Skip to main content

Exploring the Role of Curcumin in Cancer: A Long Road Ahead

  • Chapter
  • First Online:
Interdisciplinary Cancer Research

Abstract

Curcumin is a natural compound that is extracted from the rhizomes of Curcuma longa, also known as turmeric. Its bright yellow color and hydrophobic nature make it a unique polyphenol that has been known to possess diverse and remarkable properties. The compound is known as diferuloylmethane and has a wide range of benefits, including anti-inflammatory, anti-carcinogenic, and antioxidant activities. Its most notable feature is its ability to prevent or slow down the progression of cancer in multiple areas of the body, such as the breast, brain, kidney, colorectal, and prostate.

Curcumin works by regulating cell signaling pathways that can prevent the growth and spread of cancer cells, making it an effective component in the treatment of different types of cancer. It is also known to modulate various immune modulators, such as reactive oxygen species (ROS), which explains its anti-inflammatory and anti-cancer effects. Unlike expensive drug interventions that come with high side effects, curcumin is a plant-based formulation that has been used for centuries. Over the years, numerous studies have shown that curcumin is a promising agent in cancer treatment, with over 40 out of 1,000 potential agents identified as effective. It is a powerful natural remedy that has been used for centuries, with numerous benefits that make it an essential component in cancer management. This chapter provides more insight into the biochemistry of curcumin and its role in managing multiple cancers, as well as its anti-inflammatory and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmadi F, Akbari J, Saeedi M, Seyedabadi M, Ebrahimnejad P, Ghasemi S, Nokhodchi A (2023) Efficient synergistic combination effect of curcumin with piperine by polymeric magnetic nanoparticles for breast cancer treatment. J Drug Deliv Sci Technol 86:104624

    Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Google Scholar 

  • Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB (2008) Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 267(1):133–164

    Google Scholar 

  • Anjum J, Mitra S, Das R, Alam R, Mojumder A, Emran TB, Islam F, Rauf A, Hossain MJ, Aljohani ASM (2022) A renewed concept on the MAPK signaling pathway in cancers: polyphenols as a choice of therapeutics. Pharmacol Res 184:106398

    Google Scholar 

  • Anuchapreeda S, Tima S, Duangrat C, Limtrakul P (2008) Effect of pure curcumin, demethoxycurcumin, and bisdemethoxycurcumin on WT1 gene expression in leukemic cell lines. Cancer Chemother Pharmacol 62:585–594

    Google Scholar 

  • Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72(1):29–39

    Google Scholar 

  • Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23

    Google Scholar 

  • Ashour AA, Abdel-Aziz A-AH, Mansour AM, Alpay SN, Huo L, Ozpolat B (2014) Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells. Apoptosis 19:241–258

    Google Scholar 

  • Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S (2020) Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 235(12):9241–9268

    Google Scholar 

  • Azevedo Martins JM, Rabelo-Santos SH, do Amaral Westin MC, Zeferino LC (2020) Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: a competing risk analysis. BMC Cancer 20(1):1–11

    Google Scholar 

  • Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z (2021) Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 268:118999

    Google Scholar 

  • Barcelos KA, Mendonça CR, Noll M, Botelho AF, Francischini CRD, Silva MAM (2022) Antitumor properties of curcumin in breast cancer based on preclinical studies: a systematic review. Cancers 14(9):2165

    Google Scholar 

  • Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK (2019) Benefits of curcumin in brain disorders. Biofactors 45(5):666–689

    Google Scholar 

  • Bhatia M, Bhalerao M, Cruz-Martins N, Kumar D (2021) Curcumin and cancer biology: focusing regulatory effects in different signalling pathways. Phytother Res 35(9):4913–4929

    Google Scholar 

  • Bhuyan DJ (2018) Phytochemicals derived from Australian eucalypts as anticancer agents for pancreatic malignancies. The University of Newcastle

    Google Scholar 

  • Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A (2007) Polymeric nanoparticle-encapsulated curcumin. J Nanobiotechnol 5(1):1–18

