Skip to main content

Immunosuppressants in Organ Transplantation

  • Chapter
  • First Online:
Pediatric Pharmacotherapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 261))

Abstract

The goal of immunosuppressive therapy post-transplantation in pediatric renal transplant recipients is to prevent acute and chronic rejection while minimizing drug side effects. Most therapies alter immune response mechanisms but are not immunologically specific, and a careful balance is required to find the dose that prevents rejection of the graft while minimizing the risks of overimmunosuppression leading to infection and cancer. While this chapter because of space constraints focuses on immunosuppressive therapy in pediatric renal transplant recipients, many aspects can be applied on pediatric recipients of other solid organ transplants such as the liver and heart. The major maintenance immunosuppressive agents currently used in various combination regimens are tacrolimus, cyclosporine, mycophenolate mofetil, azathioprine, everolimus, sirolimus, and glucocorticoids (steroids). Although data from adult renal transplantation trials are used to help guide management decisions in pediatric patients, immunosuppressive therapy in pediatric renal transplant recipients often must be modified because of the unique dosage requirements and clinical effects of these agents in children, including their impact on growth and development. The optimal immunosuppressive therapy post-transplant is not established. The goal remains to find the best combination of immunosuppressive agents that optimizes allograft survival by preventing acute rejection while limiting drug toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison AC, Eugui EM (2005) Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 80:181–190

    Google Scholar 

  • Barletta GM, Kirk E, Gardner JJ et al (2009) Rapid discontinuation of corticosteroids in pediatric renal transplantation. Pediatr Transplant 13:571–578

    CAS  PubMed  Google Scholar 

  • Benfield MR, Bartosh S, Ikle D et al (2010) A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant 10:81–88

    CAS  PubMed  Google Scholar 

  • Brandhorst G, Tenderich G, Zittermann A et al (2008) Everolimus exposure in cardiac transplant recipients is influenced by concomitant calcineurin inhibitor. Ther Drug Monit 30:113–116

    CAS  PubMed  Google Scholar 

  • Bunchman T, Navarro M, Broyer M et al (2001) The use of mycophenolate mofetil suspension in pediatric renal allograft recipients. Pediatr Nephrol 16:978–984

    CAS  PubMed  Google Scholar 

  • Campana C, Regazzi MB, Buggia I et al (1996) Clinically significant drug interactions with cyclosporin. An update. Clin Pharmacokinet 30:141–179

    CAS  PubMed  Google Scholar 

  • Cattaneo D, Perico N, Gaspari F et al (2002) Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int 62:1060–1067

    CAS  PubMed  Google Scholar 

  • Certican (2012) Basic prescribing information. Novartis Pharma AG, Basel

    Google Scholar 

  • Chavers BM, Chang C, Gillingham KJ et al (2009) Pediatric kidney transplantation using a novel protocol of rapid (6-day) discontinuation of prednisolone: 2-year results. Transplantation 88:237–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooperative European Paediatric Renal Transplant Initiative (CERTAIN) Registry (2019) www.certain-registry.eu. Accessed 15 Aug 2019

  • Cransberg K, Marlies Cornelissen EA, Davin JC et al (2005) Improved outcome of pediatric kidney transplantations in the Netherlands–effect of the introduction of mycophenolate mofetil? Pediatr Transplant 9:1004–1011

    Google Scholar 

  • Crowe A, Bruelisauer A, Duerr L et al (1999) Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos 27:627–632

    CAS  PubMed  Google Scholar 

  • Dantal J, Hourmant M, Cantarovich D et al (1998) Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet 351:623–628

    CAS  PubMed  Google Scholar 

  • Ekberg H, Tedesco-Silva H, Demirbas A et al ELITE-Symphony Study (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357:2562–2575

    Google Scholar 

  • Elion GB (1993) The pharmacology of azathioprine. Ann N Y Acad Sci 685:400–407

    CAS  PubMed  Google Scholar 

  • Ettenger R, Hoyer PF, Grimm P et al (2008) Multicenter trial of everolimus in pediatric renal transplant recipients: results at three year. Pediatr Transplant 12:456–463

    CAS  PubMed  Google Scholar 

  • Ferraris JR, Tambutti ML, Redal MA et al (2000) Conversion from azathioprine [correction of azathioprina] to mycophenolate mofetil in pediatric renal transplant recipients with chronic rejection. Transplantation 70:297–301

