Skip to main content

Noncontact Atomic Force Microscopy and Its Related Topics

  • Reference work entry
Springer Handbook of Nanotechnology

Abstract

The scanning probe microscopy (SPM) such as the STM and the NC-AFM is the basic technology for the nanotechnology and also for the future bottom-up process. In Sect. 13.1, the principles of AFM such as operating modes and the frequency modulation method of the NC-AFM are fully explained. Then, in Sect. 13.2, applications of NC-AFM to semiconductors that make clear its potentials such as spatial resolution and functions are introduced. Next, in Sect. 13.3, applications of NC-AFM to insulators such as alkali halides, fluorides and transition metal oxides are introduced. At last, in Sect. 13.4, applications of NC-AFM to molecules such as carboxylate (RCOO) with R = H, CH3, C(CH3)3 and CF3 are introduced. Thus, the NC-AFM can observe atoms and molecules on various kinds of surfaces such as semiconductor, insulator and metal oxide with atomic/molecular resolutions. These sections are essential to understand the status of the art and the future possibility of NC-AFM that is the second generation of atom/molecule technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope/microscopy

AM:

amplitude modulation

CFM:

chemical force microscopy

DAS:

dimer adatom stacking

FM-AFM:

frequency modulation AFM

FM:

frequency modulation

KPFM:

Kelvin probe force microscopy

LFM:

lateral force microscope

NC-AFM:

noncontact atomic force microscopy

SPM:

scanning probe microscopy

STM:

scanning tunneling microscope/microscopy

UHV:

ultrahigh vacuum

References

  1. G. Binnig: Atomic force microscope and method for imaging surfaces with atomic resolution, US Patent 4,724,318 (1986)

    Google Scholar 

  2. G. Binnig, C. F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56 (1986) 930–933

    Google Scholar 

  3. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49 (1982) 57–61

    Google Scholar 

  4. G. Binnig, H. Rohrer: The scanning tunneling microscope, Sci. Am. 253 (1985) 50–56

    Google Scholar 

  5. G. Binnig, H. Rohrer: In touch with atoms, Rev. Mod. Phys. 71 (1999) S324–S320

    CAS  Google Scholar 

  6. C. J. Chen: Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, Oxford 1993)

    Google Scholar 

  7. H.-J. Güntherodt, R. Wiesendanger (Eds.): Scanning Tunneling Microscopy I-III (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  8. J. A. Stroscio, W. J. Kaiser (Eds.): Scanning Tunneling Microscopy (Academic, Boston 1993)

    Google Scholar 

  9. R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge Univ. Press, Cambridge 1994)

    Google Scholar 

  10. S. Morita, R. Wiesendanger, E. Meyer (Eds.): Noncontact Atomic Force Microscopy (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  11. R. Garcia, R. Perez: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47 (2002) 197–301

    CAS  Google Scholar 

  12. F. J. Giessibl: Advances in atomic force microscopy, Rev. Mod. Phys. 75 (2003) 949–983

    CAS  Google Scholar 

  13. J. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, London 1992)

    Google Scholar 

  14. L. Olsson, N. Lin, V. Yakimov, R. Erlandsson: A method for in situ characterization of tip shape in ac-mode atomic force microscopy using electrostatic interaction, J. Appl. Phys. 84 (1998) 4060–4064

    CAS  Google Scholar 

  15. S. Akamine, R. C. Barrett, C. F. Quate: Improved atomic force microscopy images using cantilevers with sharp tips, Appl. Phys. Lett. 57 (1990) 316–318

    CAS  Google Scholar 

  16. T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A 8 (1990) 3386–3396

    CAS  Google Scholar 

  17. M. Tortonese, R. C. Barrett, C. Quate: Atomic resolution with an atomic force microscope using piezoresistive detection, Appl. Phys. Lett. 62 (1993) 834–836

    CAS  Google Scholar 

  18. O. Wolter, T. Bayer, J. Greschner: Micromachined silicon sensors for scanning force microscopy, J. Vac. Sci. Technol. 9 (1991) 1353–1357

    CAS  Google Scholar 

  19. D. Sarid: Scanning Force Microscopy, 2nd edn. (Oxford Univ. Press, New York 1994)

    Google Scholar 

  20. F. J. Giessibl, B. M. Trafas: Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum, Rev. Sci. Instrum. 65 (1994) 1923–1929