    Google Scholar 

  • Burotto M, Chiou VL, Lee J, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120(22):3446–3456

    Google Scholar 

  • Cao X, Li Y, Wang Y, Yu T, Zhu C, Zhang X, Guan J (2022) Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS One 17(1):e0261370

    Google Scholar 

  • Chauhan DP (2002) Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des 8(19):1695–1706

    Google Scholar 

  • Chen Q-Y, Shi J-G, Yao Q-H, Jiao D-M, Wang Y-Y, Hu H-Z, Wu Y-Q, Song J, Yan J, Wu L-J (2012) Lysosomal membrane permeabilization is involved in curcumin-induced apoptosis of A549 lung carcinoma cells. Mol Cell Biochem 359:389–398

    Google Scholar 

  • Chen Z, Li M, Zhang Q, He T, Gan L (2023) Curcumin regulates cell proliferation and invasion of human triple-negative breast cancer Hs578T cells via the mTOR signaling pathway

    Google Scholar 

  • Choi BH, Kim CG, Bae Y-S, Lim Y, Lee YH, Shin SY (2008) p21Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res 68(5):1369–1377

    Google Scholar 

  • Cuddapah VA, Robel S, Watkins S, Sontheimer H (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15(7):455–465

    Google Scholar 

  • Davoodvandi A, Farshadi M, Zare N, Akhlagh SA, Alipour Nosrani E, Mahjoubin-Tehran M, Kangari P, Sharafi SM, Khan H, Aschner M (2021) Antimetastatic effects of curcumin in oral and gastrointestinal cancers. Front Pharmacol 12:1836

    Google Scholar 

  • Dei Cas M, Ghidoni R (2019) Dietary curcumin: correlation between bioavailability and health potential. Nutrients 11(9):2147

    Google Scholar 

  • DiMarco-Crook C, Rakariyatham K, Li Z, Du Z, Zheng J, Wu X, Xiao H (2020) Synergistic anticancer effects of curcumin and 3′, 4′-didemethylnobiletin in combination on colon cancer cells. J Food Sci 85(4):1292–1301

    Google Scholar 

  • Fakhrullina G, Khakimova E, Akhatova F, Lazzara G, Parisi F, Fakhrullin R (2019) Selective antimicrobial effects of curcumin@ halloysite nanoformulation: a Caenorhabditis elegans study. ACS Appl Mater Interfaces 11(26):23050–23064

    Google Scholar 

  • Fan X-X, Wu Q (2022) Decoding lung cancer at single-cell level. Front Immunol 13:883758

    Google Scholar 

  • Feng T, Wei Y, Lee RJ, Zhao L (2017) Liposomal curcumin and its application in cancer. Int J Nanomedicine Volume 12:6027–6044

    Google Scholar 

  • Fratantonio D, Molonia MS, Bashllari R, Muscarà C, Ferlazzo G, Costa G, Saija A, Cimino F, Speciale A (2019) Curcumin potentiates the antitumor activity of paclitaxel in rat glioma C6 cells. Phytomedicine 55:23–30

    Google Scholar 

  • Fu H, Wang C, Yang D, Wei Z, Xu J, Hu Z, Zhang Y, Wang W, Yan R, Cai Q (2018) Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J Cell Physiol 233(6):4634–4642

    Google Scholar 

  • Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6(3):928–939

    Google Scholar 

  • Garrido-Armas M, Corona JC, Escobar ML, Torres L, Ordóñez-Romero F, Hernández-Hernández A, Arenas-Huertero F (2018) Paraptosis in human glioblastoma cell line induced by curcumin. Toxicol In Vitro 51:63–73

    Google Scholar 

  • Gholami L, Momtazi-Borojeni AA, Malaekeh-Nikouei B, Nikfar B, Amanolahi F, Mohammadi A, Kazemi Oskuee R (2023) Selective cellular uptake and cytotoxicity of curcumin-encapsulated SPC and HSPC liposome nanoparticles on human bladder cancer cells. Curr Pharm Des 29(13):1046–1058

    Google Scholar 

  • Gilmore TD (2021) NF-κB and human cancer: what have we learned over the past 35 years? Biomedicine 9(8):889

    Google Scholar 

  • Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11(10):2376

    Google Scholar 

  • Goel A, Boland CR, Chauhan DP (2001) Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172(2):111–118

    Google Scholar 

  • Guo M, Peng Y, Gao A, Du C, Herman JG (2019) Epigenetic heterogeneity in cancer. Biomark Res 7(1):1–19

    Google Scholar 

  • Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E (2022) Curcumin-based nanoformulations: a promising adjuvant towards cancer treatment. Molecules 27(16):5236

    Google Scholar 

  • Hahn Y-I, Kim S-J, Choi B-Y, Cho K-C, Bandu R, Kim KP, Kim D-H, Kim W, Park JS, Han BW (2018) Curcumin interacts directly with the cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep 8(1):6409

    Google Scholar 

  • Hassaninasab A, Hashimoto Y, Tomita-Yokotani K, Kobayashi M (2011) Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci 108(16):6615–6620

    Google Scholar 

  • Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M (2020) Obstacles against the marketing of curcumin as a drug. Int J Mol Sci 21(18):6619

    Google Scholar 

  • He Q, Liu C, Wang X, Rong K, Zhu M, Duan L, Zheng P, Mi Y (2023) Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking. Front Pharmacol 14:1102581

    Google Scholar 

  • Heger M, van Golen RF, Broekgaarden M, Michel MC (2014) The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 66(1):222–307

    Google Scholar 

  • Huang C-Y, Wei P-L, Prince GMSH, Batzorig U, Lee C-C, Chang Y-J, Hung C-S (2023a) The role of Thrombomodulin in estrogen-receptor-positive breast cancer progression, metastasis, and curcumin sensitivity. Biomedicine 11(5):1384

    Google Scholar 

  • Huang M, Zhai B-T, Fan Y, Sun J, Shi Y-J, Zhang X-F, Zou J-B, Wang J-W, Guo D-Y (2023b) Targeted drug delivery systems for curcumin in breast cancer therapy. Int J Nanomedicine Volume 18:4275–4311

    Google Scholar 

  • Husseini GA, Radha R, Paul V (n.d.) Ultrasound-mediated release of curcumin from nanoliposomes and cytotoxicity studies on the breast cancer cell line HCC 1954

    Google Scholar 

  • Ibáñez Gaspar V, McCaul J, Cassidy H, Slattery C, McMorrow T (2021) Effects of curcumin analogues DMC and EF24 in combination with the cytokine TRAIL against kidney cancer. Molecules 26(20):6302

    Google Scholar 

  • Ide H, Tokiwa S, Sakamaki K, Nishio K, Isotani S, Muto S, Hama T, Masuda H, Horie S (2010) Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 70(10):1127–1133

    Google Scholar 

  • Inzunza-Soto M, Vergara-Jimz M, Cedano-Prieto DM, Franco M, Jimz-Ferrer JE, AlegrHerrera EY, CortAlvarez J, AlemHidalgo D, Teran-Cabanillas E (2023) Orally administered curcumin inhibits breast cancer in vivo and reduces cell proliferation in vitro in an iron dependent manner. Curr Nutr Food Sci 19(4):461–468

    Google Scholar 

  • Jung YN, Kang S, Lee BH, Kim JH, Hong J (2016) Changes in the chemical properties and anti-oxidant activities of curcumin by microwave radiation. Food Sci Biotechnol 25:1449–1455

    Google Scholar 

  • Karmakar S, Banik NL, Ray SK (2007) Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem Res 32:2103–2113

    Google Scholar 

  • Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Zaguia A, Koundal S, Belay A (2022) Global increase in breast cancer incidence: risk factors and preventive measures. Biomed Res Int 2022:1

    Google Scholar 

  • Kasi PD, Tamilselvam R, Skalicka-Woźniak K, Nabavi SF, Daglia M, Bishayee A, Pazoki-Toroudi H, Nabavi SM (2016) Molecular targets of curcumin for cancer therapy: an updated review. Tumor Biol 37:13017–13028

    Google Scholar 

  • Kim S-Y, Jung S-H, Kim H-S (2005) Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells. Biochem Biophys Res Commun 337(2):510–516

    Google Scholar 

  • Kotha RR, Luthria DL (2019) Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 24(16):2930

    Google Scholar 

  • Kumar D, Kumar M, Saravanan C, Singh SK (2012) Curcumin: a potential candidate for matrix metalloproteinase inhibitors. Expert Opin Ther Targets 16(10):959–972

    Google Scholar 

  • Kumar P, Barua CC, Sulakhiya K, Sharma RK (2017) Curcumin ameliorates cisplatin-induced nephrotoxicity and potentiates its anticancer activity in SD rats: potential role of curcumin in breast cancer chemotherapy. Front Pharmacol 8:132

    Google Scholar 

  • Kuo Y-C, Wang L-J, Rajesh R (2019) Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Mater Sci Eng C 102:362–372

    Google Scholar 

  • Li Y, Wang J, Li X, Jia Y, Huai L, He K, Yu P, Wang M, Xing H, Rao Q (2014) Role of the Wilms’ tumor 1 gene in the aberrant biological behavior of leukemic cells and the related mechanisms. Oncol Rep 32(6):2680–2686

    Google Scholar 

  • Li Y, Sun W, Han N, Zou Y, Yin D (2018) Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer 18(1):1–9

    Google Scholar 

  • Li W, Sun L, Lei J, Wu Z, Ma Q, Wang Z (2020) Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis. Oncol Rep 44(1):382–392

    Google Scholar 

  • Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y (2022) Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 15(1):121

    Google Scholar 

  • Lim T-G, Lee S-Y, Huang Z, Lim DY, Chen H, Jung SK, Bode AM, Lee KW, Dong Z (2014) Curcumin suppresses proliferation of colon cancer cells by targeting CDK2. Cancer Prev Res 7(4):466–474

    Google Scholar 

  • Lin X, Wang Q, Du S, Guan Y, Qiu J, Chen X, Yuan D, Chen T (2023) Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. J Drug Deliv Sci Technol 79:104050

    Google Scholar 

  • Liu L, Lim MA, Jung S-N, Oh C, Won H-R, Jin YL, Piao Y, Kim HJ, Chang JW, Koo BS (2021) The effect of curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. Phytomedicine 92:153758

    Google Scholar 

  • Liu C, Rokavec M, Huang Z, Hermeking H (2023a) Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ 30:1–15

    Google Scholar 

  • Liu Y-S, Song J-W, Zhong W-X, Yuan M-H, Guo Y-R, Peng C, Guo L, Guo Y-P (2023b) Dual drug-loaded nanoliposomes encapsulating curcumin and 5-fluorouracil with advanced medicinal applications: self-monitoring and antitumor therapy. Molecules 28(11):4353

    Google Scholar 

  • Loo C-Y, Traini D, Young PM, Parumasivam T, Lee W-H (2023) Pulmonary delivery of curcumin and quercetin nanoparticles for lung cancer–part 2: toxicity and endocytosis. J Drug Del Sci Technol 82:104375

    Google Scholar 

  • Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Xiao L (2023) Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 311:120718

    Google Scholar 

  • Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J (2008) Micelles of poly (ethylene oxide)-b-poly (ε-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A 86(2):300–310

    Google Scholar 

  • Mahmoudi Z, Jahani M, Nekouian R (2023) Role of curcumin on miR-26a and its effect on DNMT1, DNMT3b, and MEG3 expression in A549 lung cancer cell. J Cancer Res Ther. 19 Jul 2023.

    Google Scholar 

  • Mahran RI, Hagras MM, Sun D, Brenner DE (2017) Bringing curcumin to the clinic in cancer prevention: a review of strategies to enhance bioavailability and efficacy. AAPS J 19:54–81

    Google Scholar 

  • Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2007) Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330(1–2):155–163

    Google Scholar 

  • Mandal M, Jaiswal P, Mishra A (2020) Role of curcumin and its nanoformulations in neurotherapeutics: a comprehensive review. J Biochem Mol Toxicol 34(6):e22478

    Google Scholar 

  • Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, Rasoulpoor S, Shabani S (2020) Clinical effects of curcumin in enhancing cancer therapy: a systematic review. BMC Cancer 20:1–11

    Google Scholar 

  • Meiyanto E, Septisetyani EP, Larasati YA, Kawaichi M (2018) Curcumin analog pentagamavunon-1 (PGV-1) sensitizes Widr cells to 5-fluorouracil through inhibition of NF-κB activation. APJCP 19(1):49

    Google Scholar 

  • Memarzia A, Saadat S, Behrouz S, Boskabady MH (2022) Curcuma longa and curcumin affect respiratory and allergic disorders, experimental and clinical evidence: A comprehensive and updated review. Biofactors 48(3):521–551

    Google Scholar 

  • Mullaicharam AR, Maheswaran A (2012) Pharmacological effects of curcumin. Int J Nutr Pharmacol Neurol Dis 2(2):92–99

    Google Scholar 

  • Novitasari D, Jenie RI, Kato J, Meiyanto E (2023) Chemoprevention curcumin analog 1.1 promotes metaphase arrest and enhances intracellular reactive oxygen species levels on TNBC MDA-MB-231 and HER2-positive HCC1954 cells. Res Pharm Sci 18(4):358–370

    Google Scholar 

  • Obaidi I, Cassidy H, Ibanez Gaspar V, McCaul J, Higgins M, Halász M, Reynolds AL, Kennedy BN, McMorrow T (2020) Curcumin sensitizes kidney cancer cells to TRAIL-induced apoptosis via ROS mediated activation of JNK-CHOP pathway and upregulation of DR4. Biology 9(5):92

    Google Scholar 

  • Pan M-H, Huang T-M, Lin J-K (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27(4):486–494

    Google Scholar 

  • Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P (2020) Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 60(6):887–939

    Google Scholar 

  • Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T (2022) Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis. Clin Chem Lab Med 60(12):1974–1983

    Google Scholar 

  • Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C, Xu R (2021) Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther 15:4503–4525

    Google Scholar 

  • Perkins S, Verschoyle RD, Hill K, Parveen I, Threadgill MD, Sharma RA, Williams ML, Steward WP, Gescher AJ (2002) Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomark Prev 11(6):535–540

    Google Scholar 

  • Petiti J, Rosso V, Lo Iacono M, Panuzzo C, Calabrese C, Signorino E, Pironi L, Cartellà A, Bracco E, Pergolizzi B (2019) Curcumin induces apoptosis in JAK2-mutated cells by the inhibition of JAK2/STAT and mTORC1 pathways. J Cell Mol Med 23(6):4349–4357

    Google Scholar 

  • Porro C, Panaro MA (2023) Recent progress in understanding the health benefits of curcumin. Molecules 28(5):2418

    Google Scholar 

  • Pottier C, Fresnais M, Gilon M, Jérusalem G, Longuespée R, Sounni NE (2020) Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers 12(3):731

    Google Scholar 

  • Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R (2021) Metal–curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci 22(13):7094

    Google Scholar 

  • Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A (2020) Curcumin and colorectal cancer: from basic to clinical evidences. Int J Mol Sci 21(7):2364

    Google Scholar 

  • Purkayastha S, Berliner A, Fernando SS, Ranasinghe B, Ray I, Tariq H, Banerjee P (2009) Curcumin blocks brain tumor formation. Brain Res 1266:130–138

    Google Scholar 

  • Rajitha B, Belalcazar A, Nagaraju GP, Shaib WL, Snyder JP, Shoji M, Pattnaik S, Alam A, El-Rayes BF (2016) Inhibition of NF-κB translocation by curcumin analogs induces G0/G1 arrest and downregulates thymidylate synthase in colorectal cancer. Cancer Lett 373(2):227–233

    Google Scholar 

  • Ramachandran C, Nair SM, Escalon E, Melnick SJ (2012) Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force in brain tumor cell lines. J Complement Integr Med 9(1):20

    Google Scholar 

  • Rathore S, Mukim M, Sharma P, Devi S, Nagar JC, Khalid M (2020) Curcumin: a review for health benefits. Int J Res Rev 7(1):273–290

    Google Scholar 

  • Rivera-Mancía S, Trujillo J, Chaverri JP (2018) Utility of curcumin for the treatment of diabetes mellitus: evidence from preclinical and clinical studies. J Nutr Intermed Metab 14:29–41

    Google Scholar 

  • Senft C, Polacin M, Priester M, Seifert V, Kögel D, Weissenberger J (2010) The nontoxic natural compound curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas. BMC Cancer 10(1):1–8

    Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37(3–4):223–230

    Google Scholar 

  • Shanmugam MK, Rane G, Kanchi MM, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Tan BKH, Kumar AP, Sethi G (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20(2):2728–2769

    Google Scholar 

  • Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, Zununi Vahed S, Maleki Dizaj S (2020) Anti-microbial activity of curcumin nanoformulations: new trends and future perspectives. Phytother Res 34(8):1926–1946

    Google Scholar 

  • Shehzad A, Lee J, Huh T-L, Lee YS (2013) Curcumin induces apoptosis in human colorectal carcinoma (HCT-15) cells by regulating expression of Prp4 and p53. Mol Cells 35:526–532

    Google Scholar 

  • Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, Irshad R, Mangalhara K, Bamezai RNK, Husain M (2018) Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep 8(1):8323

    Google Scholar 

  • Sripetthong S, Eze FN, Sajomsang W, Ovatlarnporn C (2023) Development of pH-responsive N-benzyl-N-O-succinyl chitosan micelles loaded with a curcumin analog (Cyqualone) for treatment of colon cancer. Molecules 28(6):2693

    Google Scholar 

  • Su C-C, Wang M-J, Chiu T-L (2010) The anti-cancer efficacy of curcumin scrutinized through core signaling pathways in glioblastoma. Int J Mol Med 26(2):217–224

    Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Google Scholar 

  • Tamaddoni A, Mohammadi E, Sedaghat F, Qujeq D, As’Habi A (2020) The anticancer effects of curcumin via targeting the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Pharmacol Res 156:104798

    Google Scholar 

  • Termini D, Den Hartogh DJ, Jaglanian A, Tsiani E (2020) Curcumin against prostate cancer: current evidence. Biomol Ther 10(11):1536

    Google Scholar 

  • Thangavel S, Yoshitomi T, Sakharkar MK, Nagasaki Y (2015) Redox nanoparticles inhibit curcumin oxidative degradation and enhance its therapeutic effect on prostate cancer. J Control Release 209:110–119

    Google Scholar 

  • Tong W, Wang Q, Sun D, Suo J (2016) Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9. Oncol Lett 12(5):4139–4146

    Google Scholar 

  • Tuorkey M (2014) Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci 6(4):139–146

    Google Scholar 

  • Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V (2022) Curcumin: biological activities and modern pharmaceutical forms. Antibiotics 11(2):135

    Google Scholar 

  • Wang P, Hao X, Li X, Yan Y, Tian W, Xiao L, Wang Z, Dong J (2021a) Curcumin inhibits adverse psychological stress-induced proliferation and invasion of glioma cells via down-regulating the ERK/MAPK pathway. J Cell Mol Med 25(15):7190–7203

    Google Scholar 

  • Wang H, Zhang K, Liu J, Yang J, Tian Y, Yang C, Li Y, Shao M, Su W, Song N (2021b) Curcumin regulates cancer progression: focus on ncRNAs and molecular signaling pathways. Front Oncol 11:660712

    Google Scholar 

  • Wang R, Yu H, Chen P, Yuan T, Zhang J (2023) Integrated transcriptome and molecular docking to identify the hub superimposed attenuation targets of curcumin in breast cancer cells. Int J Mol Sci 24(15):12479

    Google Scholar 

  • Weissenberger J, Priester M, Bernreuther C, Rakel S, Glatzel M, Seifert V, Kögel D (2010) Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1, 2/STAT3 signaling pathway. Clin Cancer Res 16(23):5781–5795

    Google Scholar 

  • Weng W, Goel A (2022) Curcumin and colorectal cancer: an update and current perspective on this natural medicine. Semin Cancer Biol 80:73–86

    Google Scholar 

  • Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10(1):1–19

    Google Scholar 

  • Wong SC, Kamarudin MNA, Naidu R (2021) Anticancer mechanism of curcumin on human glioblastoma. Nutrients 13(3):950

    Google Scholar 

  • Woo M-S, Jung S-H, Kim S-Y, Hyun J-W, Ko K-H, Kim W-K, Kim H-S (2005) Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun 335(4):1017–1025

    Google Scholar 

  • Wu B, Yao X, Nie X, Xu R (2013) Epigenetic reactivation of RANK in glioblastoma cells by curcumin: involvement of STAT3 inhibition

    Google Scholar 

  • Wu M-F, Huang Y-H, Chiu L-Y, Cherng S-H, Sheu G-T, Yang T-Y (2022) Curcumin induces apoptosis of chemoresistant lung cancer cells via ROS-regulated p38 MAPK phosphorylation. Int J Mol Sci 23(15):8248

    Google Scholar 

  • Wu X, Chen H, Liu N, Liu S, Lin G (2023) Curcumin suppresses lung cancer progression via circRUNX1 mediated miR-760/RAB3D axis. Thorac Cancer 14(5):506–516

    Google Scholar 

  • Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B 853(1–2):183–189

    Google Scholar 

  • Yang J, Bao S, Luo S, Jiang L, Li Q, Kong Y, Cao J (2023) Inhibition of ATF4-mediated elevation of both autophagy and AKT/mTOR was involved in antitumorigenic activity of curcumin. Food Chem Toxicol 173:113609

    Google Scholar 

  • Zang S, Liu T, Shi J, Qiao L (2014) Curcumin: a promising agent targeting cancer stem cells. Anti-Cancer Agents Med Chem 14(6):787–792

    Google Scholar 

  • Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schröder R, Simões-Pires A, Battastini AMO, Moreira JCF (2012) The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem 23(6):591–601

    Google Scholar 

  • Zhang Z-J, Zhao L-X, Cao D-L, Zhang X, Gao Y-J, Xia C (2012) Curcumin inhibits LPS-induced CCL2 expression via JNK pathway in C6 rat astrocytoma cells. Cell Mol Neurobiol 32:1003–1010

    Google Scholar 

  • Zhang W, Li Q, Yang C, Yang H, Rao J, Zhang X (2020) Curcumin exerts anti-tumor effects on diffuse large B cell lymphoma via regulating PPARγ expression. Biochem Biophys Res Commun 524(1):70–76

    Google Scholar 

  • Zou P, Helson L, Maitra A, Stern ST, McNeil SE (2013) Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm 10(5):1977–1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwary, P., Oswal, K., Kumar, D. (2023). Exploring the Role of Curcumin in Cancer: A Long Road Ahead. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2023_197

Download citation

  • DOI: https://doi.org/10.1007/16833_2023_197

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics