Skip to main content

Clinical Pharmacology and Pharmacometrics to Better Understand Physiological Changes During Pregnancy and Neonatal Life

  • Chapter
  • First Online:
Pediatric Pharmacotherapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 261))

Abstract

Pregnant women, fetuses, and newborns are particularly vulnerable patient populations. During pregnancy, the body is subject to physiological changes that influence the pharmacokinetics and pharmacodynamics of drugs. Inappropriate dosing in pregnant women can result in sub-therapeutic or toxic effects, putting not only the pregnant woman but also her fetus at risk. During neonatal life, maturation processes also affect pharmacokinetics and pharmacodynamics of drugs. Inappropriate dosing in newborns leads not only to short-term complications but can also have a negative impact on the long-term development of infants and children. For these reasons, it is crucial to characterize physiological changes in pregnant women, describe placental transfer kinetics of drugs, and describe physiological changes related to the transition from intrauterine to extrauterine life and maturation processes in preterm and term neonates. Quantitative pharmacological approaches such as pharmacometric and physiologically-based modeling and model-based simulations can be useful to better understand and predict such physiological changes and their effects on drug exposure and response. This review article (1) gives an overview of physiological changes in pregnant women, their fetuses, and (pre)term neonates, (2) presents case studies to illustrate applications of new modeling and simulation approaches, and (3) discusses challenges and opportunities in optimizing and personalizing treatments during pregnancy and neonatal life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abduljalil K, Johnson TN, Rostami-Hodjegan A (2018) Fetal physiologically-based pharmacokinetic models: systems information on fetal biometry and gross composition. Clin Pharmacokinet 57:1149–1171

    Article  Google Scholar 

  • Allegaert K, Anker JN (2015) Adverse drug reactions in neonates and infants: a population-tailored approach is needed. Br J Clin Pharmacol 80:788–795

    Article  Google Scholar 

  • Anderson GD (2005) Pregnancy-induced changes in pharmacokinetics. Clin Pharmacokinet 44:989–1008

    Article  CAS  Google Scholar 

  • Artunc-Ulkumen B, Guvenc Y, Goker A, Gozukara C (2015) Relationship of neutrophil gelatinase-associated lipocalin (NGAL) and procalcitonin levels with the presence and severity of the preeclampsia. J Matern Fetal Neonatal Med 28:1895–1900. https://doi.org/10.3109/14767058.2014.972926

    Article  CAS  PubMed  Google Scholar 

  • Bonner JJ, Vajjah P, Abduljalil K, Jamei M, Rostami-Hodjegan A, Tucker GT, Johnson TN (2015) Does age affect gastric emptying time? A model-based meta-analysis of data from premature neonates through to adults. Biopharm Drug Dispos 36:245–257

    Article  CAS  Google Scholar 

  • Bornhauser C, Quack KL, Seifert B, Simões-Wüst AP (2017) Diet, medication use and drug intake during pregnancy: data from the consecutive Swiss Health Surveys of 2007 and 2012. Swiss Med Wkly 147:w14572

    PubMed  Google Scholar 

  • Colbers A, Greupink R, Litjens C, Burger D, Russel FG (2016) Physiologically based modelling of darunavir/ritonavir pharmacokinetics during pregnancy. Clin Pharmacokinet 55:381–396

    Article  CAS  Google Scholar 

  • Dallmann A, Pfister M, van den Anker J, Eissing T (2018a) Physiologically based pharmacokinetic modeling in pregnancy: a systematic review of published models. Clin Pharmacol Ther 104:1110–1124

    Article  Google Scholar 

  • Dallmann A, van den Anker J, Pfister M, Koch G (2018b) Characterization of maternal and neonatal pharmacokinetic behavior of ceftazidime. J Clin Pharmacol 59:74–82

    Article  Google Scholar 

  • Etwel F, Hutson JR, Madadi P, Gareri J, Koren G (2014) Fetal and perinatal exposure to drugs and chemicals: novel biomarkers of risk. Annu Rev Pharmacol Toxicol 54:295–315

    Article  CAS  Google Scholar 

  • Evers KS et al (2018) Neurofilament as neuronal injury blood marker in preeclampsia. Hypertension 117:10314

    Google Scholar 

  • Hartmanshenn C, Scherholz M, Androulakis IP (2016) Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn 43:481–504. https://doi.org/10.1007/s10928-016-9492-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118:250–267

