Skip to main content

Magnetic Resonance Imaging of the Lung: Cystic Fibrosis

  • Chapter
MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Key Points

Proton MRI is able to depict the major changes in CF lung disease in a similar way to CT, albeit there will be shortcomings in the detection of more subtle or smaller abnormalities. Further studies are warranted to determine whether the additional structural detail provided by CT is necessary for the evaluation of the severity and progression of CF lung disease. At the same time, proton and hyperpolarized gas MRI provide a broad spectrum of additional functional information in CF lung diseases that is otherwise not available to patients and clinicians. The MRI techniques to be applied in CF lung disease are novel and further development and studies are required to fully implement and assess their potential impact in CF. It is currently unknown whether the combination of functional and structural information from MRI will be more useful than the mere structural information provided by CT in the clinical assessment of CF. It is conceivable that MRI and CT will be complementary as they have different advantages and disadvantages in elucidating the complex interrelation of lung structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abolmaali N et al (2002) Chrispin-Norman-score and Ghalla-score of patients with cystic fibrosis: comparative study of chest radiographs and MR-Imaging. In: Presented at European congress of radiology 2002

    Google Scholar 

  • Altes T et al (2008) Abnormalities of lung structure in children with bronchopulmonary dysplasia as assessed by diffusion hyperpolarized helium-3 MRI. In: International society of magnetic resonance in medicine

    Google Scholar 

  • Altes TA et al (2004) Ventilation imaging of the lung: comparison of hyperpolarized helium-3 MR imaging with Xe-133 scintigraphy. Acad Radiol 11(7):729–734

    Article  PubMed  Google Scholar 

  • Altes TA, Eichinger M, Puderbach M et al (2007a) Magnetic Resonance Imaging of the Lung in Cystic Fibrosis: Proceedings of the American Thoracic Society 4(4):322–325

    Article  PubMed  Google Scholar 

  • Altes TA, Johnson M, Fidler M et al (2007b) Use of hyperpolarized helium-3 MRI to assess response to ivacaftor treatment in patients with cystic fibrosis. J Cyst Fibros 16(2):267–274

    Article  PubMed  Google Scholar 

  • Amin R et al (2010) Hypertonic saline improves the LCI in paediatric patients with CF with normal lung function. Thorax 65(5):379–383

    Article  PubMed  Google Scholar 

  • Aurora P et al (2005) Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am J Respir Crit Care Med 171(3):249–256

    Article  PubMed  Google Scholar 

  • Beall RJ (2005) Executive vice president for medical affairs of the cystic fibrosis foundation. Statement at NACFC 2005

    Google Scholar 

  • Belessis Y et al (2012) Early cystic fibrosis lung disease detected by bronchoalveolar lavage and lung clearance index. Am J Respir Crit Care Med 185(8):862–873

    Article  PubMed  Google Scholar 

  • Bell LC, Johnson KM et al (2015a) Simultaneous MRI of lung structure and perfusion in a single breathhold. J Magn Reson Imaging 41(1):52–59

    Article  PubMed  Google Scholar 

  • Bell LC, Wang K et al (2015b) Comparison of models and contrast agents for improved signal and signal linearity in dynamic contrast-enhanced pulmonary magnetic resonance imaging. Investig Radiol 50(3):174–178

    Article  CAS  Google Scholar 

  • Bhalla M et al (1991) Cystic fibrosis: scoring system with thin-section CT. Radiology 179(3):783–788

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32(4):228-1. discussion 242-4

    Article  Google Scholar 

  • Brody AS (2004) Scoring systems for CT in cystic fibrosis: who cares? Radiology 231(2):296–298

    Article  PubMed  Google Scholar 

  • Brody AS et al (2005) Computed tomography in the evaluation of cystic fibrosis lung disease. Am J Respir Crit Care Med 172(10):1246–1252

    Article  PubMed  Google Scholar 

  • Brody AS et al (2006) Reproducibility of a scoring system for computed tomography scanning in cystic fibrosis. J Thorac Imaging 21(1):14–21

    Article  PubMed  Google Scholar 

  • Carr DH et al (1995) Magnetic resonance scanning in cystic fibrosis: comparison with computed tomography. Clin Radiol 50(2):84–89

    Article  CAS  PubMed  Google Scholar 

  • Chrispin AR, Norman AP (1974) The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol 2(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Davies J et al (2013) Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: a randomised controlled trial. Lancet Respir Med 1(8):630–638

    Article  CAS  PubMed  Google Scholar 

  • de Jong PA, Long FR, Nakano Y (2006) Computed tomography dose and variability of airway dimension measurements: how low can we go? Pediatr Radiol 36(10):1043–1047

    Article  PubMed  Google Scholar 

  • de Lange EE et al (1999) Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology 210(3):851–857

    Article  PubMed  Google Scholar 

  • DeBoer EM et al (2014) Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest 145(3):593–603

    Article  PubMed  Google Scholar 

  • Donadieu J et al (2007) Estimation of the radiation dose from thoracic CT scans in a cystic fibrosis population. Chest 132(4):1233–1238

    Article  PubMed  Google Scholar 

  • Donnelly LF et al (1999) Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung--preliminary observations. Radiology 212(3):885–889

    Article  CAS  PubMed  Google Scholar 

  • Dournes G et al (2016) Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 26(11):3811–3820

    Article  PubMed  Google Scholar 

  • Eberle B et al (1999) Analysis of intrapulmonary O(2) concentration by MR imaging of inhaled hyperpolarized helium-3. J Appl Physiol (Bethesda, Md: 1985) 87(6):2043–2052

    Article  CAS  Google Scholar 

  • Edelman RR et al (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2(11):1236–1239

    Article  CAS  PubMed  Google Scholar 

  • Eibel R et al (2006) Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 241(3):​880–891

    Article  PubMed  Google Scholar 

  • Eichinger M et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis--initial results. Eur Radiol 16(10):2147–2152

    Article  PubMed  Google Scholar 

  • Fiel SB et al (1987) Magnetic resonance imaging in young adults with cystic fibrosis. Chest 91(2):181–184

    Article  CAS  PubMed  Google Scholar 

  • Fleck R et al (2013) Aortopulmonary collateral flow in cystic fibrosis assessed with phase-contrast MRI. Pediatr Radiol 43(10):1279–1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Frush DP, Donnelly LF, Rosen NS (2003) Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics 112(4):951–957

    Article  PubMed  Google Scholar 

  • Gast KK et al (2002) Dynamic ventilation (3)He-magnetic resonance imaging with lung motion correction: gas flow distribution analysis. Investig Radiol 37(3):126–134

    Article  Google Scholar 

  • Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168(8):918–951

    Article  PubMed  Google Scholar 

  • Hatabu H et al (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36(4):503–508

    Article  CAS  PubMed  Google Scholar 

  • Helbich TH et al (1999) Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 213(2):537–544

    Article  CAS  PubMed  Google Scholar 

  • Hoo A-F et al (2012) Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax 67(10):874–881

    Article  PubMed  Google Scholar 

  • Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. Am J Roentgenol 188(2):540–546

    Article  Google Scholar 

  • Jakob PM et al (2004) Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 51(5):1009–1016

    Article  PubMed  Google Scholar 

  • Johnson KM et al (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70(5):1241–1250

    Article  PubMed  Google Scholar 

  • Kauczor HU et al (1996) Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201(2):564–568

    Article  CAS  PubMed  Google Scholar 

  • Keilholz SD et al (2002) The contributions of ventilation and perfusion in oxygen-enhanced pulmonary MR imaging. Proc Int Soc Mag Reson Med 10:409

    Google Scholar 

  • Kerem E et al (1992) Prediction of mortality in patients with cystic fibrosis. N Engl J Med 326(18):1187–1191

    Article  CAS  PubMed  Google Scholar 

  • Koumellis P et al (2005) Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3He MRI-preliminary results in children with cystic fibrosis. J Magn Reson Imaging 22(3):420–426

    Article  PubMed  Google Scholar 

  • Kruger SJ et al (2014) Oxygen-enhanced 3D radial ultrashort echo time magnetic resonance imaging in the healthy human lung. NMR Biomed 27(12):1535–1541

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo W et al (2014) Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am J Respir Crit Care Med 189(11):1328–1336

    Article  PubMed  Google Scholar 

  • Levin DL, Hatabu H (2004) MR evaluation of pulmonary blood flow. J Thorac Imaging 19(4):241–249

    Article  PubMed  Google Scholar 

  • Ley S et al (2005) Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur Radiol 15(8):1575–1580

    Article  PubMed  Google Scholar 

  • Loeve M et al (2009) Cystic fibrosis: are volumetric ultra-low-dose expiratory CT scans sufficient for monitoring related lung disease? Radiology 253(1):223–229

    Article  PubMed  Google Scholar 

  • Lum S et al (2007) Early detection of cystic fibrosis lung disease: multiple-breath washout versus raised volume tests. Thorax 62(4):341–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9(3):483–487

    Article  CAS  PubMed  Google Scholar 

  • McMahon CJ et al (2006) Hyperpolarized 3helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry. Eur Radiol 16(11):2483–2490

    Article  PubMed  Google Scholar 

  • Mentore K et al (2005) Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 12(11):1423–1429

    Article  PubMed  Google Scholar 

  • Morbach AE et al (2005) Diffusion-weighted MRI of the lung with hyperpolarized helium-3: a study of reproducibility. J Magn Reson Imaging 21(6):765–774

    Article  PubMed  Google Scholar 

  • Mugler JP, Altes TA (2013) Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 37(2):313–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagle SK et al (2016) Conventional versus ultrashort echo time MRI of cystic fibrosis. In: Presented at the North American cystic fibrosis conference, Orlando, FL

    Google Scholar 

  • O’Connell OJ et al (2012) Radiological imaging in cystic fibrosis: cumulative effective dose & changing trends over 2 decades. Chest 141(6):1575–1583

    Article  PubMed  Google Scholar 

  • Poranski ME et al (2016) Ventilation and perfusion MRI of cystic fibrosis. In: Presented at North American cystic fibrosis conference, Orlando, FL

    Google Scholar 

  • Puderbach M et al (2008) In vivo Gd-DTPA concentration for MR lung perfusion measurements: assessment with computed tomography in a porcine model. Eur Radiol 18(10):2102–2107

    Article  PubMed  Google Scholar 

  • Puderbach M, Eichinger M, Gahr J et al (2007a) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17(3):716–724

    Article  PubMed  Google Scholar 

  • Puderbach M, Eichinger M, Haeselbarth J et al (2007b) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Investig Radiol 42(10):715–725

    Article  Google Scholar 

  • Renz DM et al (2015) Comparison between magnetic resonance imaging and computed tomography of the lung in patients with cystic fibrosis with regard to clinical, laboratory, and pulmonary functional parameters. Invest Radiol 50(10):733–742

    Article  PubMed  Google Scholar 

  • Roach DJ et al (2016) Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Ann Am Thorac Soc 13(11):1923–1931

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenow T et al (2015) PRAGMA-CF. A quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am J Respir Crit Care Med 191(10):1158–1165

    Article  PubMed  Google Scholar 

  • Rupprecht T et al (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12(11):2752–2756

    PubMed  Google Scholar 

  • Salerno M et al (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46(4):667–677

    Article  CAS  PubMed  Google Scholar 

  • Salerno M et al (2002) Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes – initial experience. Radiology 222(1):252–260

    Article  PubMed  Google Scholar 

  • Sileo C et al (2014) HRCT and MRI of the lung in children with cystic. J Cyst Fibros 13(2):198–204

    Article  PubMed  Google Scholar 

  • Smith JJ, Sorensen AG, Thrall JH (2003) Biomarkers in imaging: realizing radiology’s future. Radiology 227(3):633–638

    Article  PubMed  Google Scholar 

  • Stadler A et al (2005) T1 mapping of the entire lung parenchyma: influence of the respiratory phase in healthy individuals. J Magn Reson Imaging 21(6):759–764

    Article  PubMed  Google Scholar 

  • Stahl M et al (2014) Multiple breath washout is feasible in the clinical setting and detects abnormal lung function in infants and young children with cystic fibrosis. Respiration 87(5):357–363

    Article  PubMed  Google Scholar 

  • Stahl M et al (2017) Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med 195(3):349–359

    CAS  PubMed  Google Scholar 

  • Stern M et al (2008) From registry to quality management: the German cystic fibrosis quality assessment project 1995–2006. Eur Respir J 31(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Subbarao P et al (2013) Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am J Respir Crit Care Med 188(4):456–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Tepper LA et al (2016) Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol 51(1):34–41

    Article  PubMed  Google Scholar 

  • Teufel M et al (2012) Comparison between high-resolution CT and MRI using a very short Echo time in patients with cystic fibrosis with extra focus on mosaic attenuation. Respiration 86(4):302–311

    Article  PubMed  Google Scholar 

  • Thia LP et al (2014) Is chest CT useful in newborn screened infants with cystic fibrosis at 1 year of age? Thorax 69(4):320–327

    Article  PubMed  Google Scholar 

  • Thomen RP et al (2017) Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros 16(2):275–282

    Article  CAS  PubMed  Google Scholar 

  • van Beek EJR et al (2007) Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-Helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol 17(4):1018–1024

    Article  PubMed  Google Scholar 

  • Walkup LL et al (2016) Feasibility, tolerability and safety of pediatric hyperpolarized (129)Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 46(12):1651–1662

    Article  PubMed  PubMed Central  Google Scholar 

  • Weatherly MR et al (1993) Wisconsin cystic fibrosis chest radiograph scoring system. Pediatrics 91(2):488–495

    CAS  PubMed  Google Scholar 

  • Wielpütz MO et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189(8):956–965

    Article  PubMed  Google Scholar 

  • Woodhouse N et al (2005) Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers. J Magn Reson Imaging 21(4):365–369

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott K. Nagle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nagle, S.K., Puderbach, M., Eichinger, M., Altes, T.A. (2017). Magnetic Resonance Imaging of the Lung: Cystic Fibrosis. In: Kauczor, HU., Wielpütz, M.O. (eds) MRI of the Lung. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_49

Download citation

  • DOI: https://doi.org/10.1007/174_2017_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42616-7

  • Online ISBN: 978-3-319-42617-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics