Skip to main content

Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease

  • Chapter
  • First Online:
Toll-like Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 276))

Abstract

Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCA1:

ATP-binding cassette sub-family A member 1

ABCG1:

ATP-binding cassette sub-family G member 1

ACE:

Angiotensin-converting enzyme

APC:

Antigen presenting cells

ApOE:

Apolipoprotein E

ATG:

Autophagy-related gene

BCG:

Bacillus Calmette-Guérin

BCR:

B cell receptor

CCL:

C-C motif chemokine ligand

CCR:

C-C Chemokine receptor

CLP:

Cecal ligation and puncture

CMP:

Common myeloid progenitor

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

CXCL:

C-X-C motif chemokine ligand

CXCR:

C-X-C motif chemokine receptors

DAMP:

Damage-associated molecular pattern

ERK1/2:

Extracellular signal-regulated kinase 1/2

G-CSF:

Granulocyte-colony stimulating factor

GM-CSF:

Granulocyte-macrophage colony stimulating factor

GMP:

Granulocyte-monocyte progenitors

GPNMB :

Glycoprotein-Nmb

GRK2:

G protein-coupled receptor kinases

HGF:

Hepatocyte growth factor

HSC:

Hematopoietic stem cell

ICAM1:

Intercellular adhesion molecule 1

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IRAK-M:

Interleukin-1R-associated-kinase- M

JMJD3:

Jumonji domain containing 3

KDM6B:

Lysine demethylase 6B

LAG-3:

Lymphocyte-activating gene

Ldlr:

Low-density lipoprotein receptor

LPS:

Lipopolysaccharide

LTB4:

Leukotriene B4

MAL:

MyD88-adapter-like

MCP:

Monocyte chemoattractant protein

M-CSF:

Macrophage-colony-stimulating factor

MEP:

Megakaryocyte-erythrocyte progenitor

MMP:

Matrix metalloproteinases

MYD88:

Myeloid differentiation factor 88

NET:

Neutrophil extracellular trap

NOX2:

NADPH oxidase 2

oxLDL:

Oxidized low-density lipoprotein

PAMP:

Pathogen associated molecular pattern

PD-1:

Programmed cell death protein-1

PD-L1:

Programmed death-ligand 1

PI3K/AKT:

Phosphatidylinositol-3-kinase and protein kinase B

SFK:

Src family kinases

SR-A:

Scavenger receptor class A

SR-B1:

Scavenger receptor class B type 1

STAT:

Signal transducer and activator of transcription

TAM:

Tumor-associated macrophages

TAN:

Tumor-associated neutrophils

TCR:

T cell receptor

TIM-3:

T-cell immunoglobulin and mucin-domain containing-3

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TRAM:

Toll/IL-1R domain-containing adaptor-inducing IFN-β-related adaptor molecule

TRIF:

Toll/IL-1R domain-containing adaptor-inducing IFN-β

VEGF:

Vascular endothelial growth factor

References

  • Abraham E et al (1997) p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. Ro 45-2081 study group. JAMA 277:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Adib-Conquy M, Cavaillon JM (2009) Compensatory anti-inflammatory response syndrome. Thromb Haemost 101:36–47

    Article  CAS  PubMed  Google Scholar 

  • Armstrong L, Medford AR, Hunter KJ, Uppington KM, Millar AB (2004) Differential expression of toll-like receptor (TLR)-2 and TLR-4 on monocytes in human sepsis. Clin Exp Immunol 136:312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Back M, Yurdagul A Jr, Tabas I, Oorni K, Kovanen PT (2019) Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 16:389–406

    PubMed  PubMed Central  Google Scholar 

  • Baker B, Maitra U, Geng S, Li L (2014) Molecular and cellular mechanisms responsible for cellular stress and low-grade inflammation induced by a super-low dose of endotoxin. J Biol Chem 289:16262–16269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker B et al (2015) Alteration of lysosome fusion and low-grade inflammation mediated by super-low-dose endotoxin. J Biol Chem 290:6670–6678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballesteros I et al (2020) Co-option of neutrophil fates by tissue environments. Cell 183:1282–1297.e1218

    Article  CAS  PubMed  Google Scholar 

  • Bayne LJ et al (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekkering S et al (2014) Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 34:1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Bhan C, Dipankar P, Chakraborty P, Sarangi PP (2016) Role of cellular events in the pathophysiology of sepsis. Inflamm Res 65:853–868

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Lopez-Collazo E (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 30:475–487

    Article  CAS  PubMed  Google Scholar 

  • Brady J, Horie S, Laffey JG (2020) Role of the adaptive immune response in sepsis. Intensive Care Med Exp 8:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Buffen K et al (2014) Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog 10:e1004485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnevale R et al (2018) Localization of lipopolysaccharide from Escherichia Coli into human atherosclerotic plaque. Sci Rep 8:3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casbon AJ et al (2015) Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 112:E566–E575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan C, Li L, McCall CE, Yoza BK (2005) Endotoxin tolerance disrupts chromatin remodeling and NF-kappaB transactivation at the IL-1beta promoter. J Immunol 175:461–468

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Taylor B, Ourthiague DR, Hoffmann A (2015) Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation. Sci Signal 8:ra69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YJ et al (2017) Impaired polyfunctionality of CD8(+) T cells in severe sepsis patients with human cytomegalovirus reactivation. Exp Mol Med 49:e382

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortez-Retamozo V et al (2013) Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38:296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Santa F et al (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28:3341–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Maitra U, Morris M, Li L (2013) Molecular mechanism responsible for the priming of macrophage activation. J Biol Chem 288:3897–3906

    Article  CAS  PubMed  Google Scholar 

  • Efron PA et al (2018) Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery 164:178–184

    Article  PubMed  Google Scholar 

  • Ene CI et al (2012) Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS One 7:e51407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eruslanov EB et al (2014) Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 124:5466–5480

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447:972–978

    Article  CAS  PubMed  Google Scholar 

  • Frazier TH, DiBaise JK, McClain CJ (2011) Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr 35:14S–20S

    Article  CAS  PubMed  Google Scholar 

  • Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33:949–955

    Article  CAS  PubMed  Google Scholar 

  • Fu Y et al (2012) Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells. PLoS Comput Biol 8:e1002526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng S et al (2016) The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun 7:13436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng S, Zhang Y, Lee C, Li L (2019) Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. Sci Adv 5:eaav2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granot Z (2019) Neutrophils as a therapeutic target in cancer. Front Immunol 10:1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidecke CD et al (1999) Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. Am J Surg 178:288–292

    Article  CAS  PubMed  Google Scholar 

  • Hirsh M, Mahamid E, Bashenko Y, Hirsh I, Krausz MM (2001) Overexpression of the high-affinity Fcgamma receptor (CD64) is associated with leukocyte dysfunction in sepsis. Shock 16:102–108

    Article  CAS  PubMed  Google Scholar 

  • Hoechst B et al (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234–243

    Article  CAS  PubMed  Google Scholar 

  • Holtzhausen A et al (2019) TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanoma. Cancer Immunol Res 7:1672–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong T, Xing J, Li L, Tyson J (2011) A mathematical model for the reciprocal differentiation of T helper 17 cells and induced regulatory T cells. PLoS Comput Biol 7:e1002122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong T, Xing J, Li L, Tyson JJ (2012) A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells. BMC Syst Biol 6:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Horiguchi H et al (2018) Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy. Front Immunol 9:595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss RS et al (2016) Sepsis and septic shock. Nat Rev Dis Primers 2:16045

    Article  PubMed  PubMed Central  Google Scholar 

  • Jongstra-Bilen J et al (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203:2073–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadelka S, Boribong BP, Li L, Ciupe SM (2019) Modeling the bistable dynamics of the innate immune system. Bull Math Biol 81:256–276

    Article  CAS  PubMed  Google Scholar 

  • Kalafati L et al (2020) Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183:771–785.e712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsumata N et al (1996) Serum levels of cytokines in patients with untreated primary lung cancer. Clin Cancer Res 2:553–559

    CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto T et al (2019) Serum levels of the chemokine CCL2 are elevated in malignant pleural mesothelioma patients. BMC Cancer 19:1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss M, Caro AA, Raes G, Laoui D (2020) Systemic reprogramming of monocytes in cancer. Front Oncol 10:1399

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M et al (2019) Blocking monocytic myeloid-derived suppressor cell function via anti-DC-HIL/GPNMB antibody restores the in vitro integrity of T cells from cancer patients. Clin Cancer Res 25:828–838

    Article  CAS  PubMed  Google Scholar 

  • Kovach MA, Standiford TJ (2012) The function of neutrophils in sepsis. Curr Opin Infect Dis 25:321–327

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2020) Understanding the complexities of SARS-CoV2 infection and its immunology: a road to immune-based therapeutics. Int Immunopharmacol 88:106980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V (2021a) Emerging human coronavirus infections (SARS, MERS, and COVID-19): where they are leading us. Int Rev Immunol 40:5–53

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2021b) How could we forget immunometabolism in SARS-CoV2 infection or COVID-19? Int Rev Immunol 40:72–107

    Article  CAS  PubMed  Google Scholar 

  • Laird MH et al (2009) TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol 85:966–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassenius MI et al (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34:1809–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerias JR et al (2019) Trained immunity for personalized cancer immunotherapy: current knowledge and future opportunities. Front Microbiol 10:2924

    Article  PubMed  Google Scholar 

  • Li J, Lin S, Vanhoutte PM, Woo CW, Xu A (2016) Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation 133:2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Li L, McCall C, Hu X (2020) Editorial: innate immunity programming and memory in resolving and non-resolving inflammation. Front Immunol 11:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P, Hansson GK (2015) Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res 116:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P et al (2019) Atherosclerosis. Nat Rev Dis Primers 5:56

    Article  PubMed  Google Scholar 

  • Lin R, Zhang Y, Pradhan K, Li L (2020) TICAM2-related pathway mediates neutrophil exhaustion. Sci Rep 10:14397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lissauer ME et al (2009) Differential expression of toll-like receptor genes: sepsis compared with sterile inflammation 1 day before sepsis diagnosis. Shock 31:238–244

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li CS (2017) Programmed cell death-1/programmed death-ligand 1 pathway: a new target for sepsis. Chin Med J (Engl) 130:986–992

    Article  CAS  Google Scholar 

  • Lopez-Collazo E, Avendano-Ortiz J, Martin-Quiros A, Aguirre LA (2020) Immune response and COVID-19: a mirror image of sepsis. Int J Biol Sci 16:2479–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G et al (2015) Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun 6:6676

    Article  CAS  PubMed  Google Scholar 

  • Luczynski W, Stasiak-Barmuta A, Krawczuk-Rybak M (2004) Lower percentages of monocytes with CD80, CD86 and HLA-DR molecule expression in pediatric cancer. Cancer Immunol Immunother 53:1049–1050

    Article  PubMed  Google Scholar 

  • Lundberg AM et al (2013) Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res 99:364–373

    Article  CAS  PubMed  Google Scholar 

  • Maitra U et al (2012) Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J Immunol 189:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14:302–314

    Article  CAS  PubMed  Google Scholar 

  • Morris MC, Gilliam EA, Li L (2014) Innate immune programing by endotoxin and its pathological consequences. Front Immunol 5:680

    PubMed  Google Scholar 

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  CAS  PubMed  Google Scholar 

  • Netea MG et al (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, Joosten LAB, van der Meer JWM (2017) Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. J Leukoc Biol 102:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Niu B et al (2019) Different expression characteristics of LAG3 and PD-1 in Sepsis and their synergistic effect on T cell exhaustion: a new strategy for immune checkpoint blockade. Front Immunol 10:1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nywening TM et al (2016) Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 17:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan ST et al (1995) Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg 222:482–490.; discussion 490–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Olingy CE, Dinh HQ, Hedrick CC (2019) Monocyte heterogeneity and functions in cancer. J Leukoc Biol 106:309–322

    Article  CAS  PubMed  Google Scholar 

  • Opal SM et al (2013) Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Otto GP et al (2011) The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care 15:R183

    Article  PubMed  PubMed Central  Google Scholar 

  • Palsson-McDermott EM, O'Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, toll-like receptor-4. Immunology 113:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil NK, Guo Y, Luan L, Sherwood ER (2017) Targeting immune cell checkpoints during sepsis. Int J Mol Sci 18

    Google Scholar 

  • Paula-Neto HA et al (2011) Inhibition of guanylyl cyclase restores neutrophil migration and maintains bactericidal activity increasing survival in sepsis. Shock 35:17–27

    Article  CAS  PubMed  Google Scholar 

  • Perner A et al (2016) Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med 42:1958–1969

    Article  CAS  PubMed  Google Scholar 

  • Piao W et al (2009) Endotoxin tolerance dysregulates MyD88- and toll/IL-1R domain-containing adapter inducing IFN-beta-dependent pathways and increases expression of negative regulators of TLR signaling. J Leukoc Biol 86:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345

    Article  CAS  PubMed  Google Scholar 

  • Powell DR, Huttenlocher A (2016) Neutrophils in the tumor microenvironment. Trends Immunol 37:41–52

    Article  CAS  PubMed  Google Scholar 

  • Rahtes A, Li L (2020) Polarization of low-grade inflammatory monocytes through TRAM-mediated up-regulation of Keap1 by super-low dose endotoxin. Front Immunol 11:1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee C et al (2019) Prevalence, underlying causes, and preventability of sepsis-associated mortality in US acute care hospitals. JAMA Netw Open 2:e187571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribechini E et al (2017) Novel GM-CSF signals via IFN-gammaR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv 1:947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbloom AJ et al (1999) Suppression of cytokine-mediated beta2-integrin activation on circulating neutrophils in critically ill patients. J Leukoc Biol 66:83–89

    Article  CAS  PubMed  Google Scholar 

  • Rudd KE et al (2020) Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study. Lancet 395:200–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan T, Coakley JD, Martin-Loeches I (2017) Defects in innate and adaptive immunity in patients with sepsis and health care associated infection. Ann Transl Med 5:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl SM et al (1996) Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast Cancer Res Treat 39:275–283

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Schrepping J et al (2020) Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182:1419–1440.e1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Shao R et al (2016) Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Crit Care 20:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen XF, Cao K, Jiang JP, Guan WX, Du JF (2017) Neutrophil dysregulation during sepsis: an overview and update. J Cell Mol Med 21:1687–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal S et al (2016) Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30:120–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinistro A et al (2008) Downregulation of CD40 ligand response in monocytes from sepsis patients. Clin Vaccine Immunol 15:1851–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steggerda SM et al (2017) Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer 5:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoll LL, Denning GM, Weintraub NL (2004) Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler Thromb Vasc Biol 24:2227–2236

    Article  CAS  PubMed  Google Scholar 

  • Stoppacciaro A et al (1993) Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma. J Exp Med 178:151–161

    Article  CAS  PubMed  Google Scholar 

  • Strauss L et al (2020) Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol 5

    Google Scholar 

  • Sugimoto K et al (2003) Monocyte CD40 expression in severe sepsis. Shock 19:24–27

    Article  CAS  PubMed  Google Scholar 

  • Trovato R et al (2019) Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 7:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Ugurel S et al (2004) Down-regulation of HLA class II and costimulatory CD86/B7-2 on circulating monocytes from melanoma patients. Cancer Immunol Immunother 53:551–559

    Article  CAS  PubMed  Google Scholar 

  • Wang JF et al (2015) Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology 122:852–863

    Article  CAS  PubMed  Google Scholar 

  • Weber J et al (2016) Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after Ipilimumab. Cancer Immunol Res 4:345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weide B et al (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 20:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492–499

    Article  CAS  PubMed  Google Scholar 

  • Wick M, Kollig E, Muhr G, Koller M (2000) The potential pattern of circulating lymphocytes TH1/TH2 is not altered after multiple injuries. Arch Surg 135:1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Wiersinga WJ et al (2009) Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in gram-negative sepsis (melioidosis). Crit Care Med 37:569–576

    Article  CAS  PubMed  Google Scholar 

  • Wiesner P et al (2010) Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia. Circ Res 107:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu WC et al (2014) Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci U S A 111:4221–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Medvedev AE (2011) Induction of endotoxin tolerance in vivo inhibits activation of IRAK4 and increases negative regulators IRAK-M, SHIP-1, and A20. J Leukoc Biol 90:1141–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L et al (2019) Histone demethylase KDM6B has an anti-tumorigenic function in neuroblastoma by promoting differentiation. Oncogenesis 8:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan R et al (2016a) Low-grade inflammatory polarization of monocytes impairs wound healing. J Pathol 238:571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan R, Geng S, Li L (2016b) Molecular mechanisms that underlie the dynamic adaptation of innate monocyte memory to varying stimulant strength of TLR ligands. Front Immunol 7:497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lee C, Geng S, Li L (2019) Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. JCI Insight 4:e122939

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geng, S., Pradhan, K., Li, L. (2021). Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease. In: Kumar, V. (eds) Toll-like Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 276. Springer, Cham. https://doi.org/10.1007/164_2021_485

Download citation

Publish with us

Policies and ethics