    Article  CAS  Google Scholar 

  • Huppertz B (2018) An updated view on the origin and use of angiogenic biomarkers for preeclampsia. Expert Rev Mol Diagn:1–9. https://doi.org/10.1080/14737159.2018.1546579

  • Karumanchi SA (2016) Angiogenic factors in preeclampsia: from diagnosis to therapy. Hypertension 67:1072–1079. https://doi.org/10.1161/HYPERTENSIONAHA.116.06421

    Article  CAS  PubMed  Google Scholar 

  • Kastl JT (2017) Renal function in the fetus and neonate–the creatinine enigma. In: Seminars in fetal and neonatal medicine, vol 2. Elsevier, Amsterdam, pp 83–89

    Google Scholar 

  • Ke AB, Greupink R, Abduljalil K (2018) Drug dosing in pregnant women: challenges and opportunities in using physiologically based pharmacokinetic modeling and simulations. CPT Pharmacometrics Syst Pharmacol 7:103–110

    Article  CAS  Google Scholar 

  • Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  CAS  Google Scholar 

  • Kesho Bora Study Group (2011) Triple antiretroviral compared with zidovudine and single-dose nevirapine prophylaxis during pregnancy and breastfeeding for prevention of mother-to-child transmission of HIV-1 (Kesho Bora study): a randomised controlled trial. Lancet Infect Dis 11:171–180

    Article  Google Scholar 

  • Koch G, Datta AN, Jost K, Schulzke SM, van den Anker J, Pfister M (2017) Caffeine citrate dosing adjustments to assure stable caffeine concentrations in preterm neonates. J Pediatr 191:50–56.e51

    Article  CAS  Google Scholar 

  • Koren G (1997) Therapeutic drug monitoring principles in the neonate. Clin Chem 43:222–227

    Article  CAS  Google Scholar 

  • Koren G, Hutson J, Gareri J (2008) Novel methods for the detection of drug and alcohol exposure during pregnancy: implications for maternal and child health. Clin Pharmacol Ther 83:631–634

    Article  CAS  Google Scholar 

  • Ku LC, Smith PB (2014) Dosing in neonates: special considerations in physiology and trial design. Pediatr Res 77:2

    Article  Google Scholar 

  • Kumer K, Premru-Srsen T, Fabjan-Vodusek V, Tul N, Fabjan T, Osredkar J (2018) Peripheral arterial tonometry and angiogenic biomarkers in preeclampsia. Hypertens Pregnancy 37:197–203. https://doi.org/10.1080/10641955.2018.1524478

    Article  CAS  PubMed  Google Scholar 

  • Levine RJ et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683. https://doi.org/10.1056/NEJMoa031884

    Article  CAS  PubMed  Google Scholar 

  • Loebstein R, Lalkin A, Koren G (1997) Pharmacokinetic changes during pregnancy and their clinical relevance. Clin Pharmacokinet 33:328–343

    Article  CAS  Google Scholar 

  • Manokhina I, Del Gobbo GF, Konwar C, Wilson SL, Robinson WP (2017) Review: placental biomarkers for assessing fetal health. Hum Mol Genet 26:R237–R245

    Article  CAS  Google Scholar 

  • Manolis E, Pons G (2009) Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br J Clin Pharmacol 68:493–501

    Article  Google Scholar 

  • Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1:182–188

    Article  Google Scholar 

  • Maynard SE, Karumanchi SA (2011) Angiogenic factors and preeclampsia. Semin Nephrol 31:33–46. https://doi.org/10.1016/j.semnephrol.2010.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell AA, Gilboa SM, Werler MM, Kelley KE, Louik C, Hernández-Díaz S, Study NBDP (2011) Medication use during pregnancy, with particular focus on prescription drugs: 1976-2008. Am J Obstet Gynecol 205:51. e51–51. e58

    Article  Google Scholar 

  • Moore TJ, Weiss SR, Kaplan S, Blaisdell CJ (2002) Reported adverse drug events in infants and children under 2 years of age. Pediatrics 110:e53–e53

    Article  Google Scholar 

  • Morton SU, Brodsky D (2016) Fetal physiology and the transition to extrauterine life. Clin Perinatol 43:395–407

    Article  Google Scholar 

  • Pariente G, Leibson T, Carls A, Adams-Webber T, Ito S, Koren G (2016) Pregnancy-associated changes in pharmacokinetics: a systematic review. PLoS Med 13:e1002160

    Article  Google Scholar 

  • Risch M et al (2017) High first-trimester maternal blood cystatin C levels despite normal serum creatinine predict pre-eclampsia in singleton pregnancies. Scand J Clin Lab Invest 77:634–643. https://doi.org/10.1080/00365513.2017.1393692

    Article  CAS  PubMed  Google Scholar 

  • Saint-Faust M, Boubred F, Simeoni U (2014) Renal development and neonatal adaptation. Am J Perinatol 31:773–780

    Article  CAS  Google Scholar 

  • Schalkwijk S, Buaben AO, Freriksen JJ, Colbers AP, Burger DM, Greupink R, Russel FG (2018) Prediction of fetal darunavir exposure by integrating human ex-vivo placental transfer and physiologically based pharmacokinetic modeling. Clin Pharmacokinet 57:705–716

    Article  CAS  Google Scholar 

  • Seyberth HW, Kauffman RE (2011) Basics and dynamics of neonatal and pediatric pharmacology. In: Pediatric clinical pharmacology. Springer, Berlin, pp 3–49

    Chapter  Google Scholar 

  • Steegers EA, Von Dadelszen P, Duvekot JJ, Pijnenborg R (2010) Pre-eclampsia. Lancet 376:631–644

    Article  Google Scholar 

  • Stout SA, Espel EV, Sandman CA, Glynn LM, Davis EP (2015) Fetal programming of children’s obesity risk. Psychoneuroendocrinology 53:29–39

    Article  Google Scholar 

  • Sulemanji M, Vakili K (2013) Neonatal renal physiology. In: Seminars in pediatric surgery, vol 4. Elsevier, Amsterdam, pp 195–198

    Google Scholar 

  • van den Anker J, Reed MD, Allegaert K, Kearns GL (2018) Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol 58:S10–S25

    Article  Google Scholar 

  • van Donge T, Pfister M, Bielicki J, Csajka C, Rodieux F, van den Anker J, Fuchs A (2018) Quantitative analysis of gentamicin exposure in neonates and infants calls into question its current dosing recommendations. Antimicrob Agents Chemother 62:02004–02017

    Google Scholar 

  • Venkatesha S et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649. https://doi.org/10.1038/nm1429

    Article  CAS  PubMed  Google Scholar 

  • Widmer M et al (2015) Accuracy of angiogenic biomarkers at ≤20 weeks’ gestation in predicting the risk of pre-eclampsia: a WHO multicentre study. Pregnancy Hypertens 5:330–338

    Article  Google Scholar 

  • Wilbaux M, Kasser S, Wellmann S, Lapaire O, Van Den Anker JN, Pfister M (2016) Characterizing and forecasting individual weight changes in term neonates. J Pediatr 173:101–107. e110

    Article  Google Scholar 

  • Zhang Z, Unadkat JD (2017) Development of a novel maternal-fetal physiologically based pharmacokinetic model II: verification of the model for passive placental permeability drugs. Drug Metab Dispos 45:939–946

    Article  CAS  Google Scholar 

  • Zhang Z, Imperial MZ, Patilea-Vrana GI, Wedagedera J, Gaohua L, Unadkat JD (2017) Development of a novel maternal-fetal physiologically based pharmacokinetic model I: insights into factors that determine fetal drug exposure through simulations and sensitivity analyses. Drug Metab Dispos 45:920–938

    Article  CAS  Google Scholar 

Download references

Acknowledgment

TvD, KE, GK, JvdA, and MP would like to thank the Eckenstein-Geigy Foundation in Basel, Switzerland, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara van Donge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Donge, T., Evers, K., Koch, G., van den Anker, J., Pfister, M. (2019). Clinical Pharmacology and Pharmacometrics to Better Understand Physiological Changes During Pregnancy and Neonatal Life. In: Kiess, W., Schwab, M., van den Anker, J. (eds) Pediatric Pharmacotherapy . Handbook of Experimental Pharmacology, vol 261. Springer, Cham. https://doi.org/10.1007/164_2019_210

Download citation

Publish with us

Policies and ethics