    CAS  Google Scholar 

  21. P. Güthner, U. C. Fischer, K. Dransfeld: Scanning near-field acoustic microscopy, Appl. Phys. B 48 (1989) 89–92

    Google Scholar 

  22. K. Karrai, R. D. Grober: Piezoelectric tip-sample distance control for near field optical microscopes, Appl. Phys. Lett. 66 (1995) 1842–1844

    CAS  Google Scholar 

  23. F. J. Giessibl: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork, Appl. Phys. Lett. 73 (1998) 3956–3958

    CAS  Google Scholar 

  24. F. J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart: Subatomic features on the silicon (111)-(7×7) surface observed by atomic force microscopy, Science 289 (2000) 422–425

    CAS  Google Scholar 

  25. F. Giessibl, C. Gerber, G. Binnig: A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum, J. Vac. Sci. Technol., B 9 (1991) 984–988

    CAS  Google Scholar 

  26. F. Ohnesorge, G. Binnig: True atomic resolution by atomic force microscopy through repulsive and attractive forces, Science 260 (1993) 1451–1456

    CAS  Google Scholar 

  27. F. J. Giessibl, G. Binnig: True atomic resolution on KBr with a low-temperature atomic force microscope in ultrahigh vacuum, Ultramicroscopy 42-44 (1992) 281–286

    CAS  Google Scholar 

  28. S. P. Jarvis, H. Yamada, H. Tokumoto, J. B. Pethica: Direct mechanical measurement of interatomic potentials, Nature 384 (1996) 247–249

    CAS  Google Scholar 

  29. L. Howald, R. Lüthi, E. Meyer, P. Guthner, H.-J. Güntherodt: Scanning force microscopy on the Si(111)7×7 surface reconstruction, Z. Phys. B 93 (1994) 267–268

    CAS  Google Scholar 

  30. L. Howald, R. Lüthi, E. Meyer, H.-J. Güntherodt: Atomic-force microscopy on the Si(111)7×7 surface, Phys. Rev. B 51 (1995) 5484–5487

    CAS  Google Scholar 

  31. Y. Martin, C. C. Williams, H. K. Wickramasinghe: Atomic force microscope – force mapping and profiling on a sub 100 Å scale, J. Appl. Phys. 61 (1987) 4723–4729

    CAS  Google Scholar 

  32. T. R. Albrecht, P. Grutter, H. K. Horne, D. Rugar: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69 (1991) 668–673

    Google Scholar 

  33. F. J. Giessibl: Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy, Science 267 (1995) 68–71

    CAS  Google Scholar 

  34. S. Kitamura, M. Iwatsuki: Observation of silicon surfaces using ultrahigh-vacuum noncontact atomic force microscopy, Jpn. J. Appl. Phys. 35 (1995) L668–L671

    Google Scholar 

  35. R. Erlandsson, L. Olsson, P. Martensson: Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7× 7, Phys. Rev. B 54 (1996) R8309–R8312

    CAS  Google Scholar 

  36. N. Burnham, R. J. Colton: Measuring the nanomechanical and surface forces of materials using an atomic force microscope, J. Vac. Sci. Technol. A 7 (1989) 2906–2913

    CAS  Google Scholar 

  37. D. Tabor, R. H. S. Winterton: Direct measurement of normal and retarded van der Waals forces, Proc. R. Soc. London A 312 (1969) 435

    CAS  Google Scholar 

  38. F. J. Giessibl: Forces and frequency shifts in atomic resolution dynamic force microscopy, Phys. Rev. B 56 (1997) 16010–16015

    CAS  Google Scholar 

  39. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: 7×7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett. 50 (1983) 120–123

    CAS  Google Scholar 

  40. H. Goldstein: Classical Mechanics (Addison Wesley, Reading 1980)

    Google Scholar 

  41. U. Dürig: Interaction sensing in dynamic force microscopy, New J. Phys. 2 (2000) 5.1–5.12

    Google Scholar 

  42. F. J. Giessibl: A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy, Appl. Phys. Lett. 78 (2001) 123–125

    CAS  Google Scholar 

  43. U. Dürig, H. P. Steinauer, N. Blanc: Dynamic force microscopy by means of the phase-controlled oscillator method, J. Appl. Phys. 82 (1997) 3641–3651

    Google Scholar 

  44. F. J. Giessibl, H. Bielefeldt, S. Hembacher, J. Mannhart: Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Appl. Surf. Sci. 140 (1999) 352–357

    CAS  Google Scholar 

  45. M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Quantitative measurement of short-range chemical bonding forces, Science 291 (2001) 2580–2583

    CAS  Google Scholar 

  46. F. J. Giessibl, M. Herz, J. Mannhart: Friction traced to the single atom, Proc. Nat. Acad. Sci. USA 99 (2002) 12006–12010

    CAS  Google Scholar 

  47. N. Nakagiri, M. Suzuki, K. Oguchi, H. Sugimura: Site discrimination of adatoms in Si(111)-7×7 by noncontact atomic force microscopy, Surf. Sci. Lett. 373 (1997) L329–L332

    CAS  Google Scholar 

  48. Y. Sugawara, M. Ohta, H. Ueyama, S. Morita: Defect motion on an InP(110) surface observed with noncontact atomic force microscopy, Science 270 (1995) 1646–1648

    CAS  Google Scholar 

  49. T. Uchihashi, Y. Sugawara, T. Tsukamoto, M. Ohta, S. Morita: Role of a covalent bonding interaction in noncontact-mode atomic-force microscopy on Si(111)7×7, Phys. Rev. B 56 (1997) 9834–9840

    CAS  Google Scholar 

  50. K. Yokoyama, T. Ochi, A. Yoshimoto, Y. Sugawara, S. Morita: Atomic resolution imaging on Si(100)2×1 and Si(100)2×1-H surfaces using a noncontact atomic force microscope, Jpn. J. Appl. Phys. 39 (2000) L113–L115

    CAS  Google Scholar 

  51. Y. Sugawara, T. Minobe, S. Orisaka, T. Uchihashi, T. Tsukamoto, S. Morita: Non-contact AFM images measured on Si(111)√3×√3-Ag and Ag(111) surfaces, Surf. Interface Anal. 27 (1999) 456–461

    CAS  Google Scholar 

  52. K. Yokoyama, T. Ochi, Y. Sugawara, S. Morita: Atomically resolved Ag imaging on Si(111)√3×√3-Ag surface with noncontact atomic force microscope, Phys. Rev. Lett. 83 (1999) 5023–5026

    CAS  Google Scholar 

  53. M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, Ch. Gerber, L. Howald, H.-J. Güntherodt: True atomic resolution on the surface of an insulator via ultrahigh vacuum dynamic force microscopy, Probe Microsc. 1 (1997) 3–7

    CAS  Google Scholar 

  54. M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, C. Loppacher, Ch. Gerber, H.-J. Güntherodt: Dynamic SFM with true atomic resolution on alkali halide surfaces, Appl. Phys. A 66 (1998) S293–S294

    CAS  Google Scholar 

  55. R. Hoffmann, M. A. Lantz, H. J. Hug, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Atomic resolution imaging and force versus distance measurements on KBr(001) using low temperature scanning force microscopy, Appl. Surf. Sci. 188 (2002) 238–244

    CAS  Google Scholar 

  56. R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin, Ch. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A. L. Shluger: Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory, Phys. Rev. B 62 (2000) 2074–2084

    CAS  Google Scholar 

  57. A. I. Livshits, A. L. Shluger, A. L. Rohl, A. S. Foster: Model of noncontact scanning force microscopy on ionic surfaces, Phys. Rev. B 59 (1999) 2436–2448

    CAS  Google Scholar 

  58. R. Bennewitz, M. Bammerlin, Ch. Loppacher, M. Guggisberg, L. Eng, E. Meyer, H.-J. Güntherodt, C. P. An, F. Luty: Molecular impurities at the NaCl(100) surface observed by scanning force microscopy, Rad. Effects Defects Solids 150 (1998) 321–326

    Google Scholar 

  59. R. Bennewitz, O. Pfeiffer, S. Schär, V. Barwich, E. Meyer, L. N. Kantorovich: Atomic corrugation in NC-AFM of alkali halides, Appl. Surf. Sci. 188 (2002) 232–237

    CAS  Google Scholar 

  60. C. Barth, M. Reichling: Resolving ions and vacancies at step edges on insulating surfaces, Surf. Sci. 470 (2000) L99–L103

    CAS  Google Scholar 

  61. R. Bennewitz, M. Reichling, E. Matthias: Force microscopy of cleaved and electron-irradiated CaF2(111) surfaces in ultra-high vacuum, Surf. Sci. 387 (1997) 69–77

    CAS  Google Scholar 

  62. M. Reichling, C. Barth: Scanning force imaging of atomic size defects on the CaF2(111) surface, Phys. Rev. Lett. 83 (1999) 768–771

