Skip to main content

Magnetic Resonance Imaging of the Bone Marrow Contrast Media for Bone Marrow Imaging

  • Chapter
Magnetic Resonance Imaging of the Bone Marrow

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1552 Accesses

Abstract

Non-enhanced MR scans provide information about the presence and extent of bone marrow pathologies. However, for specific indications, contrast agents can provide additional functional and metabolic information. Both gadolinium (Gd)-based low molecular weight contrast agents as well as ultrasmall superparamagnetic iron oxide (USPIO) achieve MR signal enhancement by decreasing T1- and T2-relaxation times. However, both classes of contrast agents have very different properties and pharmacokinetics. Low molecular weight Gd-chelates have a relatively short blood half life and provide early, brief tissue enhancement, whereas USPIO have a long blood half life, provide delayed tissue enhancement, and are actively taken up by phagocytic myeloid cells. Nephrogenic systemic fibrosis (NSF) is a known side effect of Gd-based agents and occurs in patients with chronic kidney disease. USPIO are metabolized by cells of the reticuloendothelial system, that have been proven to be safe in patients with chronic kidney disease, and thus may be an alternative in this patient population. Contrast-enhanced MRI can also improve the detection and characterization of bone marrow pathologies, guide biopsies, and monitor treatment effects. This chapter will provide an overview over various Gd-chelates and USPIO compounds as well as their respective applications for bone marrow imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baur A, Stabler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26(7):414–418

    Article  PubMed  CAS  Google Scholar 

  • Bierry G, Jehl F, Prevost G, Mohr M, Meyer N, Dietemann JL, Kremer S (2008) Percutaneous inoculated rabbit model of intervertebral disc space infection: magnetic resonance imaging features with pathological correlation. Joint Bone Spine 75(4):465–470. doi:10.1016/j.jbspin.2007.06.018

    Article  PubMed  Google Scholar 

  • Bollow M, Knauf W, Korfel A, Taupitz M, Schilling A, Wolf KJ, Hamm B (1997) Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans. J Magn Reson Imaging 7(1):241–250

    Article  PubMed  CAS  Google Scholar 

  • Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66(2):230–234. doi:10.1016/j.ejrad.2008.02.011

    Article  PubMed  Google Scholar 

  • Daldrup-Link HE, Rummeny EJ, Ihssen B, Kienast J, Link TM (2002) Iron-oxide-enhanced MR imaging of bone marrow in patients with non-hodgkin’s lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Eur Radiol 12(6):1557–1566. doi:10.1007/s00330-001-1270-5

    Article  PubMed  Google Scholar 

  • Davies AM, Vanel D (1998) Follow-up of musculoskeletal tumors I local recurrence. Eur Radiol 8(5):791–799

    Article  PubMed  CAS  Google Scholar 

  • Erlemann R, Reiser MF, Peters PE, Vasallo P, Nommensen B, Kusnierz-Glaz CR, Ritter J, Roessner A (1989) Musculoskeletal neoplasms: static and dynamic Gd-DTPA-enhanced MR imaging. Radiology 171(3):767–773

    PubMed  CAS  Google Scholar 

  • Erlemann R, Sciuk J, Bosse A, Ritter J, Kusnierz-Glaz CR, Peters PE, Wuisman P (1990) Response of osteosarcoma and ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175(3):791–796

    PubMed  CAS  Google Scholar 

  • Frenzel T, Lengsfeld P, Schirmer H, Hutter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43(12):817–828. doi:10.1097/RLI.0b013e3181852171

    Article  PubMed  CAS  Google Scholar 

  • Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108. doi:10.1093/ndt/gfk062

    Article  PubMed  CAS  Google Scholar 

  • Holscher HC, Bloem JL, van der Woude HJ, Hermans J, Nooy MA, Taminiau AH, Hogendoorn PC (1995) Can MRI predict the histopathological response in patients with osteosarcoma after the first cycle of chemotherapy? Clin Radiol 50(6):384–390

    Article  PubMed  CAS  Google Scholar 

  • Idee JM, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20(6):563–576. doi:10.1111/j.1472-8206.2006.00447.x

    Article  PubMed  CAS  Google Scholar 

  • Kaim AH, Jundt G, Wischer T, O’Reilly T, Frohlich J, von Schulthess GK, Allegrini PR (2003) Functional-morphologic MR imaging with ultrasmall superparamagnetic particles of iron oxide in acute and chronic soft-tissue infection: study in rats. Radiology 227(1):169–174. doi:10.1148/radiol.2272020490

    Article  PubMed  Google Scholar 

  • Knopp MV, Balzer T, Esser M, Kashanian FK, Paul P, Niendorf HP (2006) Assessment of utilization and pharmacovigilance based on spontaneous adverse event reporting of gadopentetate dimeglumine as a magnetic resonance contrast agent after 45 million administrations and 15 years of clinical use. Invest Radiol 41(6):491–499. doi:10.1097/01.rli.0000209657.16115.42

    Article  PubMed  Google Scholar 

  • Landry R, Jacobs PM, Davis R, Shenouda M, Bolton WK (2005) Pharmacokinetic study of ferumoxytol: a new iron replacement therapy in normal subjects and hemodialysis patients. Am J Nephrol 25(4):400–410. doi:10.1159/000087212

    Article  PubMed  CAS  Google Scholar 

  • Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMP imaging: theory and design. Chem Rev 87(5):901–927. doi:10.1021/cr00081a003

    Article  CAS  Google Scholar 

  • Lawrence JA, Babyn PS, Chan HS, Thorner PS, Pron GE, Krajbich IJ (1993) Extremity osteosarcoma in childhood: prognostic value of radiologic imaging. Radiology 189(1):43–47

    PubMed  CAS  Google Scholar 

  • Lutz AM, Seemayer C, Corot C, Gay RE, Goepfert K, Michel BA, Marincek B, Gay S, Weishaupt D (2004) Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis: ultrasmall superparamagnetic iron oxide-enhanced MR imaging. Radiology 233(1):149–157. doi:10.1148/radiol.2331031402

    Article  PubMed  Google Scholar 

  • Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362. doi:10.1681/ASN.2006060601

    Article  PubMed  Google Scholar 

  • Metz S, Lohr S, Settles M, Beer A, Woertler K, Rummeny EJ, Daldrup-Link HE (2006) Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-hodgkin lymphomas. Eur Radiol 16(3):598–607. doi:10.1007/s00330-005-0045-9

    Article  PubMed  Google Scholar 

  • Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, Watnick SG (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75(5):465–474. doi:10.1038/ki.2008.496

    Article  PubMed  CAS  Google Scholar 

  • Prince MR, Zhang H, Morris M, MacGregor JL, Grossman ME, Silberzweig J, DeLapaz RL, Lee HJ, Magro CM, Valeri AM (2008) Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 248(3):807–816. doi:10.1148/radiol.2483071863

    Article  PubMed  Google Scholar 

  • Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 39(1):56–63. doi:10.1097/01.rli.0000101027.57021.28

    Article  PubMed  CAS  Google Scholar 

  • Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Tombach B (2004) Myocardial perfusion and MR angiography of chest with sh u 555 c: results of placebo-controlled clinical phase i study. Radiology 231(2):474–481. doi:10.1148/radiol.2312021251

    Article  PubMed  Google Scholar 

  • Rofsky NM, Sherry AD, Lenkinski RE (2008) Nephrogenic systemic fibrosis: a chemical perspective. Radiology 247(3):608–612. doi:1148/radiol.2473071975

    Article  PubMed  Google Scholar 

  • Rossi G, Mavrogenis AF, Rimondi E, Ciccarese F, Tranfaglia C, Angelelli B, Fiorentini G, Bartalena T, Errani C, Ruggieri P, Mercuri M (2011) Selective arterial embolisation for bone tumours: experience of 454 cases. Radiol Med 116 (5):793–808. doi:10.1007/s11547-011-0670-0

    Google Scholar 

  • Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1):148–157. doi:10.1148/radiol.2431062144

    Article  PubMed  Google Scholar 

  • Schepper AM, De Beuckeleer LH, Vandevenne JE (1999) Imaging of soft tissue tumors in the pediatric patient. Semin Musculoskelet Radiol 3(1):59–80. smr00073

    Article  PubMed  Google Scholar 

  • Shapeero LG, Vanel D, Verstraete KL, Bloem JL (1999) Dynamic contrast-enhanced MR imaging for soft tissue sarcomas. Semin Musculoskelet Radiol 3(2):101–114. doi:10.1055/s-2008-1080055

    Article  PubMed  Google Scholar 

  • Simon GH, Raatschen HJ, Wendland MF, von Vopelius-Feldt J, Fu Y, Chen MH, Daldrup-Link HE (2005) Ultrasmall superparamagnetic iron-oxide-enhanced MR imaging of normal bone marrow in rodents: original research original research. Acad Radiol 12(9):1190–1197. doi:10.1016/j.acra.2005.05.014

    Article  PubMed  Google Scholar 

  • Spinowitz BS, Kausz AT, Baptista J, Noble SD, Sothinathan R, Bernardo MV, Brenner L, Pereira BJ (2008) Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 19(8):1599–1605. doi:10.1681/ASN.2007101156

    Article  PubMed  CAS  Google Scholar 

  • Stabler A, Baur A, Bartl R, Munker R, Lamerz R, Reiser MF (1996) Contrast enhancement and quantitative signal analysis in mr imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates. AJR Am J Roentgenol 167(4):1029–1036

    PubMed  CAS  Google Scholar 

  • Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38. doi:10.1007/s10439-005-9002-7

    Article  PubMed  Google Scholar 

  • Turetschek K, Huber S, Floyd E, Helbich T, Roberts TP, Shames DM, Tarlo KS, Wendland MF, Brasch RC (2001) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218(2):562–569

    PubMed  CAS  Google Scholar 

  • van der Woude HJ, Bloem JL, Verstraete KL, Taminiau AH, Nooy MA, Hogendoorn PC (1995) Osteosarcoma and ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR Am J Roentgenol 165(3):593–598

    PubMed  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    PubMed  CAS  Google Scholar 

  • Verstraete KL, Lang P (2000) Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 34(3):229–246. doi:S0720-048X(00)00202-3

    Article  PubMed  CAS  Google Scholar 

  • Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-Deene Y, Kunnen M, Bloem JL (1996) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 6(2):311–321

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golovko, D., Sutton, E., Daldrup-Link, H.E. (2013). Magnetic Resonance Imaging of the Bone Marrow Contrast Media for Bone Marrow Imaging. In: Baur-Melnyk, A. (eds) Magnetic Resonance Imaging of the Bone Marrow. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_577

Download citation

  • DOI: https://doi.org/10.1007/174_2012_577

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17859-7

  • Online ISBN: 978-3-642-17860-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics