Skip to main content

β-Adrenoceptors in Cancer: Old Players and New Perspectives

  • Chapter
  • First Online:
Handbook of Experimental Pharmacology

Abstract

Distress, or negative stress, is known to considerably increase the incidence of several diseases, including cancer. There is indeed evidence from pre-clinical models that distress causes a catecholaminergic overdrive that, mainly through the activation of β-adrenoceptors (β-ARs), results in cancer cell growth and cancer progression. In addition, clinical studies have evidenced a role of negative stress in cancer progression. Moreover, plenty of data demonstrates that β-blockers have positive effects in reducing the pro-tumorigenic activity of catecholamines, correlating with better outcomes in some type of cancers as evidenced by several clinical trials. Among β-ARs, β2-AR seems to be the main β-AR subtype involved in tumor development and progression. However, there are data indicating that also β1-AR and β3-AR may be involved in certain tumors. In this chapter, we will review current knowledge on the role of the three β-AR isoforms in carcinogenesis as well as in cancer growth and progression, with particular emphasis on recent studies that are opening new avenues in the use of β-ARs as therapeutic targets in treating tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9(11):735

    Google Scholar 

  • Albiñana V, Recio-Poveda L, González-Peramato P, Martinez-Piñeiro L, Botella LM, Cuesta AM (2022) Blockade of β2-adrenergic receptor reduces inflammation and oxidative stress in clear cell renal cell carcinoma. Int J Mol Sci 23(3):1325

    Google Scholar 

  • Alexopoulos A, Thanopoulou I, Dakoutrou M, Georgiadou E, Chrousos GP, Kakourou T (2018) Atenolol treatment for severe infantile hemangiomas: a single-centre prospective study. J Eur Acad Dermatol Venereol 32(3):e117–e119

    Google Scholar 

  • Amato R, Pisani F, Laudadio E, Cammalleri M, Lucchesi M, Marracci S, Filippi L, Galeazzi R, Svelto M, Dal Monte M, Bagnoli P (2022) HIF-1-dependent induction of β3 adrenoceptor: evidence from the mouse retina. Cells 11(8):1271

    Google Scholar 

  • Babol K, Przybylowska K, Lukaszek M, Pertynski T, Blasiak J (2004) An association between the Trp64Arg polymorphism in the beta3-adrenergic receptor gene and endometrial cancer and obesity. J Exp Clin Cancer Res 23(4):669–674

    Google Scholar 

  • Bae GE, Kim HS, Won KY, Kim GY, Sung JY, Lim SJ (2019) Lower sympathetic nervous system density and β-adrenoreceptor expression are involved in gastric cancer progression. Anticancer Res 39(1):231–236

    Google Scholar 

  • Baker JL, Hall IP, Hill SJ (2003) Agonist and inverse agonist actions of beta-blockers at the human beta 2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 64(6):1357–1369

    Google Scholar 

  • Baker FL, Bigley AB, Agha NH, Pedlar CR, O'Connor DP, Bond RA, Bollard CM, Katsanis E, Simpson RJ (2020) Systemic β-adrenergic receptor activation augments the ex vivo expansion and anti-tumor activity of Vγ9Vδ2 T-cells. Front Immunol 10:3082

    Google Scholar 

  • Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH (2013) Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. Chapter 14:Unit 14.25

    Google Scholar 

  • Bayart CB, Tamburro JE, Vidimos AT, Wang L, Golden AB (2017) Atenolol versus propranolol for treatment of infantile hemangiomas during the proliferative phase: a retrospective noninferiority study. Pediatr Dermatol 34(4):413–421

    Google Scholar 

  • Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K (2000) Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. Neuroimmunomodulation 8(3):154–164

    Google Scholar 

  • Bruno G, Cencetti F, Pini A, Tondo A, Cuzzubbo D, Fontani F, Strinna V, Buccoliero AM, Casazza G, Donati C, Filippi L, Bruni P, Favre C, Calvani M (2020) β3-adrenoreceptor blockade reduces tumor growth and increases neuronal differentiation in neuroblastoma via SK2/S1P2 modulation. Oncogene 39(2):368–384

    Google Scholar 

  • Bruno G, Nastasi N, Subbiani A, Boaretto A, Mannurita SC, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M (2023) β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 30(6):890–904

    Google Scholar 

  • Calvani M, Pelon F, Comito G, Taddei ML, Moretti S, Innocenti S, Nassini R, Gerlini G, Borgognoni L, Bambi F, Giannoni E, Filippi L, Chiarugi P (2015) Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression. Oncotarget 6(7):4615–4632

    Google Scholar 

  • Calvani M, Cavallini L, Tondo A, Spinelli V, Ricci L, Pasha A, Bruno G, Buonvicino D, Bigagli E, Vignoli M, Bianchini F, Sartiani L, Lodovici M, Semeraro R, Fontani F, De Logu F, Dal Monte M, Chiarugi P, Favre C, Filippi L (2018) β3-Adrenoreceptors control mitochondrial dormancy in melanoma and embryonic stem cells. Oxidative Med Cell Longev 2018:6816508

    Google Scholar 

  • Calvani M, Bruno G, Dal Monte M, Nassini R, Fontani F, Casini A, Cavallini L, Becatti M, Bianchini F, De Logu F, Forni G, la Marca G, Calorini L, Bagnoli P, Chiarugi P, Pupi A, Azzari C, Geppetti P, Favre C, Filippi L (2019) β3-Adrenoceptor as a potential immuno-suppressor agent in melanoma. Br J Pharmacol 176(14):2509–2524

    Google Scholar 

  • Calvani M, Dabraio A, Bruno G, De Gregorio V, Coronnello M, Bogani C, Ciullini S, Marca G, Vignoli M, Chiarugi P, Nardi M, Vannucchi AM, Filippi L, Favre C (2020a) β3-Adrenoreceptor blockade reduces hypoxic myeloid leukemic cells survival and chemoresistance. Int J Mol Sci 21(12):4210

    Google Scholar 

  • Calvani M, Dabraio A, Subbiani A, Buonvicino D, De Gregorio V, Ciullini Mannurita S, Pini A, Nardini P, Favre C, Filippi L (2020b) β3-adrenoceptors as putative regulator of immune tolerance in cancer and pregnancy. Front Immunol 11:2098

    Google Scholar 

  • Calvani M, Bruno G, Dabraio A, Subbiani A, Bianchini F, Fontani F, Casazza G, Vignoli M, De Logu F, Frenos S, Filippi L, Favre C (2020c) β3-Adrenoreceptor blockade induces stem cells differentiation in melanoma microenvironment. Int J Mol Sci 21(4):1420

    Google Scholar 

  • Caparica R, Richard F, Brandão M, Awada A, Sotiriou C, de Azambuja E (2020) Prognostic and predictive impact of Beta-2 adrenergic receptor expression in HER2-positive breast cancer. Clin Breast Cancer 20(3):262–273.e7

    Google Scholar 

  • Castillo LF, Rivero EM, Goffin V, Lüthy IA (2017) Alpha2-adrenoceptor agonistss trigger prolactin signaling in breast cancer cells. Cell Signal 34:76–85

    Google Scholar 

  • Chen D, Xing W, Hong J, Wang M, Huang Y, Zhu C, Yuan Y, Zeng W (2012) The beta2-adrenergic receptor is a potential prognostic biomarker for human hepatocellular carcinoma after curative resection. Ann Surg Oncol 19(11):3556–3565

    Google Scholar 

  • Chisholm KM, Chang KW, Truong MT, Kwok S, West RB, Heerema-McKenney AE (2012) β-Adrenergic receptor expression in vascular tumors. Mod Pathol 25(11):1446–1451

    Google Scholar 

  • Choy C, Raytis JL, Smith DD, Duenas M, Neman J, Jandial R, Lew MW (2016) Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: the potential benefit of perioperative β-blockade. Oncol Rep 35(6):3135–3142

    Google Scholar 

  • Collins S, Ostrowski J, Lefkowitz RJ (1993) Cloning and sequence analysis of the human beta 1-adrenergic receptor 5′-flanking promoter region. Biochim Biophys Acta 1172(1–2):171–174