    CAS  Google Scholar 

  63. M. Reichling, M. Huisinga, S. Gogoll, C. Barth: Degradation of the CaF2(111) surface by air exposure, Surf. Sci. 439 (1999) 181–190

    CAS  Google Scholar 

  64. C. Barth, A. S. Foster, M. Reichling, A. L. Shluger: Contrast formation in atomic resolution scanning force microscopy of CaF2(111): experiment and theory, J. Phys. Condens. Matter 13 (2001) 2061–2079

    CAS  Google Scholar 

  65. A. S. Foster, C. Barth, A. L. Shluger, M. Reichling: Unambiguous interpretation of atomically resolved force microscopy images of an insulator, Phys. Rev. Lett. 86 (2001) 2373–2376

    CAS  Google Scholar 

  66. A. S. Foster, A. L. Rohl, A. L. Shluger: Imaging problems on insulators: what can be learnt from NC-AFM modeling on CaF2?, Appl. Phys. A 72 (2001) S31–S34

    Google Scholar 

  67. A. S. Foster, A. L. Shluger, R. M. Nieminen: Quantitative modeling in scanning force microscopy on insulators, Appl. Surf. Sci. 188 (2002) 306–318

    CAS  Google Scholar 

  68. M. Reichling, C. Barth: Atomically resoluiton imaging on fluorides. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  69. K. Fukui, H. Ohnishi, Y. Iwasawa: Atom-resolved image of the TiO2(110) surface by noncontact atomic force microscopy, Phys. Rev. Lett. 79 (1997) 4202–4205

    CAS  Google Scholar 

  70. H. Raza, C. L. Pang, S. A. Haycock, G. Thornton: Non-contact atomic force microscopy imaging of TiO2(100) surfaces, Appl. Surf. Sci. 140 (1999) 271–275

    CAS  Google Scholar 

  71. C. L. Pang, H. Raza, S. A. Haycock, G. Thornton: Imaging reconstructed TiO2(100) surfaces with non-contact atomic force microscopy, Appl. Surf. Sci. 157 (2000) 223–238

    Google Scholar 

  72. M. Ashino, T. Uchihashi, K. Yokoyama, Y. Sugawara, S. Morita, M. Ishikawa: STM and atomic-resolution noncontact AFM of an oxygen-deficient TiO2(110) surface, Phys. Rev. B 61 (2000) 13955–13959

    CAS  Google Scholar 

  73. C. L. Pang, S. A. Haycock, H. Raza, P. J. Møller, G. Thornton: Structures of the 4×1 and 1×2 reconstructions of SnO2(110), Phys. Rev. B 62 (2000) R7775–R7778

    CAS  Google Scholar 

  74. H. Hosoi, K. Sueoka, K. Hayakawa, K. Mukasa: Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM, Appl. Surf. Sci. 157 (2000) 218–221

    CAS  Google Scholar 

  75. W. Allers, S. Langkat, R. Wiesendanger: Dynamic low-temperature scanning force microscopy on nickel oxide (001), Appl. Phys. A 72 (2001) S27–S30

    Google Scholar 

  76. T. Kubo, H. Nozoye: Surface structure of SrTiO3(100)-(√5×√5)-R26.6 , Phys. Rev. Lett. 86 (2001) 1801–1804

    CAS  Google Scholar 

  77. K. Fukui, Y. Namai, Y. Iwasawa: Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy, Appl. Surf. Sci. 188 (2002) 252–256

    CAS  Google Scholar 

  78. C. Barth, M. Reichling: Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3 surface, Nature 414 (2001) 54–57

    CAS  Google Scholar 

  79. C. L. Pang, H. Raza, S. A. Haycock, G. Thornton: Growth of copper and palladium α-Al2O3(0001), Surf. Sci. 460 (2000) L510–L514

    CAS  Google Scholar 

  80. K. Mukasa, H. Hasegawa, Y. Tazuke, K. Sueoka, M. Sasaki, K. Hayakawa: Exchange interaction between magnetic moments of ferromagnetic sample and tip: Possibility of atomic-resolution images of exchange interactions using exchange force microscopy, Jpn. J. Appl. Phys. 33 (1994) 2692–2695

    CAS  Google Scholar 

  81. H. Ness, F. Gautier: Theoretical study of the interaction between a magnetic nanotip and a magnetic surface, Phys. Rev. B 52 (1995) 7352–7362