    CAS  PubMed  Google Scholar 

  • Ferraris JR, Ghezzi LF, Vallejo G et al (2005) Improved long-term allograft function in pediatric renal transplantation with mycophenolate mofetil. Pediatr Transplant 9:178–182

    CAS  PubMed  Google Scholar 

  • Filler G, Webb NJ, Milford DV et al (2005) Four-year data after pediatric renal transplantation: a randomized trial of tacrolimus vs. cyclosporin microemulsion. Pediatr Transplant 9:498–503

    CAS  PubMed  Google Scholar 

  • Franchimont D (2004) Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann N Y Acad Sci 1024:124–137

    CAS  PubMed  Google Scholar 

  • Ganschow R, Pape L, Sturm E et al (2013) Growing experience with mTOR inhibitors in pediatric solid organ transplantation. Pediatr Transplant 17:694–706

    CAS  PubMed  Google Scholar 

  • Goggins WC, Pascual MA, Powelson JA et al (2003) A prospective, randomized, clinical trial of intraoperative versus postoperative thymoglobulin in adult cadaveric renal transplant recipients. Transplantation 76:798–802

    CAS  PubMed  Google Scholar 

  • Grenda R, Watson A, Vondrak K et al (2006) A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. Am J Transplant 6:1666–1672

    CAS  PubMed  Google Scholar 

  • Grenda R, Watson A, Trompeter R et al (2010) A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant 10:828–836

    CAS  PubMed  Google Scholar 

  • Gurk-Turner C, Airee R, Philosophe B et al (2008) Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. Transplantation 85:1425–1430

    CAS  PubMed  Google Scholar 

  • Habbig S, Volland R, Krupka K et al (2017) Dyslipidemia after pediatric renal transplantation-the impact of immunosuppressive regimens. Pediatr Transplant 21(3):e12914

    Google Scholar 

  • Halloran PF (2004) Immunosuppressive drugs for kidney transplantation. N Engl J Med 351:2715–2729

    CAS  PubMed  Google Scholar 

  • Henne T, Latta K, Strehlau J et al (2003) Mycophenolate mofetil-induced reversal of glomerular filtration loss in children with chronic allograft nephropathy. Transplantation 76:1326–1330

    CAS  PubMed  Google Scholar 

  • Höcker B, Tönshoff B (2009) Treatment strategies to minimize or prevent chronic allograft dysfunction in pediatric renal transplant recipients: an overview. Paediatr Drugs 11:381–396

    PubMed  Google Scholar 

  • Höcker B, Tönshoff B (2011) Calcineurin inhibitor-free immunosuppression in pediatric renal transplantation: a viable option? Paediatr Drugs 13:49–69

    PubMed  Google Scholar 

  • Höcker B, Weber LT, Bunchman T et al (2005) Mycophenolate mofetil suspension in pediatric renal transplantation: three-year data from the tricontinental trial. Pediatr Transplant 9:504–511

    PubMed  Google Scholar 

  • Höcker B, Kovarik JM, Daniel V et al (2008) Pharmacokinetics and immunodynamics of basiliximab in pediatric renal transplant recipients on mycophenolate mofetil comedication. Transplantation 86:1234–1240

    PubMed  Google Scholar 

  • Höcker B, Weber LT, Feneberg R et al (2009) Prospective, randomized trial on late steroid withdrawal in pediatric renal transplant recipients under cyclosporine microemulsion and mycophenolate mofetil. Transplantation 87:934–941

    PubMed  Google Scholar 

  • Höcker B, Weber L, Feneberg R et al (2010) Improved growth and cardiovascular risk after late steroid withdrawal: 2-year results of a prospective, randomized trial in paediatric renal transplantation. Nephrol Dial Transplant 25:617–624

    PubMed  Google Scholar 

  • Höcker B, van Gelder T, Martin-Govantes J et al (2011) Comparison of MMF efficacy and safety in paediatric vs. adult renal transplantation: subgroup analysis of the randomised, multicentre FDCC trial. Nephrol Dial Transplant 26:1073–1079

    PubMed  Google Scholar 

  • Höcker B, Zencke S, Pape L et al (2016) Impact of everolimus and low-dose cyclosporin on cytomegalovirus replication and disease in pediatric renal transplantation. Am J Transplant 16:921–929

    PubMed  Google Scholar 

  • Ingulli E, Tejani A (1994) Steroid withdrawal after renal transplantation. In: Tejani AH, Fine RM (eds) Pediatric renal transplantation. Wiley-Liss, New York, pp 221–238

