

  26. Zhang J, Leitus G, Ben-David Y, Milstein D (2005) J Am Chem Soc 127:12429

    Article  CAS  Google Scholar 

  27. Zhang J, Leitus G, Ben-David Y, Milstein D (2006) Angew Chem Int Ed 45:1113

    Article  CAS  Google Scholar 

  28. Balaraman E, Gnanaprakasam B, Shimon LJW, Milstein D (2010) J Am Chem Soc 132:16756

    Article  CAS  Google Scholar 

  29. Zhang J, Gandelman M, Shimon LJW, Milstein D (2007) J Chem Soc Dalton Trans 107

    Google Scholar 

  30. Zhang J, Balaraman E, Leitus G, Milstein D (2011) Organometallics 30:5716

    Article  CAS  Google Scholar 

  31. Fogler E, Balaraman E, Ben-David Y, Leitus G, Shimon LJW, Milstein D (2011) Organometallics 30:3826

    Article  CAS  Google Scholar 

  32. Carey FA, Sundberg RJ (2000) Advanced Organic Chemistry. Kluwer Academic/Plenum, New York

    Google Scholar 

  33. McAlees AJ, McCrindle R (1969) J Chem Soc 2425

    Google Scholar 

  34. Ito M, Ootsuka T, Watari R, Shiibashi A, Himizu A, Ikariya T (2011) J Am Chem Soc 133:4240

    Article  CAS  Google Scholar 

  35. Casey CP, Guan H (2007) J Am Chem Soc 129:5816

    Article  CAS  Google Scholar 

  36. Bullock RA (2007) Angew Chem Int Ed 46:7360

    Article  CAS  Google Scholar 

  37. Morris RH (2009) Chem Soc Rev 38:2282

    Article  CAS  Google Scholar 

  38. Bauer G, Kirchner KA (2011) Angew Chem Int Ed 50:5798

    Article  CAS  Google Scholar 

  39. Junge K, Schröder K, Beller M (2011) Chem Commun 47:4849

    Article  CAS  Google Scholar 

  40. Grey RA, Pez GP, Wallo A (1981) J Am Chem Soc 103:7536

    Article  CAS  Google Scholar 

  41. Clarke ML (2012) Catal Sci Technol 2:2418

    Article  CAS  Google Scholar 

  42. Teunissen HT, Elsevier CJ (1998) Chem Commun 1367

    Google Scholar 

  43. Vogt P, Bodnar B (2009) Spec Chem Mag 29/7:22

    Google Scholar 

  44. Milstein D, Balaraman E, Gunanathan C, Gnanaprakasam B, Zhang J (2012) WO 2012/052996A2

    Google Scholar 

  45. Clarke ML, Diaz-Valenzuela MB, Slawin AMZ (2007) Organometallics 26:16

    Article  CAS  Google Scholar 

  46. Clarke ML, Roff GJ (2007) in Handbook of Homogeneous Hydrogenation 1:413; de Vries JG, Elsevier CJ (eds) Wiley, New York

    Google Scholar 

  47. Kuriyama W, Matsumoto T, Ino Y, Ogata O (2011) Takasago International Corporation, Japan WO2011048727A1

    Google Scholar 

  48. Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, Ishida K, Kobayashi T, Sayo N, Saito T (2012) Org Process Res Dev 16:166

    Article  CAS  Google Scholar 

  49. Sun YS, Koehler C, Tan RY, Annibale VT, Song DT (2011) Chem Commun 47:8349

    Article  CAS  Google Scholar 

  50. Spasyuk D, Smith S, Gusev DG (2012) Angew Chem Int Ed 51:2772

    Article  CAS  Google Scholar 

  51. Spasyuk D, Smith S, Gusev DG (2013) Angew Chem Int Ed 52:2538

    Article  CAS  Google Scholar 

  52. Otsuka T, Ishii A, Dub PA, Ikariya T (2013) J Am Chem Soc 135:9600

    Article  CAS  Google Scholar 

  53. Balaraman E, Fogler E, Milstein D (2012) Chem Commun 48:1111

    Article  CAS  Google Scholar 

  54. Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Nature Chem 3:609

    Article  CAS  Google Scholar 

  55. Gormley RJ, Rao VUS, Soong Y (1992) Appl Catal A 87:81

    Article  CAS  Google Scholar 

  56. Iwasa N, Terashita M, Arai M, Takezawa N (2001) React Kinet Catal Lett 74:93

    Article  CAS  Google Scholar 

  57. Monti DM, Kohler MA, Wainwright MS, Trimm DL, Cant NW (1986) Appl Catal 22:123

    Article  CAS  Google Scholar 

  58. Hasanayn F, Baroudi A (2013) Organometallics 32:2493

    Article  CAS  Google Scholar 

  59. Robin MB, Bovey FA, Basch, H (1970) in The Chemistry of Amides (ed: Zabicky, J), Interscience, New York

    Google Scholar 

  60. Hartwig J (2010) Organotransition Metal Chemistry; University Science Books: Sausalito, CA

    Google Scholar 

  61. Nu´n˜ezMagro AA, Eastham GR, Cole-Hamilton DJ (2007) Chem Commun 3154

    Google Scholar 

  62. Beamson G, Papworth AJ, Philipps C, Smith AM, Whyman R (2010) Adv Synth Catal 352:869

    Article  CAS  Google Scholar 

  63. Stein M, Breit B (2013) Angew Chem Int Ed 52:2231

    Article  CAS  Google Scholar 

  64. Coetzee J, Deborah L. Dodds DL, Klankermayer J, Brosinski S, Leitner W, Slawin AMZ, Cole-Hamilton DJ (2013) Chem Eur J 19:11039

    Google Scholar 

  65. Coetzee J, Manyar HG, Hardacre C, Cole-Hamilton DJ (2013) ChemCatChem 5:2843

    Article  CAS  Google Scholar 

  66. John JM, Bergens SH (2011) Angew Chem Int Ed 50:10377

    Article  CAS  Google Scholar 

  67. John JM, Bergens SH (2012) Angew Chem Int Ed 51:2533

    Article  CAS  Google Scholar 

  68. Miura T, Held IE, Oishi S, Naruto M, Saito S (2013) Tetrahedron Lett 54:2674

    Article  CAS  Google Scholar 

  69. Cantillo D (2011) Eur J InorgChem3008

    Google Scholar 

  70. Barrios-Francisco R, Balaraman E, Diskin-Posner Y, Leitus G, Shimon LJW, Milstein D (2013) Organometallics 32:2973

    Article  CAS  Google Scholar 

  71. Olah GA, Goeppert A, Prakash GKS (2006) Beyond Oil and Gas: The Methanol Economy. Wiley-VCH, Weinheim

    Google Scholar 

  72. Olah GA (2005) Angew Chem Int Ed 44:2636

    Article  CAS  Google Scholar 

  73. Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487

    Article  CAS  Google Scholar 

  74. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510

    Article  CAS  Google Scholar 

  75. Schaffner B, Schaffner F, Verevkin SP, Borner (2010) Chem Rev 110:4554

    Google Scholar 

  76. Delledonne D, Rivetti F, Romano U (1995) J Organomet Chem 448:C15

    Article  Google Scholar 

  77. Delledonne D, Rivetti F, Romano U (2001) Appl Catal A 221:241

    Article  CAS  Google Scholar 

  78. Sakakura T, Kohno K (2009) Chem Commun 45:1312

    Article  Google Scholar 

  79. Sakakura T, Choi JC, Yasuda H (2007) Chem Rev 107:2365

    Article  CAS  Google Scholar 

  80. Dixneuf PH (2011) Nature Chem 3:578

    Article  CAS  Google Scholar 

  81. Choudhury J (2012) ChemCatChem 4:609

    Article  CAS  Google Scholar 

  82. Li Y, Junge K, Beller M (2013) ChemCatChem 5:1072

    Article  CAS  Google Scholar 

  83. Li H, Wen M, Wang Z-X (2012) Inorg Chem 51:5716

    Article  CAS  Google Scholar 

  84. Yang X (2012) ACS Catal 2:964

    Article  CAS  Google Scholar 

  85. Hasanayn F, Baroudi A, Bengali AA, Goldman AS (2013) Organometallics 32:6969

    Article  CAS  Google Scholar 

  86. Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K (2012) Angew Chem Int Ed 51:13041

    Article  CAS  Google Scholar 

  87. Kocienski PJ (2005) Protecting Groups, Thieme

    Google Scholar 

  88. Abla M, Choi JC, Sakakura T (2001) Chem Commun 37:2238

    Article  Google Scholar 

  89. Abla M, Choi JC, Sakakura T (2004) Green Chem 6:524

    Article  CAS  Google Scholar 

  90. Ohgomori Y, Mori S, Yoshida S, Watanabe Y (1987) J Mol Catl 40:223

    Article  CAS  Google Scholar 

  91. Imperato G, Höger S, Lenoir D, König B (2006) Green Chem 8:1051

    Article  CAS  Google Scholar 

  92. Balaraman E, Ben-David Y, Milstein D (2011) Angew Chem Int Ed 50:11702

    Article  CAS  Google Scholar 

  93. Wu C, Cheng H, Liu R, Wang Q, Hao Y, Yu Y, Zhao F (2010) Green Chem 12:1811

    Article  CAS  Google Scholar 

  94. Huff CA, Sanford MS (2011) J Am Chem Soc 133:18122

    Article  CAS  Google Scholar 

  95. Wesselbaum S, vom Stein T, Klankermayer J, Leitner W (2012) Angew Chem Int Ed 51:7499

    Google Scholar 

  96. Beydoun K, vom Stein T, Klankermayer J, Leitner W (2013) Angew Chem Int Ed 52:9554

    Google Scholar 

  97. Huff CA, Sanford MS (2013) ACS Catal 3:2412

    Article  CAS  Google Scholar 

  98. Tanaka R, Yamashita M, Nozaki K (2009) J Am Chem Soc 131:14168

    Article  CAS  Google Scholar 

  99. Federsel C, Jackstell R, Beller M (2010) Angew Chem Int Ed 49:6254

    Article  CAS  Google Scholar 

  100. Filonenko GA, Conley MP, Copéret C, Lutz M, Hensen EJM, Pidko EA (2013) ACS Catal 3:2522

    Article  CAS  Google Scholar 

  101. Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M (2010) Angew Chem Int Ed 49:9777

    Article  CAS  Google Scholar 

  102. Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M (2012) J Am Chem Soc 134:20701

    Article  CAS  Google Scholar 

  103. Schmeier TJ, Dobereiner GE, Crabtree RH, Hazari N (2011) J Am Chem Soc 133:9274

    Article  CAS  Google Scholar 

  104. Ahlquist MSG (2010) J Mol Catal A 324:3

    Article  CAS  Google Scholar 

  105. Yang X (2011) ACS Catal 1:849

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the European Research Council (ERC) under the FP7 framework (No. 246837), Kimmel Center for Molecular Design and CSIR-NCL (start-up grant to E.B, MLP028726). D.M. is the Israel Matz Professorial Chair of Organic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Balaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balaraman, E., Milstein, D. (2014). Hydrogenation of Polar Bonds Catalysed by Ruthenium-Pincer Complexes. In: Dixneuf, P., Bruneau, C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/3418_2014_77

Download citation

Publish with us

Policies and ethics