    Google Scholar 

  • Connor A, Baumgartner RN, Kerber RA, O'Brien E, Rai SN, Wolff RK, Slattery ML, Giuliano AR, Risendal BC, Byers TE, Baumgartner KB (2012) ADRB2 G-G haplotype associated with breast cancer risk among Hispanic and non-Hispanic white women: interaction with type 2 diabetes and obesity. Cancer Causes Control 23(10):1653–1663

    Google Scholar 

  • Cuesta AM, Albiñana V, Recio-Poveda L, de Rojas-P I, Gómez V, de Las HK, Aguirre DT, Botella LM (2019) The β2-adrenergic receptor antagonist ICI-118,551 blocks the constitutively activated HIF signalling in hemangioblastomas from von Hippel-Lindau disease. Sci Rep 9:10062

    Google Scholar 

  • Dal Monte M, Filippi L, Bagnoli P (2013a) Beta3-adrenergic receptors modulate vascular endothelial growth factor release in response to hypoxia through the nitric oxide pathway in mouse retinal explants. Naunyn Schmiedeberg’s Arch Pharmacol 386(4):269–278

    Google Scholar 

  • Dal Monte M, Casini G, Filippi L, Nicchia GP, Svelto M, Bagnoli P (2013b) Functional involvement of β3-adrenergic receptors in melanoma growth and vascularization. J Mol Med (Berl) 91(12):1407–1419

    Google Scholar 

  • Dal Monte M, Fornaciari I, Nicchia GP, Svelto M, Casini G, Bagnoli P (2014) β3-adrenergic receptor activity modulates melanoma cell proliferation and survival through nitric oxide signaling. Naunyn Schmiedeberg’s Arch Pharmacol 387(6):533–543

    Google Scholar 

  • Dal Monte M, Calvani M, Cammalleri M, Favre C, Filippi L, Bagnoli P (2019) β-Adrenoceptors as drug targets in melanoma: novel preclinical evidence for a role of β3 -adrenoceptors. Br J Pharmacol 176(14):2496–2508

    Google Scholar 

  • De la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J (2019) Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 9:1143

    Google Scholar 

  • Deng J, Jiang P, Yang T, Huang M, Qi W, Zhou T, Yang Z, Zou Y, Gao G, Yang X (2019) Targeting β3-adrenergic receptor signaling inhibits neuroblastoma cell growth via suppressing the mTOR pathway. Biochem Biophys Res Commun 514(1):295–300

    Google Scholar 

  • Du Y, Lin Y, Yin K, Zhou L, Jiang Y, Yin W, Lu J (2019) Single nucleotide polymorphisms of let-7-related genes increase susceptibility to breast cancer. Am J Transl Res 11(3):1748–1759

    Google Scholar 

  • Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230

    Google Scholar 

  • Fathollahipour S, Patil PS, Leipzig ND (2018) Oxygen regulation in development: lessons from embryogenesis towards tissue engineering. Cells Tissues Organs 205(5–6):350–371

    Google Scholar 

  • Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M (2022) β3-adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: suggestive clues from embryo. Med Res Rev 42(3):1179–1201

    Google Scholar 

  • Flaherty RL, Falcinelli M, Flint MS (2019) Stress and drug resistance in cancer. Cancer Drug Resist 2(3):773–786

    Google Scholar 

  • Fujinaga M, Scott JC (1997) Gene expression of catecholamine synthesizing enzymes and beta adrenoceptor subtypes during rat embryogenesis. Neurosci Lett 231(2):108–112

    Google Scholar 

  • Gales L, Forsea L, Mitrea D, Stefanica I, Stanculescu I, Mitrica R, Georgescu M, Trifanescu O, Anghel R, Serbanescu L (2022) Antidiabetics, Anthelmintics, statins, and beta-blockers as co-adjuvant drugs in cancer therapy. Medicina (Kaunas) 58(9):1239

    Google Scholar 

  • Gandhi S, Pandey MR, Attwood K, Ji W, Witkiewicz AK, Knudsen ES, Allen C, Tario JD, Wallace PK, Cedeno CD, Levis M, Stack S, Funchain P, Drabick JJ, Bucsek MJ, Puzanov I, Mohammadpour H, Repasky EA, Ernstoff MS (2021) Phase I clinical trial of combination propranolol and pembrolizumab in locally advanced and metastatic melanoma: safety, tolerability, and preliminary evidence of antitumor activity. Clin Cancer Res 27(1):97–95

    Google Scholar 

  • Gao W, Guo WJ, Hou DY, Yang GZ, Wu Y, Li YC, Leng Y, Tang Y, Xu L, Liu JM, Wang H, Wang X, Zhang J, Zhao WS, Chen WM, Zhang L (2018) Autoantibodies against β1-adrenergic receptor: response to induction therapy with bortezomib-containing regimens for multiple myeloma patients. Leuk Lymphoma 59(3):717–724

    Google Scholar 

  • Gong C, Hu B, Chen H, Zhu J, Nie J, Hua L, Chen L, Fang Y, Hang C, Lu Y (2022) β2-adrenergic receptor drives the metastasis and invasion of pancreatic ductal adenocarcinoma through activating Cdc42 signaling pathway. J Mol Histol 53(4):645–655

    Google Scholar 

  • Gosain R, Gage-Bouchard E, Ambrosone C, Repasky E, Gandhi S (2020) Stress reduction strategies in breast cancer: review of pharmacologic and non-pharmacologic based strategies. Semin Immunopathol 42(6):719–734

    Google Scholar 

  • Hermawan A, Putri H, Utomo RY (2020) Functional network analysis reveals potential repurposing of β-blocker atenolol for pancreatic cancer therapy. Daru 28(2):685–699

    Google Scholar 

  • Hopkinson HE, Latif ML, Hill SJ (2000) Non-competitive antagonism of beta(2)-agonist-mediated cyclic AMP accumulation by ICI 118551 in BC3H1 cells endogenously expressing constitutively active beta(2)-adrenoceptors. Br J Pharmacol 131(1):124–130

    Google Scholar 

  • Hosoda K, Feussner GK, Rydelek-Fitzgerald L, Fishman PH, Duman RS (1994) Agonist and cyclic AMP-mediated regulation of beta 1-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells. J Neurochem 63(5):1635–1645

    Google Scholar 

  • Hough C, Chuang DM (1990) Differential down-regulation of beta 1- and beta 2-adrenergic receptor mRNA in C6 glioma cells. Biochem Biophys Res Commun 170(1):46–52

    Google Scholar 

  • Huang XE, Hamajima N, Saito T, Matsuo K, Mizutani M, Iwata H, Iwase T, Miura S, Mizuno T, Tokudome S, Tajima K (2001) Possible association of beta2- and beta3-adrenergic receptor gene polymorphisms with susceptibility to breast cancer. Breast Cancer Res 3(4):264–269

    Google Scholar 

  • Huang Q, Tan Q, Mao K, Yang G, Ma G, Luo P, Wang S, Mei P, Wu F, Xu J, Guo M, Lv Z, Fan J, Zhang S, Wang X, Jin Y (2018) The role of adrenergic receptors in lung cancer. Am J Cancer Res 8(11):2227–2237

    Google Scholar 

  • Iguchi S, Iwamura H, Nishizaki M, Hayashi A, Senokuchi K, Kobayashi K, Sakaki K, Hachiya K, Ichioka Y, Kawamura M (1992) Development of a highly cardioselective ultra short-acting beta-blocker, ONO-1101. Chem Pharm Bull (Tokyo) 40(6):1462–1469

    Google Scholar 

  • Jessop DS (2019) The power of positive stress and a research roadmap. Stress 22(5):521–523

    Google Scholar 

  • Ji Y, Chen S, Yang K, Zhang X, Zhou J, Li L, Xiang B, Qiu T, Dai S, Jiang X, Lu G, Qiu L, Kong F, Zhang Y (2021) Efficacy and safety of propranolol vs atenolol in infants with problematic infantile hemangiomas: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg 147(7):599–607

