Skip to main content

Behavioral Pharmacology of Drugs Acting at Mu Opioid Receptors

  • Chapter
  • First Online:
Substance Use Disorders

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 258))

Abstract

Despite the therapeutic utility of opioids for relieving pain, other behavioral effects, including their potential for abuse and overdose, can be quite detrimental to individuals as well as society and have contributed to the ongoing opioid crisis. The dramatic escalation in overdose deaths over the last 15 years was initially driven by abuse of prescription opioids, although abuse of heroin, fentanyl, and fentanyl analogs has been increasing, largely due to increased availability and lower cost compared with prescription opioids. All of these opioids share pharmacological properties, acting as agonists at mu opioid receptors, and produce similar behavioral effects, including abuse-related, pain-relieving, dependence-producing, and respiratory-depressant effects. Despite their similarities, opioids are not pharmacologically identical. In fact, drugs that act at mu opioid receptors, including abused opioids, can vary on a number of dimensions, including pharmacological efficacy, drug-receptor interactions, receptor selectivity, and pharmacokinetics. Overall, these differences impact behavioral effects of drugs acting at mu opioid receptors, and this chapter describes variations in those behavioral effects and how these differences continue to provide new strategies that can be developed to address the ongoing opioid epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avetian GK, Fiuty P, Mazzella S, Koppa D, Heye V, Hebbar P (2018) Use of naloxone nasal spray 4 mg in the community setting: a survey of use by community organizations. Curr Med Res Opin 34:573–576

    Article  CAS  PubMed  Google Scholar 

  • Balster RL, Lukas SE (1985) Review of self-administration. Drug Alcohol Depend 14:249–261

    Article  CAS  PubMed  Google Scholar 

  • Barrett AC, Cook CD, Terner JM, Craft RM, Picker MJ (2001) Importance of sex and relative efficacy at the mu opioid receptor in the development of tolerance and cross-tolerance to the antinociceptive effects of opioids. Psychopharmacology (Berl) 158:154–164

    Article  CAS  Google Scholar 

  • Baylon GJ, Kaplan HL, Somer G, Busto UE, Sellers EM (2000) Comparative abuse liability of intravenously administered remifentanil and fentanyl. J Clin Psychopharmacol 20:597–606

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  CAS  PubMed  Google Scholar 

  • Broadbear JH, Sumpter TL, Burke TF, Husbands SM, Lewis JW, Woods JH, Traynor JR (2000) Methocinnamox is a potent, long-lasting, and selective antagonist of morphine-mediated antinociception in the mouse: comparison with clocinnamox, β-funaltrexamine, and β-chlornaltrexamine. J Pharmacol Exp Ther 294:933–940

    CAS  PubMed  Google Scholar 

  • Bullingham R, McQuay H, Porter E, Allen H, Moore R (1982) Sublingual buprenorphine used postoperatively: ten hour plasma drug concentration analysis. Br J Clin Pharmacol 13:665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burford NT, Clark MJ, Wehrman TS, Gerritz SW, Banks M, O’Connell J, Traynor JR, Alt A (2013) Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc Natl Acad Sci U S A 110:10830–10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2018) Annual surveillance report of drug-related risks and outcomes – United States. Surveillance special report. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. Published August 31, 2018. https://www.cdc.gov/drugoverdose/pdf/pubs/2018-cdc-drug-surveillance-report.pdf. Accessed 28 Sept 2018

  • Chen Y, Mestek A, Liu J, Hurley JA, Yu L (1993) Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol 44:8–12

    CAS  PubMed  Google Scholar 

  • Comer SD, Collins ED, MacArthur RB, Fischman MW (1999) Comparison of intravenous and intranasal heroin self-administration by morphine-maintained humans. Psychopharmacology (Berl) 143:327–338

    Article  CAS  Google Scholar 

  • Comer SD, Sullivan MA, Walker EA (2005) Comparison of intravenous buprenorphine and methadone self-administration by recently detoxified heroin-dependent individuals. J Pharmacol Exp Ther 315:1320–1330

    Article  CAS  PubMed  Google Scholar 

  • Cone EJ (1998) Recent discoveries in pharmacokinetics of drugs of abuse. Toxicol Lett 102–103:97–101

    Article  PubMed  Google Scholar 

  • Cook CD, Barrett AC, Roach EL, Bowman JR, Picker MJ (2000) Sex-related differences in the antinociceptive effects of opioids: importance of rat genotype, nociceptive stimulus intensity, and efficacy at the mu opioid receptor. Psychopharmacology (Berl) 130:430–442

