Skip to main content

Employing Genetically Encoded, Biophysical Sensors to Understand WNT/Frizzled Interaction and Receptor Complex Activation

  • Chapter
  • First Online:
Pharmacology of the WNT Signaling System

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 269))

Abstract

The Frizzled (FZD) family of WNT receptors consists of ten paralogues in mammals. They belong to the superfamily of G protein-coupled receptors and regulate crucial processes during embryonic development. Dysregulated FZD signaling leads to disease, most prominently to diverse forms of cancer, which renders these receptors attractive for drug discovery. Recent advances in assay development and the design of genetically encoded biosensors monitoring ligand–receptor interaction, conformational dynamics, and protein–protein interaction have allowed for a better pharmacological understanding of WNT/FZD signal transduction and open novel avenues for mechanism-based drug discovery and screening. In this chapter, we summarize the recent progress in the molecular dissection of FZD activation based on advanced biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRET:

Bioluminescence resonance energy transfer

cpGFP:

Circularly permuted green fluorescent protein

DVL:

Disheveled

FlAsH:

Fluorescein arsenical hairpin binder

FRAP:

Fluorescence recovery after photobleaching

FRET:

Förster resonance energy transfer

FZD:

Frizzled

GPCR:

G protein-coupled receptor

HTS:

High throughput screening

Nluc:

Nanoluciferase

WNT:

Wingless/Int1 proteins

References

  • Arthofer E, Hot B, Petersen J, Strakova K, Jager S, Grundmann M et al (2016) WNT stimulation dissociates a frizzled 4 inactive-state complex with galpha12/13. Mol Pharmacol 90(4):447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwood BK, Lopez J, Wager-Miller J, Mackie K, Straiker A (2011) Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Bang I, Kim HR, Beaven AH, Kim J, Ko SB, Lee GR et al (2018) Biophysical and functional characterization of Norrin signaling through Frizzled4. Proc Natl Acad Sci U S A 115(35):8787–8792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beitia GJ, Rutherford TJ, Freund SMV, Pelham HR, Bienz M, Gammons MV (2021) Regulation of dishevelled DEP domain swapping by conserved phosphorylation sites. Proc Natl Acad Sci U S A 118(26):e2103258118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP et al (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382(6588):225–230

    Article  CAS  PubMed  Google Scholar 

  • Blagodatski A, Poteryaev D, Katanaev VL (2014) Targeting the Wnt pathways for therapies. Mol Cell Ther 2:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourque K, Petrin D, Sleno R, Devost D, Zhang A, Hebert TE (2017) Distinct conformational dynamics of three G protein-coupled receptors measured using FlAsH-BRET biosensors. Front Endocrinol (Lausanne) 8:61

    Article  Google Scholar 

  • Carpenter B, Tate CG (2016) Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng Des Sel 29(12):583–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Lu C, Ouyang B, Zhang H, Huang Z, Bhatia D et al (2020) Development of potent, selective surrogate WNT molecules and their application in defining frizzled requirements. Cell Chem Biol 27(5):598–609.e4

    Article  CAS  PubMed  Google Scholar 

  • Chidiac R, Abedin M, Macleod G, Yang A, Thibeault PE, Blazer LL et al (2021) A Norrin/Wnt surrogate antibody stimulates endothelial cell barrier function and rescues retinopathy. EMBO Mol Med 13:e13977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255(15):7108–7117

    Article  PubMed  Google Scholar 

  • DeBruine ZJ, Xu HE, Melcher K (2017) Assembly and architecture of the Wnt/beta-catenin signalosome at the membrane. Br J Pharmacol 174(24):4564–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijksterhuis JP, Baljinnyam B, Stanger K, Sercan HO, Ji Y, Andres O et al (2015a) Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J Biol Chem 290(11):6789–6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijksterhuis JP, Baljinnyam B, Stanger K, Sercan HO, Ji Y, Andres O et al (2015b) Systematic mapping of WNT-frizzled interactions reveals functional selectivity by distinct WNT-frizzled pairs. J Biol Chem 290(11):6789–6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru AC et al (2018) A molecular mechanism for Wnt ligand-specific signaling. Science 361(6403):eaat1178

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, Wang H et al (2019) A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102(4):745–761.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammons MV, Renko M, Johnson CM, Rutherford TJ, Bienz M (2016) Wnt signalosome assembly by DEP domain swapping of dishevelled. Mol Cell 64(1):92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22(5):717–727

    Article  CAS  PubMed  Google Scholar 

  • Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  CAS  PubMed  Google Scholar 

  • Halleskog C, Schulte G (2013) Pertussis toxin-sensitive heterotrimeric G(alphai/o) proteins mediate WNT/beta-catenin and WNT/ERK1/2 signaling in mouse primary microglia stimulated with purified WNT-3A. Cell Signal 25(4):822–828

    Article  CAS  PubMed  Google Scholar 

  • Halleskog C, Mulder J, Dahlström J, Mackie K, Hortobágyi T, Tanila H et al (2011) WNT signaling in activated microglia is pro-inflammatory. Glia 59(1):119–131

    Article  PubMed  Google Scholar 

  • Halleskog C, Dijksterhuis JP, Kilander MB, Becerril-Ortega J, Villaescusa JC, Lindgren E et al (2012) Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation 9(1):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada K, Ito M, Wang X, Tanaka M, Wongso D, Konno A et al (2017) Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci Rep 7(1):7351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harnos J, Canizal MCA, Jurasek M, Kumar J, Holler C, Schambony A et al (2019) Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Nat Commun 10(1):1804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffmann C, Gaietta G, Bunemann M, Adams SR, Oberdorff-Maass S, Behr B et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2(3):171–176

    Article  CAS  PubMed  Google Scholar 

  • Hot B, Valnohova J, Arthofer E, Simon K, Shin J, Uhlen M et al (2017) FZD10-Galpha13 signalling axis points to a role of FZD10 in CNS angiogenesis. Cell Signal 32:93–103

    Article  CAS  PubMed  Google Scholar 

  • Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A et al (2019) Illuminating G-protein-coupling selectivity of GPCRs. Cell 177(7):1933–1947.e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA et al (2017) Surrogate Wnt agonists that phenocopy canonical Wnt and beta-catenin signalling. Nature 545(7653):234–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J et al (2018) A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol 36(8):726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen AS, Rosenkilde MM, Hjorto GM (2018) Biased signaling of G protein-coupled receptors - from a chemokine receptor CCR7 perspective. Gen Comp Endocrinol 258:4–14

    Article  PubMed  CAS  Google Scholar 

  • Kauk M, Hoffmann C (2018) Intramolecular and intermolecular FRET sensors for GPCRs - monitoring conformational changes and beyond. Trends Pharmacol Sci 39(2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Kilander MBC, Halleskog C, Schulte G (2011a) Purified WNTs differentially activate beta-catenin-dependent and -independent pathways in mouse microglia-like cells. Acta Physiol 203(3):363–372

    Article  CAS  Google Scholar 

  • Kilander MBC, Dijksterhuis JP, Ganji RS, Bryja V, Schulte G (2011b) WNT-5A stimulates the GDP/GTP exchange at pertussis toxin-sensitive heterotrimeric G proteins. Cell Signal 23(3):550–554

    Article  CAS  PubMed  Google Scholar 

  • Kilander MB, Dahlstrom J, Schulte G (2014a) Assessment of frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT-frizzled selectivity. Cell Signal 26(9):1943–1949

    Article  CAS  PubMed  Google Scholar 

  • Kilander MB, Petersen J, Andressen KW, Ganji RS, Levy FO, Schuster J et al (2014b) Disheveled regulates precoupling of heterotrimeric G proteins to frizzled 6. FASEB J 28(5):2293–2305

    Article  CAS  PubMed  Google Scholar 

  • Kostyuk AI, Demidovich AD, Kotova DA, Belousov VV, Bilan DS (2019) Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int J Mol Sci 20(17):4200

    Article  PubMed Central  CAS  Google Scholar 

  • Kozielewicz P, Schulte G (2021) NanoBRET and NanoBiT-based ligand binding assays permit quantitative assessment of small molecule binding to Smoothened. Methods Mol Biol (in press)

    Google Scholar 

  • Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Canizal MCA et al (2020a) Structural insight into small molecule action on Frizzleds. Nat Commun 11(1):414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozielewicz P, Bowin CF, Turku A, Schulte G (2020b) A nanoBRET-based binding assay for smoothened allows real-time analysis of ligand binding and distinction of two binding sites for BODIPY-cyclopamine. Mol Pharmacol 97(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Kozielewicz P, Turku A, Schulte G (2020c) Molecular pharmacology of class F receptor activation. Mol Pharmacol 97(2):62–71

    Article  CAS  PubMed  Google Scholar 

  • Kozielewicz P, Shekhani R, Moser S, Bowin CF, Wesslowski J, Davidson G et al (2021) Quantitative profiling of WNT-3A binding to all human frizzled paralogues in HEK293 cells by nanoBiT/BRET assessments. ACS Pharmacol Transl Sci 4(3):1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Labouesse MA, Patriarchi T (2021) A versatile GPCR toolkit to track in vivo neuromodulation: not a one-size-fits-all sensor. Neuropsychopharmacology. https://doi.org/10.1038/s41386-021-00982-y

  • Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64(2):299–336

    Article  CAS  PubMed  Google Scholar 

  • Luca VC, Miao Y, Li X, Hollander MJ, Kuo CJ, Garcia KC (2020) Surrogate R-spondins for tissue-specific potentiation of Wnt signaling. PLoS One 15(1):e0226928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Chen M, Kang H, Steinhart Z, Angers S, He X et al (2020) Single-molecule dynamics of Dishevelled at the plasma membrane and Wnt pathway activation. Proc Natl Acad Sci U S A 117(28):16690–16701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maziarz M, Park JC, Leyme A, Marivin A, Garcia-Lopez A, Patel PP et al (2020) Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell 182(3):770–785.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Ha A, de Lau W, Yuki K, Santos AJM, You C et al (2020) Next-generation surrogate Wnts support organoid growth and deconvolute frizzled pleiotropy in vivo. Cell Stem Cell 27(5):840–851.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    Article  CAS  PubMed  Google Scholar 

  • Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A et al (1991) A new nomenclature for int-1 and related genes: the Wnt gene family. Cell 64(2):231

    Article  CAS  PubMed  Google Scholar 

  • Odaka H, Arai S, Inoue T, Kitaguchi T (2014) Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging. PLoS One 9(6):e100252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park WJ, Liu J, Adler PN (1994) The frizzled gene of Drosophila encodes a membrane protein with an odd number of transmembrane domains. Mech Dev 45(2):127–137

    Article  CAS  PubMed  Google Scholar 

  • Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH et al (2018) Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360(6396):eaat4422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen J, Wright SC, Rodriguez D, Matricon P, Lahav N, Vromen A et al (2017) Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nat Commun 8(1):226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin K, Sethi PR, Lambert NA (2008) Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins. FASEB J 22(8):2920–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin K, Dong C, Wu G, Lambert NA (2011) Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers. Nat Chem Biol 7(10):740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T (2006) A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 281(5):2740–2749

    Article  PubMed  CAS  Google Scholar 

  • Schihada H, Vandenabeele S, Zabel U, Frank M, Lohse MJ, Maiellaro I (2018) A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics. Commun Biol. 1:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Schihada H, Ma X, Zabel U, Vischer HF, Schulte G, Leurs R et al (2020) Development of a conformational histamine H3 receptor biosensor for the synchronous screening of agonists and inverse agonists. ACS Sens 5(6):1734–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schihada H, Nemec K, Lohse MJ, Maiellaro I (2021a) Bioluminescence in G protein-coupled receptors drug screening using nanoluciferase and halo-tag technology. Methods Mol Biol 2268:137–147

    Article  PubMed  CAS  Google Scholar 

  • Schihada H, Kowalski-Jahn M, Turku A, Schulte G (2021b) Deconvolution of WNT-induced frizzled conformational dynamics with fluorescent biosensors. Biosens Bioelectron 177:112948

    Article  CAS  PubMed  Google Scholar 

  • Schihada H, Shekhani R, Schulte G (2021c) Quantitative assessment of constitutive G protein-coupled receptor activity with BRET-based G protein biosensors. Sci Signal 14 (in press)

    Google Scholar 

  • Schulte G (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class frizzled receptors. Pharmacol Rev 62(4):632–667

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Kozielewicz P (2020) Structural insight into class F receptors - what have we learnt regarding agonist-induced activation? Basic Clin Pharmacol Toxicol 126(Suppl 6):17–24

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Wright SC (2018) Frizzleds as GPCRs - more conventional than we thought! Trends Pharmacol Sci 39(9):828–842

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, Johnstone EK, Wheal AJ, Goulding J, Robers MB, Machleidt T et al (2015) Application of BRET to monitor ligand binding to GPCRs. Nat Methods 12(7):661–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strakova K, Matricon P, Yokota C, Arthofer E, Bernatik O, Rodriguez D et al (2017) The tyrosine Y250(2.39) in frizzled 4 defines a conserved motif important for structural integrity of the receptor and recruitment of disheveled. Cell Signal 38:85–96

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF et al (2018) A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174(2):481–496.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ (2019) Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 485:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada R, Mii Y, Krayukhina E, Maruyama Y, Mio K, Sasaki Y et al (2018) Assembly of protein complexes restricts diffusion of Wnt3a proteins. Commun Biol 1:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y et al (2020) Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. elife 9:e58464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turku A, Schihada H, Kozielewicz P, Bowin CF, Schulte G (2021) Residue 6.43 defines receptor function in class F GPCRs. Nat Commun 12(1):3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valnohova J, Kowalski-Jahn M, Sunahara RK, Schulte G (2018) Functional dissection of the N-terminal extracellular domains of frizzled 6 reveals their roles for receptor localization and Dishevelled recruitment. J Biol Chem 293(46):17875–17887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21(7):807–812

    Article  CAS  PubMed  Google Scholar 

  • Vinson CR, Conover S, Adler PN (1989) A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338(6212):263–264

    Article  CAS  PubMed  Google Scholar 

  • Wan Q, Okashah N, Inoue A, Nehme R, Carpenter B, Tate CG et al (2018) Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J Biol Chem 293(19):7466–7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesslowski J, Kozielewicz P, Wang X, Cui H, Schihada H, Kranz D et al (2020) eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length frizzled. J Biol Chem 295(26):8759–8774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4(9):a007864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452

    Article  CAS  PubMed  Google Scholar 

  • Wright SC, Bouvier M (2021) Illuminating the complexity of GPCR pathway selectivity - advances in biosensor development. Curr Opin Struct Biol 69:142–149

    Article  CAS  PubMed  Google Scholar 

  • Wright SC, Canizal MCA, Benkel T, Simon K, Le Gouill C, Matricon P et al (2018) FZD5 is a Galphaq-coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Sci Signal 11(559):eaar5536

    Article  CAS  PubMed  Google Scholar 

  • Wright SC, Kozielewicz P, Kowalski-Jahn M, Petersen J, Bowin CF, Slodkowicz G et al (2019) A conserved molecular switch in class F receptors regulates receptor activation and pathway selection. Nat Commun 10(1):667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Chen B, Schihada H, Wright SC, Turku A, Wu Y, Han GW, Kowalski-Jahn M, Kozielewicz P, Bowin CF, Zhang X, Li C, Bouvier M, Schulte G, Xu F (2021) Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrimeric Gs. Cell Res. https://doi.org/10.1038/s41422-021-00525-6 (online ahead of print)

  • Ziegler N, Batz J, Zabel U, Lohse MJ, Hoffmann C (2011) FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors. Bioorg Med Chem 19(3):1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Zurn A, Zabel U, Vilardaga JP, Schindelin H, Lohse MJ, Hoffmann C (2009) Fluorescence resonance energy transfer analysis of alpha 2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol Pharmacol 75(3):534–541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the Schulte laboratory was supported by grants from Karolinska Institutet, the Swedish Research Council (2015-02899; 2019-01190), the Swedish Cancer Society (CAN2017/561, 20 1102 PjF, 20 0264 P), the Novo Nordisk Foundation (NNF17OC0026940, NNF20OC0063168), The Lars Hierta Memorial Foundation (FO2019-0086, FO2020-0304), The Alex and Eva Wallström Foundation (2020-00228), The Swedish Society of Medical Research (SSMF; P19-0055), and the German Research Foundation (DFG; 427840891). Computational resources were provided by the Swedish National Infrastructure for Computing – National Supercomputer Centre (NSC) in Linköping and KTH Royal Institute of Technology (PDC) in Stockholm (SNIC 2020/5-500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Schulte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kozielewicz, P., Schihada, H., Schulte, G. (2021). Employing Genetically Encoded, Biophysical Sensors to Understand WNT/Frizzled Interaction and Receptor Complex Activation. In: Schulte, G., Kozielewicz, P. (eds) Pharmacology of the WNT Signaling System. Handbook of Experimental Pharmacology, vol 269. Springer, Cham. https://doi.org/10.1007/164_2021_534

Download citation

Publish with us

Policies and ethics