Skip to main content

Mechanisms of Drug Binding to Voltage-Gated Sodium Channels

  • Chapter
  • First Online:
Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 246))

Abstract

Voltage-gated sodium (Na+) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na+ channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na+ channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na+ channels is composed of α-subunits that encode for the voltage sensor domains and the Na+-selective permeation pore. In vivo, Na+ channel α-subunits are associated with one or more accessory β-subunits (β1–β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na+ channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na+ channel gating and the models used to describe drug binding and Na+ channel inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahern CA, Eastwood AL, Dougherty DA, Horn R (2008) Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res 102:86–94

    Article  PubMed  CAS  Google Scholar 

  • Akopian AN, Souslova V, Sivilotti L, Wood JN (1997) Structure and distribution of a broadly expressed atypical sodium channel. FEBS Lett 400:183–187

    Article  PubMed  CAS  Google Scholar 

  • Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM (1966) Time course of TEA(+)-induced anomalous rectification in squid giant axons. J Gen Physiol 50:491–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1973) Currents related to movement of the gating particles of the sodium channels. Nature 242:459–461

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567–590

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62:375–391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backx PH, Yue DT, Lawrence JH, Marban E, Tomaselli GF (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257:248–251

    Article  PubMed  CAS  Google Scholar 

  • Bagneris C, DeCaen PG, Hall BA, Naylor CE, Clapham DE, Kay CW, Wallace BA (2013) Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat Commun 4:2465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagneris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci U S A 111:8428–8433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagneris C, Naylor CE, McCusker EC, Wallace BA (2015) Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. J Gen Physiol 145:5–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balser JR, Nuss HB, Romashko DN, Marban E, Tomaselli GF (1996) Functional consequences of lidocaine binding to slow-inactivated sodium channels. J Gen Physiol 107:643–658

    Article  PubMed  CAS  Google Scholar 

  • Baroudi G, Napolitano C, Priori SG, Del BA, Chahine M (2004) Loss of function associated with novel mutations of the SCN5A gene in patients with Brugada syndrome. Can J Cardiol 20:425–430

    PubMed  CAS  Google Scholar 

  • Baukrowitz T, Yellen G (1996) Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 271:653–656

    Article  PubMed  CAS  Google Scholar 

  • Bean BP, Cohen CJ, Tsien RW (1983) Lidocaine block of cardiac sodium channels. J Gen Physiol 81:613–642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett PB, Valenzuela C, Chen LQ, Kallen RG (1995a) On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomain. Circ Res 77:584–592

    Article  PubMed  CAS  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL Jr (1995b) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury WJ, Djamgoz MB, Isom LL (2008) An emerging role for voltage-gated Na channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neurosci 14:571–583

    CAS  Google Scholar 

  • Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 20:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Butterworth JF, Strichartz GR (1990) Molecular mechanisms of local anesthesia: a review. Anesthesiology 72:711–734

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD (1978) Local anesthetic block of sodium channels in normal and pronase-treated squid giant axons. Biophys J 23:285–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cahalan MD, Almers W (1979a) Block of sodium conductance and gating current in squid giant axons poisoned with quaternary strychnine. Biophys J 27:57–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cahalan MD, Almers W (1979b) Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin. Biophys J 27:39–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 142:101–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55:953–985

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2014) Structure and function of voltage-gated sodium channels at atomic resolution. Exp Physiol 99:35–51

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  PubMed  CAS  Google Scholar 

  • Cha A, Ruben PC, George AL Jr, Fujimoto E, Bezanilla F (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22:73–87

    Article  PubMed  CAS  Google Scholar 

  • Chahine M, O’Leary ME (2014) Regulation/modulation of sensory neuron sodium channels. Handb Exp Pharmacol 221:111–135

    Article  PubMed  CAS  Google Scholar 

  • Chahine M, George AL Jr, Zhou M, Ji S, Sun W, Barchi RL, Horn R (1994) Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 12:281–294

    Article  PubMed  CAS  Google Scholar 

  • Chahine M, Deschenes I, Trottier E, Chen LQ, Kallen RG (1997) Restoration of fast inactivation in an inactivation-defective human heart sodium channel by the cysteine modifying reagent benzyl-MTS: analysis of IFM-ICM mutation. Biochem Biophys Res Commun 233:606–610

    Article  PubMed  CAS  Google Scholar 

  • Chahine M, Chatelier A, Babich O, Krupp JJ (2008) Voltage-gated sodium channels in neurological disorders. CNS Neurol Disord Drug Targets 7:144–158

    Article  PubMed  CAS  Google Scholar 

  • Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120:629–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen LQ, Santarelli V, Horn R, Kallen RG (1996) A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J Gen Physiol 108:549–556

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Ong BH, Kambouris NG, Marban E, Tomaselli GF, Balser JR (2000) Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels. J Physiol 524:37–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corry B, Lee S, Ahern CA (2014) Pharmacological insights and quirks of bacterial sodium channels. Handb Exp Pharmacol 221:251–267

    Article  PubMed  CAS  Google Scholar 

  • Courtney KR (1975) Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther 195:225–236

    PubMed  CAS  Google Scholar 

  • Courtney KR (1979) Extracellular PH selectively modulates recovery from sodium inactivation in frog myelinated nerve. Biophys J 28:363–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courtney KR, Etter EF (1983) Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur J Pharmacol 88:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Binshtok AM, Cummins TR, Jarvis MF, Samad T, Zimmermann K (2009) Voltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment. Brain Res Rev 60:65–83

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Faraldo-Gomez JD, Kutluay E, Jogini V, Zhao Y, Heginbotham L, Roux B (2007) Mechanism of intracellular block of the KcsA K+ channel by tetrabutylammonium: insights from X-ray crystallography, electrophysiology and replica-exchange molecular dynamics simulations. J Mol Biol 365:649–662

    Article  PubMed  CAS  Google Scholar 

  • Fontaine B, Khurana TS, Hoffman EP, Bruns GA, Haines JL, Trofatter JA, Hanson MP, Rich J, McFarlane H, Yasek DM et al (1990) Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science 250:1000–1002

    Article  PubMed  CAS  Google Scholar 

  • Fozzard HA, Hanck DA (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 76:887–926

    Article  PubMed  CAS  Google Scholar 

  • Fozzard HA, Lee PJ, Lipkind GM (2005) Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr Pharm Des 11:2671–2686

    Article  PubMed  CAS  Google Scholar 

  • Gingrich KJ, Beardsley D, Yue DT (1993) Ultra-deep blockade of Na+ channels by a quaternary ammonium ion: catalysis by a transition-intermediate state? J Physiol 471:319–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Article  PubMed  CAS  Google Scholar 

  • Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368

    Article  PubMed  CAS  Google Scholar 

  • Grant AO, Strauss LJ, Wallace AG, Strauss HC (1980) The influence of PH on Th electrophysiological effects of lidocaine in guinea pig ventricular myocardium. Circ Res 47:542–550

    Article  PubMed  CAS  Google Scholar 

  • Grant AO, Trantham JL, Brown KK, Strauss HC (1982) PH-dependent effects of quinidine on the kinetics of DV/Dtmax in guinea pig ventricular myocardium. Circ Res 50:210–217

    Article  PubMed  CAS  Google Scholar 

  • Habbout K, Poulin H, Rivier F, Giuliano S, Sternberg D, Fontaine B, Eymard B, Morales RJ, Echenne B, King L, Hanna MG, Mannikko R, Chahine M, Nicole S, Bendahhou S (2016) A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology 86:161–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanck DA, Makielski JC, Sheets MF (2000) Lidocaine alters activation gating of cardiac Na channels. Pflugers Arch 439:814–821

    Article  PubMed  CAS  Google Scholar 

  • Hartmann HA, Colom LV, Sutherland ML, Noebels JL (1999) Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain. Nat Neurosci 2:593–595

    Article  PubMed  CAS  Google Scholar 

  • Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–515

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion channels in excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hirschberg B, Rovner A, Lieberman M, Patlak J (1995) Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J Gen Physiol 106:1053–1068

    Article  PubMed  CAS  Google Scholar 

  • Ho C, O’Leary ME (2011) Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 46:159–166

    Article  PubMed  CAS  Google Scholar 

  • Isom LL (2001) Sodium channel beta subunits: anything but auxiliary. Neurosci 7:42–54

    CAS  Google Scholar 

  • Isom LL (2002) b-subunits: players in neuronal hyperexcitability? Novartis Found Symp 241:124–138

    PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526

    Article  PubMed  CAS  Google Scholar 

  • Jo S, Bean BP (2017) Lacosamide inhibition of Nav1.7 voltage-gated sodium channels: slow binding to fast-inactivated states. Mol Pharmacol 91:277–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jogini V, Roux B (2005) Electrostatics of the intracellular vestibule of K+ channels. J Mol Biol 354:272–288

    Article  PubMed  CAS  Google Scholar 

  • Karoly R, Lenkey N, Juhasz AO, Vizi ES, Mike A (2010) Fast- or slow-inactivated state preference of Na+ channel inhibitors: a simulation and experimental study. PLoS Comput Biol 6:e1000818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellenberger S, Scheuer T, Catterall WA (1996) Movement of the Na+ channel inactivation gate during inactivation. J Biol Chem 271:30971–30979

    Article  PubMed  CAS  Google Scholar 

  • Keller DI, Acharfi S, Delacretaz E, Benammar N, Rotter M, Pfammatter JP, Fressart V, Guicheney P, Chahine M (2003) A novel mutation in SCN5A, DelQKP 1507-1509, causing long QT syndrome: role of Q1507 residue in sodium channel inactivation. J Mol Cell Cardiol 35:1513–1521

    Article  PubMed  CAS  Google Scholar 

  • Keynes RD, Rojas E (1974) Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol 239:393–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimbrough JT, Gingrich KJ (2000) Quaternary ammonium block of mutant Na+ channels lacking inactivation: features of a transition-intermediate mechanism. J Physiol 529:93–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lampert A, O’Reilly AO, Reeh P, Leffler A (2010) Sodium channelopathies and pain. Pflugers Arch 460:249–263

    Article  PubMed  CAS  Google Scholar 

  • Lerche H, Peter W, Fleischhauer R, Pika-Hartlaub U, Malina T, Mitrovic N, Lehmann-Horn F (1997) Role in fast inactivation of the IV/S4-S5 loop of the human muscle Na+ channel probed by cysteine mutagenesis. J Physiol 505:345–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lipkind GM, Fozzard HA (2005) Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol Pharmacol 68:1611–1622

    PubMed  CAS  Google Scholar 

  • Lu Z (2004) Mechanism of rectification in inward-rectifier K+ channels. Annu Rev Physiol 66:103–129

    Article  PubMed  CAS  Google Scholar 

  • Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation 109:1421–1427

    Article  PubMed  CAS  Google Scholar 

  • Makielski JC, Limberis JT, Chang SY, Fan Z, Kyle JW (1996) Coexpression of beta 1 with cardiac sodium channel alpha subunits in oocytes decreases lidocaine block. Mol Pharmacol 49:30–39

    PubMed  CAS  Google Scholar 

  • Malhotra JD, Kazen-Gillespie K, Hortsch M, Isom LL (2000) Sodium channel beta subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J Biol Chem 275:11383–11388

    Article  PubMed  CAS  Google Scholar 

  • McCusker EC, Bagneris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McNulty MM, Edgerton GB, Shah RD, Hanck DA, Fozzard HA, Lipkind GM (2007) Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels. J Physiol 581:741–755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1994) A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc Natl Acad Sci U S A 91:12346–12350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1995) A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. J Biol Chem 270:12025–12034

    Article  PubMed  CAS  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1998) A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. J Biol Chem 273:1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Meisler MH, Kearney JA (2005) Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 115:2010–2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitrovic N, George AL Jr, Heine R, Wagner S, Pika U, Hartlaub U, Zhou M, Lerche H, Fahlke C, Lehmann-Horn F (1994) K(+)-aggravated myotonia: destabilization of the inactivated state of the human muscle Na+ channel by the V1589M mutation. J Physiol 478:395–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muroi Y, Arcisio-Miranda M, Chowdhury S, Chanda B (2010) Molecular determinants of coupling between the domain III voltage sensor and pore of a sodium channel. Nat Struct Mol Biol 17:230–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naylor CE, Bagneris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, Wallace BA (2016) Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 35:820–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nettleton J, Wang GK (1990) PH-dependent binding of local anesthetics in single batrachotoxin-activated Na+ channels. Cocaine Vs. quaternary compounds. Biophys J 58:95–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N et al (1984) Primary structure of electrophorus electricus sodium channel deduced from CDNA sequence. Nature 312:121–127

    Article  PubMed  CAS  Google Scholar 

  • O’Leary ME (1998) Characterization of the isoform-specific differences in the gating of neuronal and muscle sodium channels. Can J Physiol Pharmacol 76:1041–1050

    Article  PubMed  Google Scholar 

  • O’Leary ME, Chahine M (2002) Cocaine binds to a common site on open and inactivated human heart (Na(v)1.5) sodium channels. J Physiol 541:701–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Leary ME, Horn R (1994) Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums. J Gen Physiol 104:507–522

    Article  PubMed  Google Scholar 

  • O’Leary ME, Kallen RG, Horn R (1994) Evidence for a direct interaction between internal tetra-alkylammonium cations and the inactivation gate of cardiac sodium channels. J Gen Physiol 104:523–539

    Article  PubMed  Google Scholar 

  • O’Leary ME, Digregorio M, Chahine M (2003) Closing and inactivation potentiate the cocaethylene inhibition of cardiac sodium channels by distinct mechanisms. Mol Pharmacol 64:1575–1585

    Article  PubMed  Google Scholar 

  • O’Reilly JP, Wang SY, Kallen RG, Wang GK (1999) Comparison of slow inactivation in human heart and rat skeletal muscle Na+ channel chimaeras. J Physiol 515:61–73

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Reilly JP, Wang SY, Wang GK (2001) Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels. Biophys J 81:2100–2111

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong BH, Tomaselli GF, Balser JR (2000) A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 116:653–662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patlak J (1991) Molecular kinetics of voltage-dependent Na+ channels. Physiol Rev 71:1047–1080

    Article  PubMed  CAS  Google Scholar 

  • Patlak J, Horn R (1982) Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J Gen Physiol 79:333–351

    Article  PubMed  CAS  Google Scholar 

  • Pavlov E, Bladen C, Winkfein R, Diao C, Dhaliwal P, French RJ (2005) The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys J 89:232–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pless SA, Galpin JD, Frankel A, Ahern CA (2011) Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. Nat Commun 2:351

    Article  PubMed  CAS  Google Scholar 

  • Qin N, D’Andrea MR, Lubin ML, Shafaee N, Codd EE, Correa AM (2003) Molecular cloning and functional expression of the human sodium channel beta1B subunit, a novel splicing variant of the beta1 subunit. Eur J Biochem 270:4762–4770

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Karnabi E, Chahine M, Vassalle M, Boutjdir M (2007) Expression of skeletal muscle Na(V)1.4 Na channel isoform in canine cardiac Purkinje myocytes. Biochem Biophys Res Commun 355:28–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quan C, Mok WM, Wang GK (1996) Use-dependent inhibition of Na+ currents by benzocaine homologs. Biophys J 70:194–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265:1724–1728

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93:9270–9275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramos E, O’Leary ME (2004) State-dependent trapping of flecainide in the cardiac sodium channel. J Physiol 560:37–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375

    Article  PubMed  CAS  Google Scholar 

  • Richmond JE, Featherstone DE, Hartmann HA, Ruben PC (1998) Slow inactivation in human cardiac sodium channels. Biophys J 74:2945–2952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandtner W, Szendroedi J, Zarrabi T, Zebedin E, Hilber K, Glaaser I, Fozzard HA, Dudley SC, Todt H (2004) Lidocaine: a foot in the door of the inner vestibule prevents ultra-slow inactivation of a voltage-gated sodium channel. Mol Pharmacol 66:648–657

    PubMed  CAS  Google Scholar 

  • Satin J, Kyle JW, Chen M, Bell P, Cribbs LL, Fozzard HA, Rogart RB (1992) A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256:1202–1205

    Article  PubMed  CAS  Google Scholar 

  • Schoppa NE, McCormack K, Tanouye MA, Sigworth FJ (1992) The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255:1712–1715

    Article  PubMed  CAS  Google Scholar 

  • Schwarz W, Palade PT, Hille B (1977) Local anesthetics. Effect of PH on use-dependent block of sodium channels in frog muscle. Biophys J 20:343–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro BI (1977) Effects of strychnine on the sodium conductance of the frog node of ranvier. J Gen Physiol 69:915–926

    Article  PubMed  CAS  Google Scholar 

  • Sheets MF, Kyle JW, Kallen RG, Hanck DA (1999) The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys J 77:747–757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheets PL, Jarecki BW, Cummins TR (2011) Lidocaine reduces the transition to slow inactivation in Na(v)1.7 voltage-gated sodium channels. Br J Pharmacol 164:719–730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355:4326

    Article  CAS  Google Scholar 

  • Smith MR, Goldin AL (1997) Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J 73:1885–1895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Starmer CF, Grant AO, Strauss HC (1984) Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J 46:15–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62:37–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Article  PubMed  CAS  Google Scholar 

  • Sun YM, Favre I, Schild L, Moczydlowski E (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol 110:693–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang L, Kallen RG, Horn R (1996) Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker. J Gen Physiol 108:89–104

    Article  PubMed  CAS  Google Scholar 

  • Tanguy J, Yeh JZ (1989) QX-314 restores gating charge immobilization abolished by chloramine-T treatment in squid giant axons. Biophys J 56:421–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tikhonov DB, Zhorov BS (2017) Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J Gen Physiol 149:465–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trudeau MM, Dalton JC, Day JW, Ranum LP, Meisler MH (2006) Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J Med Genet 43:527–530

    Article  PubMed  CAS  Google Scholar 

  • Ulbricht W (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85:1271–1301

    Article  PubMed  CAS  Google Scholar 

  • Ulmschneider MB, Bagneris C, McCusker EC, DeCaen PG, Delling M, Clapham DE, Ulmschneider JP, Wallace BA (2013) Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A 110:6364–6369

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassilev P, Scheuer T, Catterall WA (1989) Inhibition of inactivation of single sodium channels by a site-directed antibody. Proc Natl Acad Sci U S A 86:8147–8151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vedantham V, Cannon SC (1999) The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels. J Gen Physiol 113:7–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vedantham V, Cannon SC (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys J 78:2943–2958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR (2000) Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res 86:E91–E97

    Article  PubMed  CAS  Google Scholar 

  • Wang GK (1988) Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers. J Gen Physiol 92:747–765

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Mitchell J, Moczydlowski E, Wang GK (2004) Block of inactivation-deficient Na+ channels by local anesthetics in stably transfected mammalian cells: evidence for drug binding along the activation pathway. J Gen Physiol 124:691–701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, Saegusa C, Noda M (2000) Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 20:7743–7751

    Article  PubMed  CAS  Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang N, Horn R (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218

    Article  PubMed  CAS  Google Scholar 

  • Yang N, George AL Jr, Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113–122

    Article  PubMed  Google Scholar 

  • Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA (2001) Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na(+) channel alpha subunit. J Biol Chem 276:20–27

    Article  PubMed  CAS  Google Scholar 

  • Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA (2002) Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block. J Biol Chem 277:35393–35401

    Article  PubMed  CAS  Google Scholar 

  • Yeh JZ, Narahashi T (1977) Kinetic analysis of pancuronium interaction with sodium channels in squid axon membranes. J Gen Physiol 69:293–323

    Article  PubMed  CAS  Google Scholar 

  • Yeh JZ, Tanguy J (1985) Na channel activation gate modulates slow recovery from use-dependent block by local anesthetics in squid giant axons. Biophys J 47:685–694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004:15

    Google Scholar 

  • Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, Distefano PS, Catterall WA, Scheuer T, Curtis R (2003) Sodium channel b4, a new disulfide-linked auxiliary subunit with similarity to b2. J Neurosci 23:7577–7585

    Article  PubMed  CAS  Google Scholar 

  • Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J, Wang J, Clapham DE, Yan N (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Voelker TL, Varga Z, Schubert AR, Nerbonne JM, Silva JR (2017) Mechanisms of noncovalent beta subunit regulation of NaV channel gating. J Gen Physiol 149:813. https://doi.org/10.1085/jgp.201711802

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chahine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Leary, M.E., Chahine, M. (2017). Mechanisms of Drug Binding to Voltage-Gated Sodium Channels. In: Chahine, M. (eds) Voltage-gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, vol 246. Springer, Cham. https://doi.org/10.1007/164_2017_73

Download citation

Publish with us

Policies and ethics