    CAS  Google Scholar 

  82. K. Nakamura, H. Hasegawa, T. Ohuchi, K. Sueoka, K. Hayakawa, K. Mukasa: First-principles calculation of the exchange interaction and the exchange force between magnetic Fe films, Phys. Rev. B 56 (1997) 3218–3221

    CAS  Google Scholar 

  83. A. S. Foster, A. L. Shluger: Spin-contrast in non-contact SFM on oxide surfaces: theoretical modeling of NiO(001) surface, Surf. Sci. 490 (2001) 211–219

    CAS  Google Scholar 

  84. H. Hosoi, K. Kimura, K. Sueoka, K. Hayakawa, K. Mukasa: Non-contact atomic force microscopy of an antiferromagnetic NiO(100) surface using a ferromagnetic tip, Appl. Phys. A 72 (2001) S23–S26

    Google Scholar 

  85. H. Hosoi, K. Sueoka, K. Hayakawa, K. Mukasa: Atomically resolved imaging of a NiO(001) surface. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin, Heidelberg 2002) pp. 125–134

    Google Scholar 

  86. K. Kobayashi, H. Yamada, T. Horiuchi, K. Matsushige: Structures and electrical properties of fullerene thin films on Si(111)-7×7 surface investigated by noncontact atomic force microscopy, Jpn. J. Appl. Phys. 39 (2000) 3821–3829

    Google Scholar 

  87. T. Uchihashi, M. Tanigawa, M. Ashino, Y. Sugawara, K. Yokoyama, S. Morita, M. Ishikawa: Identification of B-form DNA in an ultrahigh vacuum by noncontact-mode atomic force microscopy, Langmuir 16 (2000) 1349–1353

    CAS  Google Scholar 

  88. R. M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Lüthi, L. Howald, H.-J. Güntherodt, M. Fujihira, H. Takano, Y. Gotoh: Friction measurements on phase-separated thin films with a modified atomic force microscope, Nature 359 (1992) 133–135

    CAS  Google Scholar 

  89. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, C. M. Lieber: Functional group imaging by chemical force microscopy, Science 265 (1994) 2071–2074

    CAS  Google Scholar 

  90. E. Meyer, L. Howald, R. M. Overney, H. Heinzelmann, J. Frommer, H.-J. Güntherodt, T. Wagner, H. Schier, S. Roth: Molecular-resolution images of Langmuir–Blodgett films using atomic force microscopy, Nature 349 (1992) 398–400

    Google Scholar 

  91. K. Fukui, H. Onishi, Y. Iwasawa: Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy, Chem. Phys. Lett. 280 (1997) 296–301

    CAS  Google Scholar 

  92. K. Kobayashi, H. Yamada, T. Horiuchi, K. Matsushige: Investigations of C60 molecules deposited on Si(111) by noncontact atomic force microscopy, Appl. Surf. Sci. 140 (1999) 281–286

    CAS  Google Scholar 

  93. Y. Maeda, T. Matsumoto, T. Kawai: Observation of single- and double-strand DNA using non-contact atomic force microscopy, Appl. Surf. Sci. 140 (1999) 400–405

    CAS  Google Scholar 

  94. T. Uchihashi, T. Ishida, M. Komiyama, M. Ashino, Y. Sugawara, W. Mizutani, K. Yokoyama, S. Morita, H. Tokumoto, M. Ishikawa: High-resolution imaging of organic monolayers using noncontact AFM, Appl. Surf. Sci 157 (2000) 244–250

    CAS  Google Scholar 

  95. T. Fukuma, K. Kobayashi, T. Horiuchi, H. Yamada, K. Matsushige: Alkanethiol self-assembled monolayers on Au(111) surfaces investigated by non-contact AFM, Appl. Phys. A 72 (2001) S109–S112

    Google Scholar 

  96. B. Gotsmann, C. Schmidt, C. Seidel, H. Fuchs: Molecular resolution of an organic monolayer by dynamic AFM, Europ. Phys. J. B 4 (1998) 267–268

    CAS  Google Scholar 

  97. Ch. Loppacher, M. Bammerlin, M. Guggisberg, E. Meyer, H.-J. Güntherodt, R. Lüthi, R. Schlittler, J. K. Gimzewski: Forces with submolecular resolution between the probing tip and Cu-TBPP molecules on Cu(100) observed with a combined AFM/STM, Appl. Phys. A 72 (2001) S105–S108