    Google Scholar 

  • Jungraithmayr T, Staskewitz A, Kirste G et al (2003) Pediatric renal transplantation with mycophenolate mofetil-based immunosuppression without induction: results after three years. Transplantation 75:454–461

    CAS  PubMed  Google Scholar 

  • Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43:83–95

    CAS  PubMed  Google Scholar 

  • Kovarik JM, Kalbag J, Figuerredo J et al (2002) Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmacol 42:95–99

    CAS  PubMed  Google Scholar 

  • Kovarik JM, Curtis JJ, Hricik DE et al (2006) Differential pharmacokinetic interaction of tacrolimus and cyclosporine on everolimus. Transplant Proc 38:3456–3458

    CAS  PubMed  Google Scholar 

  • Le Meur Y, Büchler M, Thierry A et al (2007) Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 7:2496–2503

    PubMed  Google Scholar 

  • Mahalati K, Kahan BD (2001) Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 40:573–585

    CAS  PubMed  Google Scholar 

  • Nankivell BJ, Borrows RJ, Fung CL et al (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349:2326–2333

    CAS  PubMed  Google Scholar 

  • Neu AM, Ho PL, Fine RN et al (2003) Tacrolimus vs. cyclosporine A as primary immunosuppression in pediatric renal transplantation: a NAPRTCS study. Pediatr Transplant 7:217–222

    CAS  PubMed  Google Scholar 

  • Noble J, Jouve T, Janbon B et al (2019) Belatacept in kidney transplantation and its limitations. Expert Rev Clin Immunol 15:359–367

    CAS  PubMed  Google Scholar 

  • Offner G, Toenshoff B, Höcker B et al (2008) Efficacy and safety of basiliximab in pediatric renal transplant patients receiving cyclosporine, mycophenolate mofetil, and steroids. Transplantation 86:1241–1248

    CAS  PubMed  Google Scholar 

  • Ojo AO, Held PJ, Port FK et al (2003) Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med 349:931–940

    CAS  PubMed  Google Scholar 

  • Pape L, Ahlenstiel T, Ehrich JH et al (2007) Reversal of loss of glomerular filtration rate in children with transplant nephropathy after switch to everolimus and low-dose cyclosporine A. Pediatr Transplant 11:291–295

    CAS  PubMed  Google Scholar 

  • Pape L, Offner G, Kreuzer M et al (2010) De novo therapy with everolimus, low-dose cyclosporine A, basiliximab and steroid elimination in pediatric kidney transplantation. Am J Transplant 10:2349–2354

    CAS  PubMed  Google Scholar 

  • Peddi VR, Bryant M, Roy-Chaudhury P et al (2002) Safety, efficacy, and cost analysis of thymoglobulin induction therapy with intermittent dosing based on CD3+ lymphocyte counts in kidney and kidney-pancreas transplant recipients. Transplantation 73:1514–1518

    PubMed  Google Scholar 

  • Rapamune (2011) Summary of product characteristics. Pfizer, New York

    Google Scholar 

  • Rubik J, Debray D, Iserin F et al (2019a) Comparative pharmacokinetics of tacrolimus in stable pediatric allograft recipients converted from immediate-release tacrolimus to prolonged-release tacrolimus formulation. Pediatr Transplant 23:e13391

    PubMed  Google Scholar 

  • Rubik J, Debray D, Kelly D et al (2019b) Efficacy and safety of prolonged-release tacrolimus in stable pediatric allograft recipients converted from immediate-release tacrolimus – a Phase 2, open-label, single-arm, one-way crossover study. Transpl Int. https://doi.org/10.1111/tri.13479

  • Sarwal MM, Vidhun JR, Alexander SR et al (2003) Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation 76:1331–1339

    CAS  PubMed  Google Scholar 

  • Sarwal MM, Ettenger RB, Dharnidharka V et al (2012) Complete corticosteroid avoidance is effective and safe in children with renal transplants: a multicentre randomized trial with three year follow-up. Am J Transplant 12:2719–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro R, Ellis D, Tan HP et al (2006) Antilymphoid antibody preconditioning and tacrolimus monotherapy for pediatric kidney transplantation. J Pediatr 148:813–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shipkova M, Armstrong VW, Oellerich M et al (2005) Mycophenolate mofetil in organ transplantation: focus on metabolism, safety and tolerability. Expert Opin Drug Metab Toxicol 1:505–526

    CAS  PubMed  Google Scholar 

  • Staskewitz A, Kirste G, Tönshoff B et al (2001) Mycophenolate mofetil in pediatric renal transplantation without induction therapy: results after 12 months of treatment. Transplantation 71:638–644

    CAS  PubMed  Google Scholar 

  • Sterkers G, Baudouin V, Ansart-Pirenne H et al (2000) Duration of action of a chimeric interleukin-2 receptor monoclonal antibody, basiliximab, in pediatric kidney transplant recipients. Transplant Proc 32:2757–2759

    CAS  PubMed  Google Scholar 

  • Stevens RB, Mercer DF, Grant WJ et al (2008) Randomized trial of single-dose versus divided-dose rabbit anti-thymocyte globulin induction in renal transplantation: an interim report. Transplantation 85:1391–1399

    CAS  PubMed  Google Scholar 

  • Stratta RJ, Sundberg AK, Farney AC et al (2005) Experience with alternate-day thymoglobulin induction in pancreas transplantation with portal-enteric drainage. Transplant Proc 37:3546–3548

    CAS  PubMed  Google Scholar 

  • Sutherland S, Li L, Concepcion W et al (2009) Steroid-free immunosuppression in pediatric renal transplantation: rationale for and outcomes following conversion to steroid based therapy. Transplantation 87:1744–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe K (2003) Calcineurin inhibitors in renal transplantation: what is the best option? Drugs 3:1535–1548

    Google Scholar 

  • Tedesco-Silva H, Felipe C, Ferreira A et al (2015) Reduced incidence of cytomegalovirus infection in kidney transplant recipients receiving everolimus and reduced tacrolimus doses. Am J Transplant 15:2655–2664

    CAS  PubMed  Google Scholar 

  • The NAPRTCS (2014) Annual report. https://web.emmes.com/study/ped/index.htm

  • Tönshoff B, Höcker B (2006) Treatment strategies in pediatric solid organ transplant recipients with calcineurin inhibitor-induced nephrotoxicity. Pediatr Transplant 10:721–729

    PubMed  Google Scholar 

  • Tönshoff B, David-Neto E, Ettenger R et al (2011) Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev (Orlando) 25:78–89

    Google Scholar 

  • Tönshoff B, Ettenger R, Dello Strologo L et al (2019) Early conversion of pediatric kidney transplant patients to everolimus with reduced tacrolimus and steroid elimination: results of a randomized trial. Am J Transplant 19:811–822

    PubMed  Google Scholar 

  • Trompeter R, Filler G, Webb NJ et al (2002) Randomized trial of tacrolimus versus cyclosporin microemulsion in renal transplantation. Pediatr Nephrol 7:141–149

    Google Scholar 

  • van Gelder T (2002) Drug interactions with tacrolimus. Drug Saf 25:707–712

    PubMed  Google Scholar 

  • van Gelder T, Le Meur Y, Shaw LM et al (2006) Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 28:145–154

    PubMed  Google Scholar 

  • van Gelder T, Silva HT, de Fijter JW et al (2008) Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation 86:1043–1051

    PubMed  Google Scholar 

  • van Leuven SI, Kastelein JJ, Allison AC et al (2006) Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles? Cardiovasc Res 69:341–347

    PubMed  Google Scholar 

  • Venkataramanan R, Jain A, Warty VW et al (1991) Pharmacokinetics of FK 506 following oral administration: a comparison of FK 506 and cyclosporine. Transplant Proc 23:931–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb N, Douglas S, Rajai A et al (2015) Corticosteroid-free kidney transplantation improves growth: two-year follow-up of the TWIST randomised controlled trial. Transplantation 99:1178–1185

    CAS  PubMed  Google Scholar 

  • Webb NJA, Baumann U, Camino M et al (2019) Pharmacokinetics of tacrolimus granules in pediatric de novo liver, kidney, and heart transplantation: the OPTION study. Pediatr Transplant 23:e13328

    PubMed  Google Scholar 

  • Weber LT, Shipkova M, Armstrong VW et al (2002) The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy. J Am Soc Nephrol 13:759–768

    PubMed  Google Scholar 

  • Wong W, Agrawal N, Pascual M et al (2006) Comparison of two dosages of thymoglobulin used as a short-course for induction in kidney transplantation. Transpl Int 19:629–635

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Tönshoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tönshoff, B. (2019). Immunosuppressants in Organ Transplantation. In: Kiess, W., Schwab, M., van den Anker, J. (eds) Pediatric Pharmacotherapy . Handbook of Experimental Pharmacology, vol 261. Springer, Cham. https://doi.org/10.1007/164_2019_331

Download citation

Publish with us

Policies and ethics