    Article  Google Scholar 

  • Dahan A, Aarts L, Smith TW (2010) Incidence, reversal, and prevention of opioid-induced respiratory depression. Anesthesiology 112:226–238

    Article  PubMed  Google Scholar 

  • Dykstra LA (1983) Behavioral effects of buprenorphine and diprenorphine under a multiple schedule of food presentation in squirrel monkeys. J Pharmacol Exp Ther 226:317–323

    CAS  PubMed  Google Scholar 

  • Farré M, Camí J (1991) Pharmacokinetic considerations in abuse liability evaluation. Br J Addict 86:1601–1606

    Article  PubMed  Google Scholar 

  • Filizola M (2019) Insights from molecular dynamics simulations to exploit new trends for the development of improved opioid drugs. Neurosci Lett 700:50–55

    Article  CAS  PubMed  Google Scholar 

  • France CP, Jacobson AE, Woods JH (1984) Discriminative stimulus effects of reversible and irreversible opiate agonists: morphine, oxymorphazone and buprenorphine. J Pharmacol Exp Ther 230:652–657

    CAS  PubMed  Google Scholar 

  • Gatewood AK, Van Wert MJ, Andrada AP, Surkan PJ (2016) Academic physicians’ and medical students’ perceived barriers toward bystander administered naloxone as an overdose prevention strategy. Addict Behav 61:40–46

    Article  PubMed  Google Scholar 

  • Gerak LR, Butelman ER, Woods JH, France CP (1994) Antinociceptive and respiratory effects of nalbuphine in rhesus monkeys. J Pharmacol Exp Ther 271:993–999

    CAS  PubMed  Google Scholar 

  • Gerak LR, Brandt MR, France CP (1998) Studies on benzodiazepines and opioids administered alone and in combination in rhesus monkeys: ventilation and drug discrimination. Psychopharmacology (Berl) 137:164–174

    Article  CAS  Google Scholar 

  • Gerak LR, Galici R, France CP (2009) Self administration of heroin and cocaine in morphine-dependent and morphine-withdrawn rhesus monkeys. Psychopharmacology (Berl) 204:403–411

    Article  CAS  Google Scholar 

  • Gerak LR, Maguire DR, Woods JH, Husbands SM, Disney A, France CP (2019) Reversal and prevention of the respiratory-depressant effects of heroin by the novel μ opioid receptor antagonist methocinnamox in rhesus monkeys. J Pharmacol Exp Ther 368:229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerak LR, Minervini V, Latham E, Ghodrati S, Lillis KV, Wooden J, Disney A, Husbands SM, France CP (under review) Methocinnamox (MCAM) produces long-lasting antagonism of the behavioral effects of μ opioid receptor agonists but not prolonged precipitated withdrawal in rats. J Pharmacol Exp Ther

    Google Scholar 

  • Gioannini TL, Howard AD, Hiller JM, Simon EJ (1985) Purification of an active opioid-binding protein from bovine striatum. J Biol Chem 260:15117–15121

    CAS  PubMed  Google Scholar 

  • Gmerek DE, Woods JH (1985) Effects of beta-funaltrexamine in normal and morphine-dependent rhesus monkeys: observational studies. J Pharmacol Exp Ther 235:296–301

    CAS  PubMed  Google Scholar 

  • Hambrook J, Rance M (1976) The interaction of buprenorphine with the opiate receptor: lipophilicity as a determining factor in drug-receptor kinetics. In: Kosterlitz H (ed) Opiates and endogenous peptides. North Holland, Amsterdam, pp 295–301

    Google Scholar 

  • Hayes AG, Skingle M, Tyers MB (1986) Reversal by beta-funaltrexamine of the antinociceptive effect of opioid agonists in the rat. Br J Pharmacol 88:867–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis BP, Holtyn AF, Subramaniam S, Tompkins DA, Oga EA, Bigelow GE, Silverman K (2018) Extended-release injectable naltrexone for opioid use disorder: a systematic review. Addiction 113:1188–1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Madera G, Comer SD (2014) The reinforcing and subjective effect of intravenous and intranasal buprenorphine in heroin users. Pharmacol Biochem Behav 122:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenakin T (2008) Receptor theory. Curr Protoc Pharmacol 41:1.2.1–1.2.28

    Article  Google Scholar 

  • Kintz P (2001) Deaths involving buprenorphine: a compendium of French cases. Foren Sci Int 121:65–69

    Article  CAS  Google Scholar 

  • Kishioka S, Paronis CA, Lewis JW, Woods JH (2000) Buprenorphine and methoclocinnamox: agonist and antagonist effects on respiratory function in rhesus monkeys. Eur J Pharmacol 391:289–297

    Article  CAS  PubMed  Google Scholar 

  • Knapp RJ, Malatynska E, Fang L, Li X, Babin E, Nguyen M, Santoro G, Varga EV, Hruby VJ, Roeske WR (1994) Identification of a human delta opioid receptor: cloning and expression. Life Sci 54:L463–L469

    Article  Google Scholar 

  • Maguire DR, France CP (2014) Impact of efficacy at the mu-opioid receptor on antinociceptive effects of combinations of mu-opioid receptor agonists and cannabinoid receptor agonists. J Pharmacol Ther Exp 351:383–389

    Article  CAS  Google Scholar 

  • Maguire DR, France CP (2016) Effects of daily delta-9-tetrahydrocannabinol treatment on heroin self-administration in rhesus monkeys. Behav Pharmacol 27:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire DR, Gerak LR, Woods JH, Husbands SM, Disney A, France CP (2019) Long-lasting effects of methocinnamox on heroin self-administration in rhesus monkeys. J Pharmacol Exp Ther 368:88–99

    Article  CAS  PubMed  Google Scholar 

  • Maguma HT, Dewey WL, Akbarali HI (2012) Differences in the characteristics of tolerance to μ-opioid receptor agonists in the colon from wild type and β-arrestin2 knockout mice. Eur J Pharmacol 685:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin HA (2011) The possible consequences of combining lorazepam and buprenorphine/naloxone: a case review. J Emerg Nurs 37:200–202

    Article  PubMed  Google Scholar 

  • Mello NK, Bree MP, Mendelson JH (1981a) Buprenorphine self-administration by rhesus monkey. Pharmacol Biochem Behav 15:215–225

    Article  CAS  PubMed  Google Scholar 

  • Mello NK, Mendelson JH, Kuehnle JC, Sellers MS (1981b) Operant analysis of human heroin self-administration and the effects of naltrexone. J Pharmacol Exp Ther 216:45–54

    CAS  PubMed  Google Scholar 

  • Mello NK, Lukas SE, Bree MP, Mendelson JH (1988) Progressive ratio performance maintained by buprenorphine, heroin and methadone in Macaque monkeys. Drug Alcohol Depend 21:81–97

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci U S A 90:9954–9958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Freeman KB (2018) Abuse potential of biased mu opioid receptor agonists. Trends Pharmacol Sci 39:916–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peckham EM, Barkley LM, Divin MF, Cicero TJ, Traynor JR (2005) Comparison of the antinociceptive effect of acute morphine in female and male Sprague-Dawley rats using the long-lasting mu-antagonist methocinnamox. Brain Res 1058:137–147

    Article  CAS  PubMed  Google Scholar 

  • Pelissier-Alicot A-L, Sastre C, Baillif-Couniou V, Gaulier J-M, Kintz P, Kuhlmann E, Perich P, Bartoli C, Piercecchi-Marti M-D, Leonetti G (2010) Buprenorphine-related deaths: unusual forensic situations. Int J Leg Med 124:647–651

    Article  Google Scholar 

  • Pert CB, Pasternak GW, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    Article  CAS  PubMed  Google Scholar 

  • Pirnay S, Borron SW, Giudicelli CP, Tourneau J, Baud FJ, Ricordel I (2004) A critical review of the causes of death among post-mortem toxicological investigations: analysis of 34 buprenorphine-associated and 35 methadone-associated deaths. Addiction 99:978–988

    Article  CAS  PubMed  Google Scholar 

  • Raehal KM, Walker JM, Bohn LM (2005) Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 314:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Reynaud M, Tracqui A, Petit G, Potard D, Courty P (1998) Six deaths linked to misuse of buprenorphine-benzodiazepine combinations. Am J Psychiatry 155:448–449

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Murphy DL, Xu H, Godin JA, Dersch CM, Partilla JS, Tidgewell K, Schimidt M, Prisinzano TE (2007) Salvinorin A: allosteric interactions at the μ-opioid receptor. J Pharmacol Exp Ther 320:801–810

    Article  CAS  PubMed  Google Scholar 

  • Sansone RA, Sansone LA (2015) Buprenorphine treatment for narcotic addiction: not without risks. Innov Clin Neurosci 12:32–36

    PubMed  PubMed Central  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate. Proc Natl Acad Sci 70:1947–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanagel R (2017) Animal models of addiction. Dialogues Clin Neurosci 19:247–258

    PubMed  PubMed Central  Google Scholar 

  • Suida ER, Carr R, Rominger DH, Violin JD (2017) Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr Opin Pharmacol 32:77–84

    Article  CAS  Google Scholar 

  • Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol 32:317–320

    Article  CAS  Google Scholar 

  • Tomassoni AJ, Hawk KF, Jubanyik K, Nogee DP, Durant T, Lynch KL, Patel R, Dinh D, Ulrich A, D’Onofrio GD (2017) Multiple fentanyl overdoses – New Haven, Connecticut, June 23, 2016. MMWR Morb Mortal Wkly Rep 66:107–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentino RJ, Volkow ND (2018) Untangling the complexity of opioid receptor function. Neuropsychopharmacology 43:2514–2520

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivian JA, Kishioka S, Butelman ER, Broadbear J, Lee KO, Woods JH (1998) Analgesic, respiratory and heart rate effects of cannabinoid and opioid agonists in rhesus monkeys: antagonist effects of SR 141716A. J Pharmacol Exp Ther 286:697–703

    CAS  PubMed  Google Scholar 

  • Vocci F (1991) The necessity and utility of abuse liability testing in human subjects. Br J Addict 12:1537–1542

    Article  Google Scholar 

  • Volkow ND, McLellan AT (2016) Opioid abuse in chronic pain – misconceptions and mitigation strategies. N Engl J Med 374:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  CAS  PubMed  Google Scholar 

  • Walker EA, Makhay MM, House JD, Young AM (1994) In vivo apparent pA2 analysis for naltrexone antagonism of discriminative stimulus and analgesic effects of opiate agonists in rats. J Pharmacol Exp Ther 271:959–968

    CAS  PubMed  Google Scholar 

  • Walker EA, Zernig G, Woods JH (1995) Buprenorphine antagonism of mu opioids in the rhesus monkey tail-withdrawal procedure. J Pharmacol Exp Ther 273:1345–1352

    CAS  PubMed  Google Scholar 

  • Walsh SL, Preston KL, Stitzer ML, Cosa EJ, Bigelow GE (1994) Clinical pharmacology of buprenorphine: ceiling effects at high doses. Clin Pharmacol Ther 55:569–580

    Article  CAS  PubMed  Google Scholar 

  • Wermeling DP (2015) Review of naloxone safety for opioid overdose: practical considerations for new technology and expanded public access. Ther Adv Drug Saf 6:20–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf B, Griffiths RR (1991) Physical dependence on benzodiazepines: differences within the class. Drug Alcohol Depend 29:153–156

    Article  CAS  PubMed  Google Scholar 

  • Young AM, Kapitsopoulos G, Makhay MM (1991) Tolerance to morphine-like stimulus effects of mu opioid agonists. J Pharmacol Exp Ther 257:795–805

    CAS  PubMed  Google Scholar 

  • Young AM, Masaki MA, Geula C (1992) Discriminative stimulus effects of morphine: effects of training dose on agonist and antagonist effects of mu opioids. J Pharmacol Exp Ther 261:246–257

    CAS  PubMed  Google Scholar 

  • Zamarripa CA, Edwards SR, Qureshi HN, Yi JN, Blough BE, Freeman KB (2018) The G-protein biased mu-opioid agonist, TRV130, produces reinforcing and antinociceptive effects that are comparable to oxycodone in rats. Drug Alcohol Depend 192:158–162

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang L, Walker EA, Sutherland J 2nd, Young AM (2000) Discriminative stimulus effects of two doses of fentanyl in rats: pharmacological selectivity and effect of training dose on agonist and antagonist effects of mu opioids. Psychopharmacology (Berl) 148:136–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, National Institute on Drug Abuse [Grants R01 DA005018, R01 DA048417, and R21 DA 046805], and the Welch Foundation [Grant AQ-0039]. The authors have no conflict of interest. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. France .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerak, L.R., Maguire, D.R., France, C.P. (2019). Behavioral Pharmacology of Drugs Acting at Mu Opioid Receptors. In: Nader, M., Hurd, Y. (eds) Substance Use Disorders. Handbook of Experimental Pharmacology, vol 258. Springer, Cham. https://doi.org/10.1007/164_2019_265

Download citation

Publish with us

Policies and ethics