Skip to main content

Human-Induced Pluripotent Stem Cell-Based Differentiation of Cardiomyocyte Subtypes for Drug Discovery and Cell Therapy

  • Chapter
  • First Online:
Human iPSC-derived Disease Models for Drug Discovery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 281))

  • 281 Accesses

Abstract

Drug attrition rates have increased over the past few years, accompanied with growing costs for the pharmaceutical industry and consumers. Lack of in vitro models connecting the results of toxicity screening assays with clinical outcomes accounts for this high attrition rate. The emergence of cardiomyocytes derived from human pluripotent stem cells provides an amenable source of cells for disease modeling, drug discovery, and cardiotoxicity screening. Functionally similar to to embryonic stem cells, but with fewer ethical concerns, induced pluripotent stem cells (iPSCs) can recapitulate patient-specific genetic backgrounds, which would be a huge revolution for personalized medicine. The generated iPSC-derived cardiomyocytes (iPSC-CMs) represent different subtypes including ventricular-, atrial-, and nodal-like cardiomyocytes. Purifying these subtypes for chamber-specific drug screening presents opportunities and challenges. In this chapter, we discuss the strategies for the purification of iPSC-CMs, the use of iPSC-CMs for drug discovery and cardiotoxicity test, and the current limitations of iPSC-CMs that should be overcome for wider and more precise cardiovascular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acimovic I, Refaat MM, Moreau A et al (2018) Post-translational modifications and diastolic calcium leak associated to the novel RyR2-D3638A mutation Lead to CPVT in patient-specific hiPSC-derived cardiomyocytes. J Clin Med 7

    Google Scholar 

  • Barbuti A, Robinson RB (2015) Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool: insights from sinoatrial node development and function. Pharmacol Rev 67:368–388

    Article  CAS  PubMed  Google Scholar 

  • Bizy A, Guerrero-Serna G, Hu B et al (2013) Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac cardiomyocytes. Stem Cell Res 11:1335–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L (2012) Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. Prog Biophys Mol Biol 110:178–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blinova K, Stohlman J, Vicente J et al (2017) Comprehensive translational assessment of human-induced pluripotent stem cell derived cardiomyocytes for evaluating drug-induced arrhythmias. Toxicol Sci 155:234–247

    Article  CAS  PubMed  Google Scholar 

  • Blinova K, Dang Q, Millard D et al (2018) International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug Proarrhythmic potential assessment. Cell Rep 24:3582–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bot CT, Juhasz K, Haeusermann F, Polonchuk L, Traebert M, Stoelzle-Feix S (2018) Cross - site comparison of excitation-contraction coupling using impedance and field potential recordings in hiPSC cardiomyocytes. J Pharmacol Toxicol Methods 93:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown K, Legros S, Ortega FA, Dai Y, Doss MX, Christini DJ, Robinson RB, Foley AC (2017) Overexpression of Map3k7 activates sinoatrial node-like differentiation in mouse ES-derived cardiomyocytes. PloS One 12:e0189818

    Article  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Matsa E, Shukla P et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calkins H, Hindricks G, Cappato R et al (2018) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 20:e1–e160

    Article  PubMed  Google Scholar 

  • Chen X, Qin J, Cheng CM, Tsai MJ, Tsai SY (2012) COUP-TFII is a major regulator of cell cycle and Notch signaling pathways. Mol Endocrinol 26:1268–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Xian W, Bellin M et al (2017) Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes. Eur Heart J 38:292–301

    CAS  PubMed  Google Scholar 

  • Christ T, Lemoine MD, Eschenhagen T (2021) Are atrial human pluripotent stem cell-derived cardiomyocytes ready to identify drugs that beat atrial fibrillation? Nat Commun 12:1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churko JM, Garg P, Treutlein B et al (2018) Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 9:4906

    Article  PubMed  PubMed Central  Google Scholar 

  • Clancy CE, Rudy Y (2001) Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc Res 50:301–313

    Article  CAS  PubMed  Google Scholar 

  • Clark AP, Wei S, Kalola D et al (2022) An in silico-in vitro pipeline for drug cardiotoxicity screening identifies ionic pro-arrhythmia mechanisms. Br J Pharmacol 179:4829–4843

    Article  CAS  PubMed  Google Scholar 

  • Cyganek L, Tiburcy M, Sekeres K et al (2018) Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight 3

    Google Scholar 

  • Darche FF, Ullrich ND, Huang Z et al (2022) Improved generation of human induced pluripotent stem cell-derived cardiac pacemaker cells using novel differentiation protocols. Int J Mol Sci 23

    Google Scholar 

  • Devalla HD, Schwach V, Ford JW et al (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  • Egashira T, Yuasa S, Suzuki T et al (2012) Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res 95:419–429

    Article  CAS  PubMed  Google Scholar 

  • El-Battrawy I, Lan H, Cyganek L et al (2018a) Modeling short QT syndrome using human-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc 7

    Google Scholar 

  • El-Battrawy I, Zhao Z, Lan H et al (2018b) Electrical dysfunctions in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with an arrhythmogenic right ventricular cardiomyopathy. Europace 20:f46–f56

    Article  PubMed  Google Scholar 

  • Gassanov N, Er F, Zagidullin N, Jankowski M, Gutkowska J, Hoppe UC (2008) Retinoid acid-induced effects on atrial and pacemaker cell differentiation and expression of cardiac ion channels. Differentiation 76:971–980

    Article  CAS  PubMed  Google Scholar 

  • Gintant G (2011) An evaluation of hERG current assay performance: translating preclinical safety studies to clinical QT prolongation. Pharmacol Ther 129:109–119

    Article  CAS  PubMed  Google Scholar 

  • Gintant G, Fermini B, Stockbridge N, Strauss D (2017) The evolving roles of human iPSC-derived cardiomyocytes in drug safety and discovery. Cell Stem Cell 21:14–17

    Article  CAS  PubMed  Google Scholar 

  • Goldfracht I, Protze S, Shiti A, Setter N, Gruber A, Shaheen N, Nartiss Y, Keller G, Gepstein L (2020) Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat Commun 11:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawan MG, Sangha SS, Shafaattalab S, Lin E, Heims-Waldron DA, Bezzerides VJ, Laksman Z, Tibbits GF (2021) Drug screening platform using human induced pluripotent stem cell-derived atrial cardiomyocytes and optical mapping. Stem Cells Transl Med 10:68–82

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Abrams RM, Babiarz JE, Cohen JD, Kameoka S, Sanders MJ, Chiao E, Kolaja KL (2011) Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 123:281–289

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Sun Y, Wang X et al (2019) Patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of short QT syndrome. Circ Res 124:66–78

    Article  CAS  PubMed  Google Scholar 

  • Harris K, Aylott M, Cui Y, Louttit JB, McMahon NC, Sridhar A (2013) Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicol Sci 134:412–426

    Article  CAS  PubMed  Google Scholar 

  • He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac cardiomyocytes: action potential characterization. Circ Res 93:32–39

    Article  CAS  PubMed  Google Scholar 

  • Hindricks G, Potpara T, Dagres N et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42:373–498

    Article  PubMed  Google Scholar 

  • Hochgreb T, Linhares VL, Menezes DC, Sampaio AC, Yan CY, Cardoso WV, Rosenthal N, Xavier-Neto J (2003) A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field. Development 130:5363–5374

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra M, Mummery CL, Wilde AA, Bezzina CR, Verkerk AO (2012) Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol 3:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Honda Y, Li J, Hino A, Tsujimoto S, Lee JK (2021) High-throughput drug screening system based on human induced pluripotent stem cell-derived atrial cardiomyocytes – a novel platform to detect cardiac toxicity for atrial arrhythmias. Front Pharmacol 12:680618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L, Zhang M, Ly OT et al (2021) Human induced pluripotent stem cell-derived atrial cardiomyocytes carrying an SCN5A mutation identify nitric oxide signaling as a mediator of atrial fibrillation. Stem Cell Rep 16:1542–1554

    Article  CAS  Google Scholar 

  • Ionta V, Liang W, Kim EH, Rafie R, Giacomello A, Marbán E, Cho HC (2015) SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep 4:129–142

    Article  CAS  Google Scholar 

  • Itier JM, Ret G, Viale S et al (2014) Effective clearance of GL-3 in a human iPSC-derived cardiomyocyte model of Fabry disease. J Inherit Metab Dis 37:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki I, Maizels L, Huber I et al (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229

    Article  CAS  PubMed  Google Scholar 

  • Josowitz R, Lu J, Falce C et al (2014) Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. PloS One 9:e101316

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung JJ, Husse B, Rimmbach C, Krebs S, Stieber J, Steinhoff G, Dendorfer A, Franz WM, David R (2014) Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells. Stem Cell Rep 2:592–605

    Article  Google Scholar 

  • Karakikes I, Senyei GD, Hansen J et al (2014) Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med 3:18–31

    Article  CAS  PubMed  Google Scholar 

  • Khandekar A, Springer S, Wang W, Hicks S, Weinheimer C, Diaz-Trelles R, Nerbonne JM, Rentschler S (2016) Notch-mediated epigenetic regulation of voltage-gated potassium currents. Circ Res 119:1324–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaguchi T, Moriyama Y, Taniguchi T et al (2017) CSAHi study: detection of drug-induced ion channel/receptor responses, QT prolongation, and arrhythmia using multi-electrode arrays in combination with human induced pluripotent stem cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 85:73–81

    Article  CAS  PubMed  Google Scholar 

  • Kleinsorge M, Cyganek L (2020) Subtype-directed differentiation of human iPSCs into atrial and ventricular cardiomyocytes. STAR Protoc 1:100026

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer J, Obejero-Paz CA, Myatt G, Kuryshev YA, Bruening-Wright A, Verducci JS, Brown AM (2013) MICE models: superior to the HERG model in predicting torsade de pointes. Sci Rep 3:2100

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahti AL, Kujala VJ, Chapman H et al (2012) Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech 5:220–230

    Article  CAS  PubMed  Google Scholar 

  • Laksman Z, Wauchop M, Lin E et al (2017) Modeling atrial fibrillation using human embryonic stem cell-derived atrial tissue. Sci Rep 7:5268

    Article  PubMed  PubMed Central  Google Scholar 

  • Lal JC, Mao C, Zhou Y et al (2022) Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Rep Med 3:100749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan F, Lee AS, Liang P et al (2013) Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM (2017) Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21:179–194.e174

    Article  CAS  PubMed  Google Scholar 

  • Lemme M, Ulmer BM, Lemoine MD et al (2018) Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Rep 11:1378–1390

    Article  CAS  Google Scholar 

  • Li B, Yang H, Wang X et al (2017) Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Res Ther 8:202

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, He L, Huang X et al (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138:793–805

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gao F, Wang X et al (2021) E2A ablation enhances proportion of nodal-like cardiomyocytes in cardiac-specific differentiation of human embryonic stem cells. EBioMedicine 71:103575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang W, Han P, Kim EH, Mak J, Zhang R, Torrente AG, Goldhaber JI, Marbán E, Cho HC (2020) Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells 38:352–368

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, Kolaja KL, Swanson BJ, January CT (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301:H2006–H2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Wei H, Lu J et al (2013a) Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 34:1122–1133

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Wei H, Zhao Y et al (2013b) Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol 168:5277–5286

    Article  PubMed  Google Scholar 

  • Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15:316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur A, Loskill P, Hong S, Lee J, Marcus SG, Dumont L, Conklin BR, Willenbring H, Lee LP, Healy KE (2013) Human induced pluripotent stem cell-based microphysiological tissue models of myocardium and liver for drug development. Stem Cell Res Ther 4(Suppl 1):S14

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao W, Shi J, Huang J et al (2022) Azoramide ameliorated tachypacing-induced injury of atrial myocytes differentiated from human induced pluripotent stem cell by regulating endoplasmic reticulum stress. Stem Cell Res 60:102686

    Article  CAS  PubMed  Google Scholar 

  • Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery - past, present, and future. Nat Rev Drug Discov 13:588–602

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Morin DP, Bernard ML, Madias C, Rogers PA, Thihalolipavan S, Estes NA 3rd (2016) The state of the art: atrial fibrillation epidemiology, prevention, and treatment. Mayo Clin Proc 91:1778–1810

    Article  PubMed  Google Scholar 

  • Mulder P, de Korte T, Dragicevic E, Kraushaar U, Printemps R, Vlaming MLH, Braam SR, Valentin JP (2018) Predicting cardiac safety using human induced pluripotent stem cell-derived cardiomyocytes combined with multi-electrode array (MEA) technology: a conference report. J Pharmacol Toxicol Methods 91:36–42

    Article  CAS  PubMed  Google Scholar 

  • Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niederreither K, Vermot J, Messaddeq N, Schuhbaur B, Chambon P, Dollé P (2001) Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 128:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Nozaki Y, Honda Y, Watanabe H et al (2017) CSAHi study-2: validation of multi-electrode array systems (MEA60/2100) for prediction of drug-induced proarrhythmia using human iPS cell-derived cardiomyocytes: assessment of reference compounds and comparison with non-clinical studies and clinical information. Regul Toxicol Pharmacol 88:238–251

    Article  CAS  PubMed  Google Scholar 

  • Pei F, Jiang J, Bai S, Cao H, Tian L, Zhao Y, Yang C, Dong H, Ma Y (2017) Chemical-defined and albumin-free generation of human atrial and ventricular cardiomyocytes from human pluripotent stem cells. Stem Cell Res 19:94–103

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer-Kaushik ER, Smith GL, Cai B et al (2019) Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. J Pharmacol Toxicol Methods 99:106612

    Article  CAS  PubMed  Google Scholar 

  • Ponti FD (2008) Pharmacological and regulatory aspects of QT prolongation. Antitargets: prediction and prevention of drug side effects

    Google Scholar 

  • Prior H, Baldrick P, de Haan L, Downes N, Jones K, Mortimer-Cassen E, Kimber I (2018) Reviewing the utility of two species in general toxicology related to drug development. Int J Toxicol 37:121–124

    Article  CAS  PubMed Central  Google Scholar 

  • Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, Keller GM (2017) Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 35:56–68

    Article  CAS  PubMed  Google Scholar 

  • Protze SI, Lee JH, Keller GM (2019) Human pluripotent stem cell-derived cardiovascular cells: from developmental biology to therapeutic applications. Cell Stem Cell 25:311–327

    Article  CAS  PubMed  Google Scholar 

  • Prystowsky EN, Padanilam BJ, Fogel RI (2015) Treatment of atrial fibrillation. JAMA 314:278–288

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Lipovsky C, Hicks S et al (2017) Transient Notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice. Circ Res 121:549–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Han P, Ma X et al (2019) Canonical Wnt5b signaling directs outlying Nkx2.5+ mesoderm into pacemaker cardiomyocytes. Dev Cell 50:729–743.e725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer AJ, Newton-Cheh C (2012) Clinical and genetic determinants of torsade de pointes risk. Circulation 125:1684–1694

    Article  PubMed  PubMed Central  Google Scholar 

  • Scavone A, Capilupo D, Mazzocchi N et al (2013) Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ Res 113:389–398

    Article  CAS  PubMed  Google Scholar 

  • Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiti A, Goldfracht I, Shaheen N, Protze S, Gepstein L (2021) Reply to 'Are atrial human pluripotent stem cell-derived cardiomyocytes ready to identify drugs that beat atrial fibrillation?'. Nat Commun 12:1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siu CW, Lee YK, Ho JC et al (2012) Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging (Albany NY) 4:803–822

    Article  CAS  PubMed  Google Scholar 

  • Steinberg JS, Sadaniantz A, Kron J et al (2004) Analysis of cause-specific mortality in the atrial fibrillation follow-up investigation of rhythm management (AFFIRM) study. Circulation 109:1973–1980

    Article  PubMed  Google Scholar 

  • Sun N, Yazawa M, Liu J et al (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4:130ra147

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Terrenoire C, Wang K, Tung KW et al (2013) Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol 141:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas D, Karle CA, Kiehn J (2006) The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des 12:2271–2283

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Cunningham NJ, Shenoy S, Wu JC (2022) Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovasc Res 118:20–36

    Article  CAS  PubMed  Google Scholar 

  • Tsang HG, Rashdan NA, Whitelaw CB, Corcoran BM, Summers KM, MacRae VE (2016) Large animal models of cardiovascular disease. Cell Biochem Funct 34:113–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veevers J, Farah EN, Corselli M et al (2018) Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells. Stem Cell Rep 11:828–841

    Article  CAS  Google Scholar 

  • Weaver RJ, Valentin JP (2019) Today's challenges to De-risk and predict drug safety in human “Mind-the-Gap”. Toxicol Sci 167:307–321

    Article  CAS  PubMed  Google Scholar 

  • Weng Z, Kong CW, Ren L et al (2014) A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev 23:1704–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf PA, Abbott RD, Kannel WB (1991) Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22:983–988

    Article  CAS  PubMed  Google Scholar 

  • Xavier-Neto J, Neville CM, Shapiro MD, Houghton L, Wang GF, Nikovits W Jr, Stockdale FE, Rosenthal N (1999) A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart. Development 126:2677–2687

    Article  CAS  PubMed  Google Scholar 

  • You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Jiang J, Han P et al (2011) Direct differentiation of atrial and ventricular cardiomyocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 21:579–587

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Termglinchan V, Shao NY et al (2019) A human iPSC double-reporter system enables purification of cardiac lineage subpopulations with distinct function and drug response profiles. Cell Stem Cell 24:802–811.e805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MT, Shao NY, Garg V (2020) Subtype-specific cardiomyocytes for precision medicine: where are we now? Stem Cells 38:822–833

    Article  PubMed  Google Scholar 

  • Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA (2010) Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 107:776–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, Z., Liang, P. (2023). Human-Induced Pluripotent Stem Cell-Based Differentiation of Cardiomyocyte Subtypes for Drug Discovery and Cell Therapy. In: Kuehn, M.H., Zhu, W. (eds) Human iPSC-derived Disease Models for Drug Discovery. Handbook of Experimental Pharmacology, vol 281. Springer, Cham. https://doi.org/10.1007/164_2023_663

Download citation

Publish with us

Policies and ethics