    Google Scholar 

  • Kanno N, Lesage G, Phinizy JL, Glaser S, Francis H, Alpini G (2002) Stimulation of α2-adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. Hepatology 35(6):1329–1340

    Google Scholar 

  • Krishna A, Singh V, Singh N, Singh S, Mohanty SK, Singh R, Kumar V, Singh US, Singh RK (2022) Expression pattern and clinical significance of beta 2-adrenergic receptor in oral squamous cell carcinoma: an emerging prognostic indicator and future therapeutic target. Clin Transl Oncol 24(11):2191–2199

    Google Scholar 

  • Kurozumi S, Kaira K, Matsumoto H, Hirakata T, Yokobori T, Inoue K, Horiguchi J, Katayama A, Koshi H, Shimizu A, Oyama T, Sloan EK, Kurosumi M, Fujii T, Shirabe K (2019) β2-adrenergic receptor expression is associated with biomarkers of tumor immunity and predicts poor prognosis in estrogen receptor-negative breast cancer. Breast Cancer Res Treat 177(3):603–610

    Google Scholar 

  • Lamkin DM, Sloan EK, Patel AJ, Chiang BS, Pimentel MA, Ma JC, Arevalo JM, Morizono K, Cole SW (2012) Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain Behav Immun 26(4):635–641

    Google Scholar 

  • Lang K, Drell TL 4th, Lindecke A, Niggemann B, Kaltschmidt C, Zaenker KS, Entschladen F (2004) Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 112(2):231–238

    Google Scholar 

  • Large V, Hellström L, Reynisdottir S, Lönqvist F, Eriksson P, Lannfelt L, Arner P (1997) Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest 100(12):3005–3013

    Google Scholar 

  • Lavon H, Matzner P, Benbenishty A, Sorski L, Rossene E, Haldar R, Elbaz E, Cata JP, Gottumukkala V, Ben-Eliyahu S (2018) Dexmedetomidine promotes metastasis in rodent models of breast, lung, and colon cancers. Br J Anaesth 120(1):188–196

    Google Scholar 

  • Li S, Yu C, Cheng Y, Du F, Wen G (2021) Bioinformatics analysis identifies biomarkers associated with poor prognosis in diffuse type gastric cancer. Mol Med Rep 23(3):193

    Google Scholar 

  • Lin Y, Liu Y, Gao Z, Jing D, Bi R, Cui X, Cao Q, Zhao Q, Gao R, Su Y, Liu S, Zhao M, Yang Y, Chen A, Dai B, Gao X (2023) Beta-adrenergic receptor blocker propranolol triggers anti-tumor immunity and enhances irinotecan therapy in mice colorectal cancer. Eur J Pharmacol 949:175718

    Google Scholar 

  • Liu C, Yang Y, Chen C, Li L, Li J, Wang X, Chu Q, Qiu L, Ba Q, Li X, Wang H (2021) Environmental eustress modulates β-ARs/CCL2 axis to induce anti-tumor immunity and sensitize immunotherapy against liver cancer in mice. Nat Commun 12(1):5725

    Google Scholar 

  • Livingstone D (1857) Missionary travels and researches in South Africa: including a sketch of sixteen years’ residence in the interior of Africa. Jonh Murray Publisher, London

    Google Scholar 

  • Ma X, Zhao T, Ouyang T, Xin S, Ma Y, Chang M (2014) Propranolol enhanced adipogenesis instead of induction of apoptosis of hemangiomas stem cells. Int J Clin Exp Pathol 7(7):3809–3817

    Google Scholar 

  • Maccari S, Buoncervello M, Ascione B, Stati T, Macchia D, Fidanza S, Catalano L, Matarrese P, Gabriele L, Marano G (2022) α-Adrenoceptor stimulation attenuates melanoma growth in mice. Br J Pharmacol 179(7):1371–1383

    Google Scholar 

  • Masur K, Niggemann B, Zanker KS, Entschladen F (2001) Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res 61(7):2866–2869

    Google Scholar 

  • McGraw DW, Forbes SL, Liggett SB (1998) Polymorphisms of the 5′ leader cistron of the human beta2-adrenergic receptor regulate receptor expression. J Clin Invest 102(11):1927–1932

    Google Scholar 

  • Mei L, Huang C, Wang A, Zhang X (2019) Association between ADRB2, IL33, and IL2RB gene polymorphisms and lung cancer risk in a Chinese Han population. Int Immunopharmacol 77:105930

    Google Scholar 

  • Mele L, Del Vecchio V, Marampon F, Regad T, Wagner S, Mosca L, Bimonte S, Giudice A, Liccardo D, Prisco C, Schwerdtfeger M, La Noce M, Tirino V, Caraglia M, Papaccio G, Desiderio V, Barbieri A (2020) β2-AR blockade potentiates MEK1/2 inhibitor effect on HNSCC by regulating the Nrf2-mediated defense mechanism. Cell Death Dis 11(10):850

    Google Scholar 

  • Michel MC, Michel-Reher MB, Hein P (2020, 1923) A systematic review of inverse agonism at adrenoceptor subtypes. Cells 9(9)

    Google Scholar 

  • Minneman KP, Hegstrand LR, Molinoff PB (1979) The pharmacological specificity of Beta-1 and Beta-2 adrenergic recepotors in rat heart and lung in vitro. Mol Pharmacol 16(1):21–33

    Google Scholar 

  • Mohammadpour H, MacDonald CR, Qiao G, Chen M, Dong B, Hylander BL, McCarthy PL, Abrams SI, Repasky EA (2019) β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest 129(12):5537–5552

    Google Scholar 

  • Moretti S, Massi D, Farini V, Baroni G, Parri M, Innocenti S, Cecchi R, Chiarugi P (2013) β-Adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Investig 93(3):279–290

    Google Scholar 

  • Mravec B, Tibensky M, Horvathova L (2020a) Stress and cancer. Part I: mechanisms mediating the effect of stressors on cancer. J Neuroimmunol 346:577311

    Google Scholar 

  • Mravec B, Horvathova L, Hunakova L (2020b) Neurobiology of cancer: the role of β-adrenergic receptor signaling in various tumor environments. Int J Mol Sci 21(21):7958

    Google Scholar 

  • Mravec B, Tibensky M, Horvathova L (2020c) Stress and cancer. Part II: therapeutic implications for oncology. J Neuroimmunol 346:577312

    Google Scholar 

  • Musselman RP, Bennett S, Li W, Mamdani M, Gomes T, van Walraven C, Boushey R, Al-Obeed O, Al-Omran M, Auer RC (2018) Association between perioperative beta blocker use and cancer survival following surgical resection. Eur J Surg Oncol 44(8):1164–1169

    Google Scholar 

  • Ogawa H, Kaira K, Motegi Y, Yokobori T, Takada T, Kato R, Osone K, Takahashi R, Suga K, Ozawa N, Katayama C, Oyama T, Shimizu A, Yao T, Asao T, Saeki H, Shirabe K (2020) Prognostic significance of β2-adrenergic receptor expression in patients with surgically resected colorectal cancer. Int J Clin Oncol 25(6):1137–1144

    Google Scholar 

  • Pam N, Kridin K, Khamaysi Z (2021) Propranolol for infantile hemangioma: evaluating efficacy and predictors of response and rebound growth. Dermatol Ther 34(3):e14936

    Google Scholar 

  • Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, Nielsen J, Gehl J, Pedersen BK, Thor Straten P, Hojman P (2016) Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23(3):554–562

    Google Scholar 

  • Perrone MG, Notarnicola M, Caruso MG, Tutino V, Scilimati A (2008) Upregulation of beta3-adrenergic receptor mRNA in human colon cancer: a preliminary study. Oncology 75(3–4):224–229

    Google Scholar 

  • Pottier N, Paugh SW, Ding C, Pei D, Yang W, Das S, Cook EH, Pui CH, Relling MV, Cheok MH, Evans WE (2010) Promoter polymorphisms in the β-2 adrenergic receptor are associated with drug-induced gene expression changes and response in acute lymphoblastic leukemia. Clin Pharmacol Ther 88(6):854–861

    Google Scholar 

  • Powe DG, Voss MJ, Habashy HO, Zänker KS, Green AR, Ellis IO, Entschladen F (2011) Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study. Breast Cancer Res Treat 130(2):457–463

    Google Scholar 

  • Qin JF, Jin FJ, Li N, Guan HT, Lan L, Ni H, Wang Y (2015) Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment. BMB Rep 48(5):295–300

    Google Scholar 

  • Sakamoto A, Yagi K, Okamura T, Harada T, Usuda J (2019) Perioperative administration of an intravenous beta-blocker landiolol hydrochloride in patients with lung cancer: a Japanese retrospective exploratory clinical study. Sci Rep 9(1):5217

    Google Scholar 

  • Schuller HM, Cole B (1989) Regulation of cell proliferation by beta-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis 10(9):1753–1755

    Google Scholar 

  • Sereni F, Dal Monte M, Filippi L, Bagnoli P (2015) Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedeberg’s Arch Pharmacol 388(12):1317–1331

    Google Scholar 

  • Shimizu A, Kaira K, Mori K, Kato M, Shimizu K, Yasuda M, Takahashi A, Oyama T, Asao T, Ishikawa O (2016) Prognostic significance of β2-adrenergic receptor expression in malignant melanoma. Tumour Biol 37(5):5971–5978

    Google Scholar 

  • Silva D, Quintas C, Gonçalves J, Fresco P (2022) Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis. J Cell Physiol 237(4):2107–2127

    Google Scholar 

  • Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296

    Google Scholar 

  • Szpunar MJ, Burker KA, Dawes RP, Brown EB, Madden KS (2013) The antidepressant desipramine and α2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev Res (Phila) 6(12):1262–1272

    Google Scholar 

  • Takezaki T, Hamajima N, Matsuo K, Tanaka R, Hirai T, Kato T, Ohashi K, Tajima K (2001) Association of polymorphisms in the beta-2 and beta-3 adrenoceptor genes with risk of colorectal cancer in Japanese. Int J Clin Oncol 6(3):117–122

    Google Scholar 

  • Tang J, Li Z, Lu L, Cho CH (2013) β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol 23(6 Pt B):533–542

    Google Scholar 

  • Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C (2013) Role of glutathione in cancer progression and chemoresistance. Oxidative Med Cell Longev 2013:972913

    Google Scholar 

  • Vazquez SM, Mladovan AG, Perez C, Bruzzone A, Baldi A, Lüthy IA (2006) Human breast cell lines exhibit functional alpha(2) adrenoceptors. Cancer Chemother Pharmacol 58:50–61

    Google Scholar 

  • Vrydag W, Michel MC (2007) Tools to study beta3-adrenoceptors. Naunyn Schmiedeberg’s Arch Pharmacol 374(5–6):385–398

    Google Scholar 

  • Wackerhage H, Christensen JF, Ilmer M, von Luettichau I, Renz BW, Schönfelder M (2022) Cancer catecholamine conundrum. Trends Cancer 8(2):110–122

    Google Scholar 

  • Wang Y, Jiang S (2021) The role of ADRB2 gene polymorphisms in malignancies. Mol Biol Rep 48(3):2741–2749

    Google Scholar 

  • Wang H, Hao B, Chen X, Zhao N, Cheng G, Jiang Y, Liu Y, Lin C, Tan W, Lu D, Wei Q, Jin L, Lin D, He F (2006) Beta-2 adrenergic receptor gene (ADRB2) polymorphism and risk for lung adenocarcinoma: a case-control study in a Chinese population. Cancer Lett 240(2):297–305

    Google Scholar 

  • Wei X, Chen L, Yang A, Lv Z, Xiong M, Shan C (2021) ADRB2 is a potential protective gene in breast cancer by regulating tumor immune microenvironment. Transl Cancer Res 10(12):5280–5294

    Google Scholar 

  • Wenjuan Y, Yujun L, Ceng Y (2013) Association of single nucleotide polymorphisms of β2-adrenergic receptor gene with clinicopathological features of pancreatic carcinoma. Acta Histochem 115(3):198–203

    Google Scholar 

  • Xia M, Ji N-N, Duan M-L, Tong J-H, Xu J-G, Zhang Y-M, Wang S-H (2016) Dexmedetomidine regulate the malignancy of breast cancer cells by activating α2-adrenoceptor/ERK signaling pathway. Eur Rev Med Pharmacol Sci 20(16):3500–3506

    Google Scholar 

  • Xu Y, Wang J, Wang X, Zhou X, Tang J, Jie X, Yang X, Rao X, Xu Y, Xing B, Li Z, Wu G (2022) Targeting ADRB2 enhances sensitivity of non-small cell lung cancer to VEGFR2 tyrosine kinase inhibitors. Cell Death Discov 8(1):36

    Google Scholar 

  • Yamamoto H, Hamasaki T, Onda K, Nojiri T, Aragaki M, Horie N, Sato N, Hida Y (2019) Landiolol, an ultra-short acting beta-1 blocker, for preventing postoperative lung cancer recurrence: study protocol for a phase III, multicenter randomized trial with two parallel groups of patients. Trials 20(1):715

    Google Scholar 

  • Yap A, Lopez-Olivo MA, Dubowitz J, Pratt G, Hiller J, Gottumukkala V, Sloan E, Riedel B, Schier R (2018) Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Br J Anaesth 121(1):45–57

    Google Scholar 

  • Yoshioka Y, Kadoi H, Yamamuro A, Ishimaru Y, Maeda S (2016) Noradrenaline increases intracellular glutathione in human astrocytoma U-251 MG cells by inducing glutamate-cysteine ligase protein via β3-adrenoceptor stimulation. Eur J Pharmacol 772:51–61

    Google Scholar 

  • Zhang J, Dhakal IB, Zhang X, Prizment AE, Anderson KE (2014) Genetic variability in energy balance and pancreatic cancer risk in a population-based case-control study in Minnesota. Pancreas 43(2):281–286

    Google Scholar 

  • Zhang X, Zhang Y, He Z, Yin K, Li B, Zhang L, Xu Z (2019a) Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis 10(11):788

    Google Scholar 

  • Zhang J, Gu Y, Chen B (2019b) Mechanisms of drug resistance in acute myeloid leukemia. Onco Targets Ther 12:1937–1945

    Google Scholar 

  • Zhang M, Chen F, Sun X, Huang Y, Zeng Y, Chen J, Wu S, Xu C (2023) Sympathetic β2-adrenergic receptor blockade overcomes docetaxel resistance in prostate cancer. Biochem Biophys Res Commun 657:69–79

    Google Scholar 

  • Zheng M, Zhou Z, Tian X, Xiao D, Hou X, Xie Z, Liang H, Lin S (2020) ADRB3 expression in tumor cells is a poor prognostic factor and promotes proliferation in non-small cell lung carcinoma. Cancer Immunol Immunother 69(11):2345–2355

    Google Scholar 

  • Zhou Z, Zhan J, Luo Q, Hou X, Wang S, Xiao D, Xie Z, Liang H, Lin S, Zheng M (2022) ADRB3 induces mobilization and inhibits differentiation of both breast cancer cells and myeloid-derived suppressor cells. Cell Death Dis 13(2):141

    Google Scholar 

  • Zhu J, Naulaerts S, Boudhan L, Martin M, Gatto L, Van den Eynde BJ (2023) Tumor immune rejection triggered by activation of α2-adrenergic receptors. Nature 618(7965):607–615

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Giovanni Casini for his critical reading of the manuscript. Over the past years, the studies in the MDM laboratory focusing on the role of β-ARs in cancer have been supported by Italian Ministry of Health (RF-2011-02351158), Azienda Ospedaliera-Universitaria Meyer, Fondazione Meyer, Ente Cassa di Risparmio di Firenze and intramural funds at the University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Dal Monte .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amato, R., Lucchesi, M., Marracci, S., Filippi, L., Dal Monte, M. (2023). β-Adrenoceptors in Cancer: Old Players and New Perspectives. In: Handbook of Experimental Pharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/164_2023_701

Download citation

  • DOI: https://doi.org/10.1007/164_2023_701

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics