Skip to main content

Integrative Neuronal Functions in Deafness

  • Chapter
  • First Online:
Deafness

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 47))

Abstract

The present chapter reviews available evidence regarding the consequences of congenital deafness on the auditory system‘s integrative function. Evidence for a deterioration of feature sensitivity is provided, along with the consequences on the representation of auditory input. In addition, functionality of auditory cortex with regard to higher functions is reviewed along with its consequences of the known functional deficits on processing input and embedding it into cognitive representations. The particular focus is on bottom-up and top-down processing and categorical representations. Finally, a theoretical explanation of the critical period associated with cochlear implants use is presented, resting on a combination of several noncritical neuronal mechanisms, including decrease in synaptic plasticity, reduced top-down control of perception and learning, reduced feature representation, adaptive reorganization by other sensory systems and functions, and higher cognitive adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This effect has to be differentiated from coarticulation, i.e., the influence of a preceding phoneme on the succeeding one and vice versa. Coarticulation, caused by the adaptation of the articulatory organs to the phonemes neighboring in time in the fast articulatory process, allows masked speech sounds to be reconstructed. However, even in the absence of coarticulatory cues, phonemic restoration occurs.

  2. 2.

    Speculatively, also this is not the eventual limit for plasticity: Given that all neuronal processes are inherently stochastic, random fluctuations in activity could “uncover” feature differences in individual trials. Provided that this took place during a learning paradigm, a differentiation could be learned de novo even in such an unfavorable condition, although it would be substantially more difficult. This speculative hypothesis has never been tested experimentally.

References

  • Abeles, M., & Goldstein, M. H. (1970). Functional architecture in cat primary auditory cortex: Columnar organization and organization according to depth. Journal of Neurophysiology, 33(1), 172–187.

    CAS  PubMed  Google Scholar 

  • Alain, C., & Bernstein, L. J. (2008). From sounds to meaning: The role of attention during auditory scene analysis. Current Opinion in Otolaryngology Head and Neck Surgery, 16(5), 485–489.

    Google Scholar 

  • Alink, A., Singer, W., & Muckli, L. (2008). Capture of auditory motion by vision is represented by an activation shift from auditory to visual motion cortex. Journal of Neuroscience, 28(11), 2690–2697.

    CAS  PubMed  Google Scholar 

  • Allman, B. L., Keniston, L. P., & Meredith, M. A. (2009). Adult deafness induces somatosensory conversion of ferret auditory cortex. Proceedings of the National Academy of Sciences of the USA,106(14), 5925–5930.

    Google Scholar 

  • Antunes, F. M., Nelken, I., Covey, E., & Malmierca, M. S. (2010). Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. Plos ONE, 5(11), e14071.

    PubMed  Google Scholar 

  • Aramakis, V. B., Hsieh, C. Y., Leslie, F. M., & Metherate, R. (2000). A critical period for nicotine-induced disruption of synaptic development in rat auditory cortex. Journal of Neuroscience, 20(16), 6106–6116.

    CAS  PubMed  Google Scholar 

  • Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28(2), 105–124; discussion 125–167.

    Google Scholar 

  • Atencio, C. A., & Schreiner, C. E. (2010). Columnar connectivity and laminar processing in cat primary auditory cortex. Plos ONE, 5(3), e9521.

    PubMed  Google Scholar 

  • Barone P., Lecassagne L., Kral A. (2013): Reorganization of the cortical connectivity of the field DZ in congenitally deaf cat. Plos ONE, 8(4), e60093.

    Google Scholar 

  • Bar-Yosef, O., Rotman, Y., & Nelken, I. (2002). Responses of neurons in cat primary auditory cortex to bird chirps: Effects of temporal and spectral context. Journal of Neuroscience, 22(19), 8619–8632.

    CAS  PubMed  Google Scholar 

  • Bavelier, D., & Neville, H. J. (2002). Cross-modal plasticity: Where and how? Nature Reviews Neuroscience, 3(6), 443–452.

    CAS  PubMed  Google Scholar 

  • Beitel, R. E., Vollmer, M., Raggio, M. W., & Schreiner, C. E. (2011). Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats. Journal of Neurophysiology, 106(2), 944–959.

    PubMed  Google Scholar 

  • Bieszczad, K. M., & Weinberger, N. M. (2010). Representational gain in cortical area underlies increase of memory strength. Proceedings of the National Academy of Sciences of the USA, 107(8), 3793–3798

    CAS  PubMed  Google Scholar 

  • Blake, D. T., Heiser, M. A., Caywood, M., & Merzenich, M. M. (2006). Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron, 52(2), 371–381.

    CAS  PubMed  Google Scholar 

  • Blamey, P. (1997). Are spiral ganglion cell numbers important for speech perception with a cochlear implant? American Journal of Otology, 18(6 Supplement), S11–12.

    CAS  PubMed  Google Scholar 

  • Blatchley, B. J., & Brugge, J. F. (1990). Sensitivity to binaural intensity and phase difference cues in kitten inferior colliculus. Journal of Neurophysiology, 64(2), 582–597.

    CAS  PubMed  Google Scholar 

  • Bonham, B. H., Cheung, S. W., Godey, B., & Schreiner, C. E. (2004). Spatial organization of frequency response areas and rate/level functions in the developing AI. Journal of Neurophysiology, 91(2), 841–854.

    PubMed  Google Scholar 

  • Brugge, J. F., Volkov, I. O., Oya, H., Kawasaki, H., Reale, R. A., Fenoy, A., Steinschneider, M., & Howard 3rd, M. A. (2008). Functional localization of auditory cortical fields of human: Click-train stimulation. Hearing Research, 238(1–2), 12–24.

    PubMed  Google Scholar 

  • Brugge, J. F., Nourski, K. V., Oya, H., Reale, R. A., Kawasaki, H., Steinschneider, M., & Howard 3rd., M. A. (2009). Coding of repetitive transients by auditory cortex on heschl’s gyrus. Journal of Neurophysiology, 102(4), 2358–2374.

    PubMed  Google Scholar 

  • Bruns, P., & Röder, B. (2010). Tactile capture of auditory localization: An event-related potential study. European Journal of Neuroscience, 31(10), 1844–1857.

    PubMed  Google Scholar 

  • Buckley, K. A., & Tobey, E. A. (2011). Cross-modal plasticity and speech perception in pre- and postlingually deaf cochlear implant users. Ear and Hearing, 32(1), 2–15.

    PubMed  Google Scholar 

  • Callaway, E. M. (2004). Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Networks, 17(5–6), 625–632.

    PubMed  Google Scholar 

  • Carmignoto, G., & Vicini, S. (1992). Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science, 258(5084), 1007–1011.

    CAS  PubMed  Google Scholar 

  • Conel, J. L. (1939). The postnatal development of human cerebral cortex, Vols. I–VIII. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Davis, M. H., & Johnsrude, I. S. (2007). Hearing speech sounds: Top-down influences on the interface between audition and speech perception. Hearing Research, 229(1–2), 132–147.

    PubMed  Google Scholar 

  • de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006). Cortical connections of the auditory cortex in marmoset monkeys: Core and medial belt regions. Journal of Comparative Neurology, 496(1), 27–71.

    PubMed  Google Scholar 

  • Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E., & Froemke, R. C. (2010). Developmental sensory experience balances cortical excitation and inhibition. Nature, 465(7300), 932–936.

    CAS  PubMed  Google Scholar 

  • Doucet, M. E., Bergeron, F., Lassonde, M., Ferron, P., & Lepore, F. (2006). Cross-modal reorganization and speech perception in cochlear implant users. Brain, 129(Pt 12), 3376–3383.

    CAS  PubMed  Google Scholar 

  • Eggermont, J. J. (1996). Differential maturation rates for response parameters in cat primary auditory cortex. Auditory Neuroscience, 2, 309–327.

    Google Scholar 

  • Fallon, J. B., Irvine, D. R., & Shepherd, R. K. (2009). Cochlear implant use following neonatal deafness influences the cochleotopic organization of the primary auditory cortex in cats. Journal of Comparative Neurology, 512(1), 101–114.

    PubMed  Google Scholar 

  • Feldmeyer, D., Roth, A., & Sakmann, B. (2005). Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. Journal of Neuroscience, 25(13), 3423–3431.

    CAS  PubMed  Google Scholar 

  • Formisano, E., Kim, D. S., Di Salle, F., van de Moortele, P. F., Ugurbil, K., & Goebel, R. (2003). Mirror-Symmetric tonotopic maps in human primary auditory cortex. Neuron, 40(4), 859–869.

    CAS  PubMed  Google Scholar 

  • Friauf, E., & Shatz, C. J. (1991). Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. Journal of Neurophysiology, 66(6), 2059–2071.

    CAS  PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention—focusing the searchlight on sound. Curr Opin Neurobiology, 17(4), 437–455.

    CAS  Google Scholar 

  • Fritz, J. B., David, S. V., Radtke-Schuller, S., Yin, P., & Shamma, S. A. (2010). Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nature Neuroscience, 13(8), 1011–1019.

    CAS  PubMed  Google Scholar 

  • Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168), 425–429.

    CAS  PubMed  Google Scholar 

  • Fryauf-Bertschy, H., Tyler, R. S., Kelsay, D. M., Gantz, B. J., & Woodworth, G. G. (1997). Cochlear implant use by prelingually deafened children: The influences of age at implant and length of device use. Journal of Speech, Language, and Hearing Research, 40(1), 183–199.

    CAS  PubMed  Google Scholar 

  • Ghoshal, A., Tomarken, A., & Ebner, F. (2011). Cross-sensory modulation of primary sensory cortex is developmentally regulated by early sensory experience. Journal of Neuroscience, 31(7), 2526–2536.

    CAS  PubMed  Google Scholar 

  • Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677–696.

    CAS  PubMed  Google Scholar 

  • Gilley, P. M., Sharma, A., Mitchell, T. V., & Dorman, M. F. (2010). The influence of a sensitive period for auditory-visual integration in children with cochlear implants. Restorative Neurology and Neuroscience, 28(2), 207–218.

    PubMed  Google Scholar 

  • Giraud, A. L., & Lee, H. J. (2007). Predicting cochlear implant outcome from brain organisation in the deaf. Restorative Neurology and Neuroscience, 25(3–4), 381–390.

    PubMed  Google Scholar 

  • Giraud, A. L., Kell, C., Thierfelder, C., Sterzer, P., Russ, M. O., Preibisch, C., & Kleinschmidt, A. (2004). Contributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing. Cerebral Cortex, 14(3), 247–255.

    CAS  PubMed  Google Scholar 

  • Goll, J. C., Crutch, S. J., & Warren, J. D. (2010). Central auditory disorders: Toward a neuropsychology of auditory objects. Current Opinion in Neurology, 23(6), 617–627.

    PubMed  Google Scholar 

  • Graham, J., Vickers, D., Eyles, J., Brinton, J., Al Malky, G., Aleksy, W., Martin, J., Henderson, L., Mawman, D., Robinson, P., Midgley, E., Hanvey, K., Twomey, T., Johnson, S., Vanat, Z., Broxholme, C., Maanallen, C., & Bray, M. (2009). Bilateral sequential cochlear implantation in the congenitally deaf child: Evidence to support the concept of a ‘critical age’ after which the second ear is less likely to provide an adequate level of speech perception on its own. Cochlear Implants International, 10(3), 119–141.

    PubMed  Google Scholar 

  • Greenlee, J. D., Jackson, A. W., Chen, F., Larson, C. R., Oya, H., Kawasaki, H., Chen, H., & Howard 3rd, M. A. (2011). Human auditory cortical activation during self-vocalization. Plos ONE, 6(3), e14744.

    CAS  PubMed  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews Neuroscience, 5(11), 887–892.

    CAS  PubMed  Google Scholar 

  • Gross, C. G. (2002). Genealogy of the “grandmother cell.” Neuroscientist, 8(5), 512–518.

    PubMed  Google Scholar 

  • Grossberg, S. (2000). The complementary brain: Unifying brain dynamics and modularity. Trends in Cognitive Science, 4(6), 233–246.

    Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    CAS  PubMed  Google Scholar 

  • Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1–2), 133–146.

    PubMed  Google Scholar 

  • Hancock, K. E., Noel, V., Ryugo, D. K., & Delgutte, B. (2010). Neural coding of interaural time differences with bilateral cochlear implants: Effects of congenital deafness. Journal of Neuroscience, 30(42), 14068–14079.

    CAS  PubMed  Google Scholar 

  • Hartmann, R., Shepherd, R. K., Heid, S., & Klinke, R. (1997). Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hearing Research, 112(1–2), 115–133..

    CAS  PubMed  Google Scholar 

  • Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167–178.

    CAS  PubMed  Google Scholar 

  • Insanally, M. N., Köver, H., Kim, H., & Bao, S. (2009). Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience, 29(17), 5456–5462.

    CAS  PubMed  Google Scholar 

  • Insanally, M. N., Albanna, B. F., & Bao, S. (2010). Pulsed noise experience disrupts complex sound representations. Journal of Neurophysiology, 103(5), 2611–2617.

    PubMed  Google Scholar 

  • Kamke, M. R., Brown, M., & Irvine, D. R. (2005). Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex. Neuron, 48(4), 675–686.

    CAS  PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998a). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718.

    CAS  PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998b). Plasticity of temporal information processing in the primary auditory cortex. Nature Neuroscience, 1(8), 727–731.

    CAS  PubMed  Google Scholar 

  • Klinke, R., Kral, A., Heid, S., Tillein, J., & Hartmann, R. (1999). Recruitment of the auditory cortex in congenitally deaf cats by long- term cochlear electrostimulation. Science, 285(5434), 1729–1733.

    CAS  PubMed  Google Scholar 

  • Korte, M., & Rauschecker, J. P. (1993). Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. Journal of Neurophysiology, 70(4), 1717–1721.

    CAS  PubMed  Google Scholar 

  • Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C., & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25(15), 3908–3918.

    CAS  PubMed  Google Scholar 

  • Kotak, V. C., Breithaupt, A. D., & Sanes, D. H. (2007). Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proceedings of the National Academy of Sciences of the USA, 104(9), 3550–3555.

    CAS  PubMed  Google Scholar 

  • Kotak, V. C., Takesian, A. E., & Sanes, D. H. (2008). Hearing loss prevents the maturation of gabaergic transmission in the auditory cortex. Cerebral Cortex, 18(9), 2098–2108.

    PubMed  Google Scholar 

  • Kral, A. (2007). Unimodal and crossmodal plasticity in the “deaf” auditory cortex. International Journal of Audiology, 46(9), 479–493.

    PubMed  Google Scholar 

  • Kral, A., & Eggermont, J. J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56(1), 259–269.

    PubMed  Google Scholar 

  • Kral, A., Hubka, P., Heid, S., Tillein, J. (2013). Single-sided deafness leads to aural preference within an early sensitive period. Brain 136: 180–193.

    PubMed  Google Scholar 

  • Kral, A., & O’Donoghue, G. M. (2010). Profound deafness in childhood. New England Journal of Medicine, 363(15), 1438–1450.

    CAS  PubMed  Google Scholar 

  • Kral, A., & Pallas, S. L. (2011). Development of the auditory cortex. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 443–464). New York: Springer.

    Google Scholar 

  • Kral, A., & Sharma, A. (2012). Developmental neuroplasticity after cochlear implantation. Trends in Neurosciences, 35(2), 111–122.

    CAS  PubMed  Google Scholar 

  • Kral, A., Hartmann, R., Mortazavi, D., & Klinke, R. (1998). Spatial resolution of cochlear implants: The electrical field and excitation of auditory afferents. Hearing Research, 121(1–2), 11–28.

    CAS  PubMed  Google Scholar 

  • Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2000). Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cerebral Cortex, 10(7), 714–726.

    CAS  PubMed  Google Scholar 

  • Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2001). Delayed maturation and sensitive periods in the auditory cortex. Audiology and Neurootology, 6(6), 346–362.

    CAS  Google Scholar 

  • Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2002). Hearing after congenital deafness: Central auditory plasticity and sensory deprivation. Cerebral Cortex, 12(8), 797–807.

    CAS  PubMed  Google Scholar 

  • Kral, A., Tillein, J., Heid, S., Hartmann, R., & Klinke, R. (2005). Postnatal cortical development in congenital auditory deprivation. Cerebral Cortex, 15, 552–562.

    CAS  PubMed  Google Scholar 

  • Kral, A., Hartmann, R., & Klinke, R. (2006a). Recruitment of the auditory cortex in congenitally deaf cats. In S. G. Lomber, & J. J. Eggermont (Eds.), Reprogramming the cerebral cortex (pp. 191–210). Oxford: Oxford University Press.

    Google Scholar 

  • Kral, A., Tillein, J., Heid, S., Klinke, R., & Hartmann, R. (2006b). Cochlear implants: Cortical plasticity in congenital deprivation. Progress in Brain Research, 157, 283–313.

    PubMed  Google Scholar 

  • Kral, A., Tillein, J., Hubka, P., Schiemann, D., Heid, S., Hartmann, R., & Engel, A. K.(2009). Spatiotemporal patterns of cortical activity with bilateral cochlear implants in congenital deafness. Journal of Neuroscience, 29(3), 811–827.

    CAS  PubMed  Google Scholar 

  • Kuhl, P., & Rivera-Gaxiola, M. (2008). Neural substrates of language acquisition. Annual Reviews in Neuroscience, 31, 511–534.

    CAS  Google Scholar 

  • Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: New data and native language magnet theory expanded (nlm-e). Philosophical Transactions of the Royal Society London B: Biological Sciences, 363(1493), 979–1000.

    Google Scholar 

  • Land, R., Sprenger, C., Baumhoff, P., Hubka P., Tillein, J. Kral, A. (2013): Functional reorganization in area DZ of congenitally deaf cats. Association for Research in Otolaryngology, Baltimore, 36, 317.

    Google Scholar 

  • Langner, G., & Schreiner, C. E. (1988). Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology, 60(6), 1799–1822.

    CAS  PubMed  Google Scholar 

  • Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338–341.

    CAS  PubMed  Google Scholar 

  • Larkum, M. E., Senn, W., & Lüscher, H. R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cerebral Cortex, 14(10), 1059–1070.

    PubMed  Google Scholar 

  • Larkum, M. E., Nevian, T., Sandler, M., Polsky, A., & Schiller, J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: A new unifying principle. Science, 325(5941), 756–760.

    CAS  PubMed  Google Scholar 

  • Leake, P. A., Snyder, R. L., Rebscher, S. J., Moore, C. M., & Vollmer, M. (2000). Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness. Hearing Research, 147(1–2), 221–241.

    CAS  PubMed  Google Scholar 

  • Lee, C. C., & Winer, J. A. (2008). Connections of cat auditory cortex: I. Thalamocortical system. Journal of Comparative Neurology, 507(6), 1879–1900.

    PubMed  Google Scholar 

  • Letzkus, J. J., Wolff, S. B., Meyer, E. M., Tovote, P., Courtin, J., Herry, C., & Lüthi, A. (2011). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 480(7377), 331–335.

    CAS  PubMed  Google Scholar 

  • Levänen, S., Jousmäki, V., & Hari, R. (1998). Vibration-Induced auditory-cortex activation in a congenitally deaf adult. Current Biology, 8(15), 869–872.

    PubMed  Google Scholar 

  • Lomber, S. G., & Malhotra, S. (2008). Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 11(5), 609–616.

    CAS  PubMed  Google Scholar 

  • Lomber, S. G., Malhotra, S., & Hall, A. J. (2007). Functional specialization in non-primary auditory cortex of the cat: Areal and laminar contributions to sound localization. Hearing Research, 229(1–2), 31–45.

    PubMed  Google Scholar 

  • Lomber, S. G., Meredith, M. A., & Kral, A. (2010). Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nature Neuroscience, 13(11), 1421–1427.

    CAS  PubMed  Google Scholar 

  • Lomber, S. G., Meredith, M. A., & Kral, A. (2011). Adaptive crossmodal plasticity in deaf auditory cortex areal and laminar contributions to supranormal vision in the deaf. Progress in Brain Research, 191, 251–270.

    PubMed  Google Scholar 

  • Merzenich, M. M., Knight, P. L., & Roth, G. L. (1975). Representation of cochlea within primary auditory cortex in the cat. Journal of Neurophysiology, 38(2), 231–249.

    CAS  PubMed  Google Scholar 

  • Mitani, A., Shimokouchi, M., Itoh, K., Nomura, S., Kudo, M., & Mizuno, N. (1985). Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. Journal of Comparative Neurology, 235(4), 430–447.

    CAS  PubMed  Google Scholar 

  • Mitchell, D. E., Kennie, J., & Kung, D. (2009). Development of global motion perception requires early postnatal exposure to patterned light. Current Biology, 19(8), 645–649.

    CAS  PubMed  Google Scholar 

  • Morishita, H., & Hensch, T. K. (2008). Critical period revisited: Impact on vision. Current Opinion in Neurobiology, 18(1), 101–107.

    CAS  PubMed  Google Scholar 

  • Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., & Zilles, K. (2001). Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage, 13(4), 684–701.

    CAS  PubMed  Google Scholar 

  • Morosan, P., Schleicher, A., Amunts, K., & Zilles, K. (2005). Multimodal architectonic mapping of human superior temporal gyrus. Anatomy and Embryology (Berlin), 210(5–6), 401–406.

    CAS  Google Scholar 

  • Nelken, I., Fishbach, A., Las, L., Ulanovsky, N., & Farkas, D. (2003). Primary auditory cortex of cats: Feature detection or something else? Biological Cybernetics, 89(5), 397–406.

    PubMed  Google Scholar 

  • Niparko, J. K., Tobey, E. A., Thal, D. J., Eisenberg, L. S., Wang, N. Y., Quittner, A. L., Fink, N. E.; CDaCI Investigative Team (2010). Spoken language development in children following cochlear implantation. JAMA, 303(15), 1498–1506.

    Google Scholar 

  • Noreña, A. J., Gourévitch, B., Gourevich, B., Aizawa, N., & Eggermont, J. J. (2006). Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nature Neuroscience, 9(7), 932–939.

    PubMed  Google Scholar 

  • Nourski, K. V., Reale, R. A., Oya, H., Kawasaki, H., Kovach, C. K., Chen, H., Howard, M. A. 3rd, & Brugge, J. F. (2009). Temporal envelope of time-compressed speech represented in the human auditory cortex. Journal of Neuroscience, 29(49), 15564–15574.

    CAS  PubMed  Google Scholar 

  • Olsen, S. R., Bortone, D. S., Adesnik, H., & Scanziani, M. (2012). Gain control by layer six in cortical circuits of vision. Nature, 483(7387), 47–52.

    CAS  PubMed  Google Scholar 

  • Oray, S., Majewska, A., & Sur, M. (2004). Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron, 44(6), 1021–1030.

    CAS  PubMed  Google Scholar 

  • Oswald, A. M., & Reyes, A. D. (2008). Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. Journal of Neurophysiology, 99(6), 2998–3008.

    PubMed  Google Scholar 

  • Oswald, A. M., & Reyes, A. D. (2011). Development of inhibitory timescales in auditory cortex. Cerebral Cortex, 21(6), 1351–1361.

    PubMed  Google Scholar 

  • Oswald, A. M., Doiron, B., Rinzel, J., & Reyes, A. D. (2009). Spatial profile and differential recruitment of GABAB modulate oscillatory activity in auditory cortex. Journal of Neuroscience, 29(33), 10321–10334.

    CAS  PubMed  Google Scholar 

  • Panzeri, S., Brunel, N., Logothetis, N. K., & Kayser, C. (2010). Sensory neural codes using multiplexed temporal scales. Trends in Neurosciences, 33(3), 11–20.

    Google Scholar 

  • Peasgood, A., Brookes, N., & Graham, J. (2003). Performance and benefit as outcome measures following cochlear implantation in non-traditional adult candidates: A pilot study. Cochlear Implants International, 4(4), 171–190.

    PubMed  Google Scholar 

  • Penhune, V. B. (2011). Sensitive periods in human development: Evidence from musical training. Cortex, 47, 1126–1147.

    PubMed  Google Scholar 

  • Petkov, C. I., O’Connor, K. N., & Sutter, M. L. (2007). Encoding of illusory continuity in primary auditory cortex. Neuron, 54(1), 153–165.

    CAS  PubMed  Google Scholar 

  • Raggio, M. W., & Schreiner, C. E. (1994). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency. Journal of Neurophysiology, 72(5), 2334–2359.

    CAS  PubMed  Google Scholar 

  • Raggio, M. W., & Schreiner, C. E. (1999). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. Journal of Neurophysiology, 82(6), 3506–3526.

    CAS  PubMed  Google Scholar 

  • Raizada, R. D., & Grossberg, S. (2003). Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system. Cerebral Cortex, 13(1), 100–113.

    PubMed  Google Scholar 

  • Rauschecker, J. P. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends in Neurosciences, 18(1), 36–43.

    CAS  PubMed  Google Scholar 

  • Rauschecker, J. P., & Harris, L. R. (1983). Auditory compensation of the effects of visual deprivation in the cat’s superior colliculus. Experimental Brain Research, 50(1), 69–83.

    CAS  Google Scholar 

  • Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences of the USA, 95(3), 869–875.

    CAS  PubMed  Google Scholar 

  • Recanzone, G. H. (2003). Auditory influences on visual temporal rate perception. Journal of Neurophysiology, 89(2), 1078–1093.

    PubMed  Google Scholar 

  • Rees, A., & Møller, A. R. (1987). Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds. Hearing Research, 27(2), 129–143.

    CAS  PubMed  Google Scholar 

  • Rees, A., & Malmierca, M. S. (2005). Processing of dynamic spectral properties of sounds. International Reviews in Neurobiology, 70, 299–330.

    Google Scholar 

  • Reimer, A., Hubka, P., Engel, A. K., & Kral, A. (2011). Fast propagating waves within the rodent auditory cortex. Cerebral Cortex, 21(1), 166–177.

    PubMed  Google Scholar 

  • Robertson, D., & Irvine, D. R. (1989). Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. Journal of Comparative Neurology, 282(3), 456–471.

    CAS  PubMed  Google Scholar 

  • Rouiller, E., de Ribaupierre, Y., & de Ribaupierre, F. (1979). Phase-Locked responses to low frequency tones in the medial geniculate body. Hearing Research, 1(3), 213–226.

    Google Scholar 

  • Rouiller, E. M., Simm, G. M., Villa, A. E., de Ribaupierre, Y., & de Ribaupierre, F. (1991). Auditory corticocortical interconnections in the cat: Evidence for parallel and hierarchical arrangement of the auditory cortical areas. Experimental Brain Research, 86(3), 483–505.

    CAS  Google Scholar 

  • Schorr, E. A., Fox, N. A., van Wassenhove, V., & Knudsen, E. I. (2005). Auditory-visual fusion in speech perception in children with cochlear implants. Proceedings of the National Academy of Sciences of the USA, 102(51), 18748–18750.

    CAS  PubMed  Google Scholar 

  • Schreiner, C. E., & Langner, G. (1988). Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. Journal of Neurophysiology, 60(6), 1823–1840.

    CAS  PubMed  Google Scholar 

  • Schreiner, C. E., & Winer, J. A. (2007). Auditory cortex mapmaking: Principles, projections, and plasticity. Neuron, 56(2), 356–365.

    CAS  PubMed  Google Scholar 

  • Shankle, W. R., Romney, A. K., Landing, B. H., & Hara, J. (1998). Developmental patterns in the cytoarchitecture of the human cerebral cortex from birth to 6 years examined by correspondence analysis. Proceedings of the National Academy of Sciences of the USA, 95(7), 4023–4028.

    CAS  PubMed  Google Scholar 

  • Shepherd, R. K., Baxi, J. H., & Hardie, N. A. (1999). Response of inferior colliculus neurons to electrical stimulation of the auditory nerve in neonatally deafened cats. Journal of Neurophysiology, 82(3), 1363–1380.

    CAS  PubMed  Google Scholar 

  • Shlosberg, D., Amitai, Y., & Azouz, R. (2006). Time-Dependent, layer-specific modulation of sensory responses mediated by neocortical layer 1. Journal of Neurophysiology, 96(6), 3170–3182.

    PubMed  Google Scholar 

  • Shpak, T., Koren, L., Tzach, N., Most, T., & Luntz, M. (2009). Perception of speech by prelingual pre-adolescent and adolescent cochlear implant users. International Journal of Audiology, 48(11), 775–783.

    PubMed  Google Scholar 

  • Snyder, R. L., & Sinex, D. G. (2002). Immediate changes in tuning of inferior colliculus neurons following acute lesions of cat spiral ganglion. Journal of Neurophysiology, 87(1), 434–452.

    PubMed  Google Scholar 

  • Snyder, R. L., Rebscher, S. J., Cao, K. L., Leake, P. A., & Kelly, K. (1990). Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hearing Research, 50(1–2), 7–33.

    CAS  PubMed  Google Scholar 

  • Snyder, R. L., Rebscher, S. J., Leake, P. A., Kelly, K., & Cao, K. (1991). Chronic intracochlear electrical stimulation in the neonatally deafened cat. II. Temporal properties of neurons in the inferior colliculus. Hearing Research, 56(1–2), 246–264.

    CAS  PubMed  Google Scholar 

  • Suga, N., & Ma, X. (2003). Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience, 4(10), 783–794.

    CAS  PubMed  Google Scholar 

  • Sukov, W., & Barth, D. S. (2001). Cellular mechanisms of thalamically evoked gamma oscillations in auditory cortex. Journal of Neurophysiology, 85(3), 1235–1245.

    CAS  PubMed  Google Scholar 

  • Sun, Y. J., Wu, G. K., Liu, B. H., Li, P., Zhou, M., Xiao, Z., Tao, H.W., Zhang, L.I. (2010). Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature, 465(7300), 927–931.

    CAS  PubMed  Google Scholar 

  • Syka, J., Popelár, J., Kvasnák, E., & Astl, J. (2000). Response properties of neurons in the central nucleus and external and dorsal cortices of the inferior colliculus in guinea pig. Experimental Brain Research, 133(2), 254–266.

    CAS  Google Scholar 

  • Tillein, J., Hubka, P., Syed, E., Hartmann, R., Engel, A. K., & Kral, A. (2010). Cortical representation of interaural time difference in congenital deafness. Cerebral Cortex, 20(2), 492–506.

    CAS  PubMed  Google Scholar 

  • Tillein, J., Hubka, P., & Kral, A. (2011). Sensitivity to interaural time differences with binaural implants: Is it in the brain? Cochlear Implants International, 12 Suppl 1, S44–50.

    PubMed  Google Scholar 

  • Tong, Y. C., Busby, P. A., & Clark, G. M. (1988). Perceptual studies on cochlear implant patients with early onset of profound hearing impairment prior to normal development of auditory, speech, and language skills. Journal of Acoustical Society of America, 84(3), 951–962.

    CAS  Google Scholar 

  • Tropea, D., Van Wart, A., & Sur, M. (2009). Molecular mechanisms of experience-dependent plasticity in visual cortex. Philosophical Transactions of the Royal Society London B: Biological Sciences, 364(1515), 341–355.

    Google Scholar 

  • Turner, J. G., Hughes, L. F., & Caspary, D. M. (2005). Affects of aging on receptive fields in rat primary auditory cortex layer V neurons. Journal of Neurophysiology, 94(4), 2738–2747.

    PubMed  Google Scholar 

  • van Essen, D. C., & Maunsell, J. H. R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences, 6, 370–375.

    Google Scholar 

  • van Zundert, B., Yoshii, A., & Constantine-Paton, M. (2004). Receptor compartmentalization and trafficking at glutamate synapses: A developmental proposal. Trends in Neurosciences, 27(7), 428–437.

    PubMed  Google Scholar 

  • Vollmer, M., Leake, P. A., Beitel, R. E., Rebscher, S. J., & Snyder, R. L. (2005). Degradation of temporal resolution in the auditory midbrain after prolonged deafness is reversed by electrical stimulation of the cochlea. Journal of Neurophysiology, 93(6), 3339–3355.

    PubMed  Google Scholar 

  • Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167(917), 392–393.

    CAS  PubMed  Google Scholar 

  • Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4), 279–290.

    CAS  PubMed  Google Scholar 

  • Weinberger, N. M. (2011). The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hearing Research, 274(1–2), 61–74.

    PubMed  Google Scholar 

  • Wild, C. J., Davis, M. H., & Johnsrude, I. S. (2012). Human auditory cortex is sensitive to the perceived clarity of speech. NeuroImage 60(2), 1490–1502.

    PubMed  Google Scholar 

Download references

Acknowledgments

The work of A. Kral was supported by Deutsche Forschungsgemeinschaft (Kr 3370 and cluster of excellence Hearing4all), in part by National Institutes of Health. R. K. Shepherd was supported by the National Institute of Health (HHS-N-263-2007-00053-C), the NH & MRC and the Victorian government through its Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Kral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kral, A., Baumhoff, P., Shepherd, R.K. (2013). Integrative Neuronal Functions in Deafness. In: Kral, A., Popper, A., Fay, R. (eds) Deafness. Springer Handbook of Auditory Research, vol 47. Springer, New York, NY. https://doi.org/10.1007/2506_2013_6

Download citation

Publish with us

Policies and ethics