Skip to main content

NOP Receptor Signaling Cascades

  • Chapter
  • First Online:
The Nociceptin/Orphanin FQ Peptide Receptor

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 254))

Abstract

The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a G protein-coupled receptor with wide distribution throughout the peripheral and central nervous system. Similar to other opioid receptors, NOP receptors couple to intracellular second messengers and regulatory proteins to affect biological systems. In this chapter, we review the current literature for NOP signaling cascades including their role as classic GPCRs, the investigation of their kinase and arrestin signaling pathways, and the importance of examining biased signaling to critically evaluate the therapeutic potential of novel NOP agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. J Am Soc Anesthesiol 115(6):1363–1381

    CAS  Google Scholar 

  • Armstead W (2002) NOC/oFQ activates PKC and generates superoxide to impair hypotensive cerebrovasodilation after hypoxia/ischemia. Med Sci Monit 8(1):BR0

    Google Scholar 

  • Armstead WM (2006) Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury. Eur J Pharmacol 529(1–3):129–135

    Article  CAS  PubMed  Google Scholar 

  • Asth L, Ruzza C, Malfacini D, Medeiros I, Guerrini R, Zaveri NT et al (2016) Beta-arrestin 2 rather than G protein efficacy determines the anxiolytic-versus antidepressant-like effects of nociceptin/orphanin FQ receptor ligands. Neuropharmacology 105:434–442

    PubMed  PubMed Central  CAS  Google Scholar 

  • Barchfeld CC, Medzihradsky F (1984) Receptor-mediated stimulation of brain GTPase by opiates in normal and dependent rats. Biochem Biophys Res Commun 121:641–648

    Article  CAS  PubMed  Google Scholar 

  • Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C et al (2004) Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 7(2):118

    Article  CAS  PubMed  Google Scholar 

  • Bes B, Meunier JC (2003) Identification of a hexapeptide binding region in the nociceptin (ORL1) receptor by photo-affinity labelling with Ac-Arg-Bpa-Tyr-Arg-Trp-Arg-NH 2. Biochem Biophys Res Commun 310(3):992–1001

    Article  CAS  PubMed  Google Scholar 

  • Blume AJ, Lichtshtein D, Boone G (1979) Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc Natl Acad Sci U S A 76(11):5626–5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology 210(2):137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Land BB, Aita M, Xu M, Barot SK, Li S, Chavkin C (2007) Stress-induced p38 mitogen-activated protein kinase activation mediates κ-opioid-dependent dysphoria. J Neurosci 27(43):11614–11623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M, Land BB et al (2011) Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 71(3):498–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butour JL, Moisand C, Mazarguil H, Mollereau C, Meunier JC (1997) Recognition and activation of the opioid receptor-like ORL1 receptor by nociceptin, nociceptin analogs and opioids. Eur J Pharmacol 321(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Chan AS, Wong YH (2000) Regulation of c-Jun N-terminal kinase by the ORL1 receptor through multiple G proteins. J Pharmacol Exp Ther 295(3):1094–1100

    PubMed  CAS  Google Scholar 

  • Chan JS, Yung LY, Lee JW, Wu YL, Pei G, Wong YH (1998) Pertussis toxin-insensitive signaling of the ORL1 receptor: coupling to Gz and G16 proteins. J Neurochem 71(5):2203–2210

    Article  CAS  PubMed  Google Scholar 

  • Chang SD, Bruchas MR (2014) Functional selectivity at GPCRs: new opportunities in psychiatric drug discovery. Neuropsychopharmacology 39(1):248

    Article  CAS  PubMed  Google Scholar 

  • Chang SD, Mascarella SW, Spangler S, Gurevich VV, Navarro HA, Carroll FI, Bruchas MR (2015) Quantitative signaling and structure-activity analyses demonstrate functional selectivity at the nociceptin/orphanin FQ opioid receptor. Mol Pharmacol 88:502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childers SR, Snyder SH (1978) Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci 23(7):759–761

    Article  CAS  PubMed  Google Scholar 

  • Childers SR, Creese I, Snowman AM, Snyder SH (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol 55(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Connor M, Christie MJ (1998) Modulation of Ca2+ channel currents of acutely dissociated rat periaqueductal grey neurons. J Physiol 509(1):47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor M, Yoe A, Henderson G (1996) The effect of nociceptin on Ca2+ channel current and intracellular Ca2+ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol 118(2):205–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbani M, Gonindard C, Meunier JC (2004) Ligand-regulated internalization of the opioid receptor-like 1: a confocal study. Endocrinology 145(6):2876–2885

    Article  CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Wichmann J, Higelin J, Py-Lang G, Kratzeisen C, Malherbe P et al (2001) Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64-6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J Pharmacol Exp Ther 298(2):812–819

    PubMed  CAS  Google Scholar 

  • Donica CL, Awwad HO, Thakker DR, Standifer KM (2013) Cellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ. Mol Pharmacol 83:907–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari F, Cerlesi MC, Malfacini D, Asth L, Gavioli EC, Journigan BV et al (2016) In vitro functional characterization of novel nociceptin/orphanin FQ receptor agonists in recombinant and native preparations. Eur J Pharmacol 793:1–13

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrari F, Malfacini D, Journigan BV, Bird MF, Trapella C, Guerrini R et al (2017) In vitro pharmacological characterization of a novel unbiased NOP receptor-selective nonpeptide agonist AT-403. Pharmacol Res Perspect 5(4)

    Article  CAS  Google Scholar 

  • Fukuda K, Shoda T, Morikawa H, Kato S, Mori K (1997) Activation of mitogen-activated protein kinase by the nociceptin receptor expressed in Chinese hamster ovary cells. FEBS Lett 412(2):290–294

    Article  CAS  PubMed  Google Scholar 

  • Fukuda K, Shoda T, Morikawa H, Kato S, Mima H, Mori K (1998) Activation of phospholipase A2 by the nociceptin receptor expressed in Chinese hamster ovary cells. J Neurochem 71(5):2186–2192

    Article  CAS  PubMed  Google Scholar 

  • Hawes BE, Fried S, Yao X, Weig B, Graziano MP (1998) Nociceptin (ORL-1) and mu-opioid receptors mediate mitogen-activated protein kinase activation in CHO cells through a Gi-coupled signaling pathway: evidence for distinct mechanisms of agonist-mediated desensitization. J Neurochem 71(3):1024–1033

    Article  CAS  PubMed  Google Scholar 

  • Lou LG, Zhang Z, Ma L, Pei G (1998) Nociceptin/Orphanin FQ activates mitogen-activated protein kinase in Chinese hamster ovary cells expressing opioid receptor-like receptor. J Neurochem 70(3):1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Malfacini D, Ambrosio C, Sbraccia M, Trapella C, Guerrini R, Bonora M et al (2015) Pharmacological profile of nociceptin/orphanin FQ receptors interacting with G-proteins and β-arrestins 2. PLoS One 10(8):e0132865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melief EJ, Miyatake M, Bruchas MR, Chavkin C (2010) Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. Proc Natl Acad Sci 107(25):11608–11613

    Article  PubMed  PubMed Central  Google Scholar 

  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377(6549):532

    Article  CAS  PubMed  Google Scholar 

  • Mittal N, Roberts K, Pal K, Bentolila LA, Fultz E, Minasyan A et al (2013) Select G-protein-coupled receptors modulate agonist-induced signaling via a ROCK, LIMK, and β-arrestin 1 pathway. Cell Rep 5(4):1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Mizoguchi H, Oji DE, Narita M, Dun NJ, Hwang BH et al (1999) Identification of the G-protein-coupled ORL1 receptor in the mouse spinal cord by [35S]-GTPγS binding and immunohistochemistry. Br J Pharmacol 128(6):1300–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100

    Article  CAS  PubMed  Google Scholar 

  • Rizzi A, Cerlesi MC, Ruzza C, Malfacini D, Ferrari F, Bianco S et al (2016) Pharmacological characterization of cebranopadol a novel analgesic acting as mixed nociceptin/orphanin FQ and opioid receptor agonist. Pharmacol Res Perspect 4(4):e00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Velasco V, Puhl HL, Fuller BC, Sumner AD (2005) Modulation of Ca2+ channels by opioid receptor-like 1 receptors natively expressed in rat stellate ganglion neurons innervating cardiac muscle. J Pharmacol Exp Ther 314(3):987–994

    Article  CAS  PubMed  Google Scholar 

  • Sim LJ, Xiao R, Childers SR (1996) Identification of opioid receptor-like (ORL1) peptide-stimulated [35S] GTP gamma S binding in rat brain. Neuroreport 7(3):729–733

    Article  CAS  PubMed  Google Scholar 

  • Spampinato S, di Toro R, Qasem AR (2001) Nociceptin-induced internalization of the ORL1 receptor in human neuroblastoma cells. Neuroreport 12(14):3159–3163

    Article  CAS  PubMed  Google Scholar 

  • Spampinato S, di Toro R, Alessandri M, Murari G (2002) Agonist-induced internalization and desensitization of the human nociceptin receptor expressed in CHO cells. Cell Mol Life Sci 59(12):2172–2183

    Article  CAS  PubMed  Google Scholar 

  • Spampinato S, Baiula M, Calienni M (2007) Agonist-regulated internalization and desensitization of the human nociceptin receptor expressed in CHO cells. Curr Drug Targets 8(1):137–146

    Article  CAS  PubMed  Google Scholar 

  • Toll L, Bruchas MR, Cox BM, Zaveri NT (2016) Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev 68(2):419–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of β-arrestin-and G protein-biased agonists. Trends Mol Med 17(3):126–139

    Article  CAS  PubMed  Google Scholar 

  • Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiol Rev 75(4):865–885

    Article  CAS  PubMed  Google Scholar 

  • Yeon KY, Sim MY, Choi SY, Lee SJ, Park K, Kim JS et al (2004) Molecular mechanisms underlying calcium current modulation by nociceptin. Neuroreport 15(14):2205–2209

    Article  CAS  PubMed  Google Scholar 

  • Yung LY, Joshi SA, Chan RY, Chan JS, Pei G, Wong YH (1999) GαL1 (Gα14) couples the opioid receptor-like1 receptor to stimulation of phospholipase C. J Pharmacol Exp Ther 288(1):232–238

    PubMed  CAS  Google Scholar 

  • Zamponi GW, Snutch TP (1998) Modulation of voltage-dependent calcium channels by G proteins. Curr Opin Neurobiol 8(3):351–356

    Article  CAS  PubMed  Google Scholar 

  • Zamponi GW, Snutch TP (2002) Modulating modulation: crosstalk between regulatory pathways of presynaptic calcium channels. Mol Interv 2(8):476

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Xin SM, Wu GX, Zhang WB, Ma L, Pei G (1999) Endogenous δ-opioid and ORL1 receptors couple to phosphorylation and activation of p38 MAPK in NG108-15 cells and this is regulated by protein kinase A and protein kinase C. J Neurochem 73(4):1502–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhang NR, Planer W, Siuda ER, Zhao H-C, Stickler L, Chang SD, Baird MA, Cao Y-Q, Bruchas MR (2012) Serine 363 is required for nociceptin/orphanin FQ opioid receptor (NOPR) desensitization, internalization, and arrestin signaling. J Biol Chem 287:42019–42030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Bruchas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parker, K.E., Bruchas, M.R. (2019). NOP Receptor Signaling Cascades. In: Ko, MC., Caló, G. (eds) The Nociceptin/Orphanin FQ Peptide Receptor. Handbook of Experimental Pharmacology, vol 254. Springer, Cham. https://doi.org/10.1007/164_2019_215

Download citation

Publish with us

Policies and ethics