    Google Scholar 

  98. L. M. Eng, M. Bammerlin, Ch. Loppacher, M. Guggisberg, R. Bennewitz, R. Lüthi, E. Meyer, H.-J. Güntherodt: Surface morphology, chemical contrast, and ferroelectric domains in TGS bulk single crystals differentiated with UHV non-contact force microscopy, Appl. Surf. Sci. 140 (1999) 253–258

    CAS  Google Scholar 

  99. S. Kitamura, K. Suzuki, M. Iwatsuki: High resolution imaging of contact potential difference using a novel ultrahigh vacuum non-contact atomic force microscope technique, Appl. Surf. Sci. 140 (1999) 265–270

    CAS  Google Scholar 

  100. H. Yamada, T. Fukuma, K. Umeda, K. Kobayashi, K. Matsushige: Local structures and electrical properties of organic molecular films investigated by non-contact atomic force microscopy, Appl. Surf. Sci 188 (2000) 391–398

    Google Scholar 

  101. K. Fukui, Y. Iwasawa: Fluctuation of acetate ions in the (2×1)-acetate overlayer on TiO2(110)-(1×1) observed by noncontact atomic force microscopy, Surf. Sci. 464 (2000) L719–L726

    CAS  Google Scholar 

  102. A. Sasahara, H. Uetsuka, H. Onishi: Single-molecule analysis by non-contact atomic force microscopy, J. Phys. Chem. B 105 (2001) 1–4

    CAS  Google Scholar 

  103. A. Sasahara, H. Uetsuka, H. Onishi: NC-AFM topography of HCOO and CH3COO molecules co-adsorbed on TiO2(110), Appl. Phys. A 72 (2001) S101–S103

    Google Scholar 

  104. A. Sasahara, H. Uetsuka, H. Onishi: Image topography of alkyl-substituted carboxylates observed by noncontact atomic force microscopy, Surf. Sci. 481 (2001) L437–L442

    CAS  Google Scholar 

  105. A. Sasahara, H. Uetsuka, H. Onishi: Noncontact atomic force microscope topography dependent on permanent dipole of individual molecules, Phys. Rev. B 64 (2001) 121406(R)

    Google Scholar 

  106. A. Sasahara, H. Uetsuka, T. Ishibashi, H. Onishi: A needle-like organic molecule imaged by noncontact atomic force microscopy, Appl. Surf. Sci. 188 (2002) 265–271

    CAS  Google Scholar 

  107. H. Onishi, A. Sasahara, H. Uetsuka, T. Ishibashi: Molecule-dependent topography determined by noncontact atomic force microscopy: Carboxylates on TiO2(110), Appl. Surf. Sci. 188 (2002) 257–264

    CAS  Google Scholar 

  108. H. Onishi: Carboxylates adsorbed on TiO2(110). In: Chemistry of Nano-molecular Systems, ed. by T. Nakamura (Springer, Berlin, Heidelberg 2002) pp. 75–89

    Google Scholar 

  109. S. Thevuthasan, G. S. Herman, Y. J. Kim, S. A. Chambers, C. H. F. Peden, Z. Wang, R. X. Ynzunza, E. D. Tober, J. Morais, C. S. Fadley: The structure of formate on TiO2(110) by scanned-energy and scanned-angle photoelectron diffraction, Surf. Sci. 401 (1998) 261–268

    CAS  Google Scholar 

  110. H. Uetsuka, A. Sasahara, A. Yamakata, H. Onishi: Microscopic identification of a bimolecular reaction intermediate, J. Phys. Chem. B 106 (2002) 11549–11552

    CAS  Google Scholar 

  111. D. R. Lide: Handbook of Chemistry and Physics, 81st edn. (CRC, Boca Raton 2000)

    Google Scholar 

  112. K. Kobayashi, H. Yamada, K. Matsushige: Dynamic force microscopy using FM detection in various environments, Appl. Surf. Sci. 188 (2002) 430–434

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Tom Albrecht, Alexis Baratoff, Hartmut Bielefeldt, Gerd Binnig, Dominik Brändlin, Peter van Dongen, Urs Dürig, Christoph Gerber, Stefan Hembacher, Markus Herz, Lukas Howald, Christian Laschinger, Ulrich Mair, Jochen Mannhart, Thomas Ottenthal, Calvin Quate, Marco Tortonese, and the BMBF for funding under project no. 13N6918.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Morita, S. et al. (2004). Noncontact Atomic Force Microscopy and Its Related Topics. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics