Skip to main content

Partial Adenosine A1 Agonist in Heart Failure

  • Chapter
  • First Online:
Heart Failure

Abstract

Adenosine exerts a variety of physiological effects by binding to cell surface G-protein-coupled receptor subtypes, namely, A1, A2a, A2b, and A3. The central physiological role of adenosine is to preclude tissue injury and promote repair in response to stress. In the heart, adenosine acts as a cytoprotective modulator, linking cardiac function to metabolic demand predominantly via activation of adenosine A1 receptors (A1Rs), which leads to inhibition of adenylate cyclase activity, modulation of protein kinase C, and opening of ATP-sensitive potassium channels. Activation of myocardial adenosine A1Rs has been shown to modulate a variety of pathologies associated with ischemic cardiac injury, including arrhythmogenesis, coronary and ventricular dysfunction, apoptosis, mitochondrial dysfunction, and ventricular remodeling. Partial A1R agonists are agents that are likely to elicit favorable pharmacological responses in heart failure (HF) without giving rise to the undesirable cardiac and extra-cardiac effects observed with full A1R agonism. Preclinical data have shown that partial adenosine A1R agonists protect and improve cardiac function at doses that do not result in undesirable effects on heart rate, atrioventricular conduction, and blood pressure, suggesting that these compounds may constitute a valuable new therapy for chronic HF. Neladenoson bialanate (BAY1067197) is the first oral partial and highly selective A1R agonist that has entered clinical development for the treatment of HF. This review provides an overview of adenosine A1R-mediated signaling in the heart, summarizes the results from preclinical and clinical studies of partial A1R agonists in HF, and discusses the potential benefits of these drugs in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A1R:

A1 receptor

ATP:

Adenosine triphosphate

AV:

Atrioventricular

CAD:

Coronary artery disease

cAMP:

Cyclic adenosine monophosphate

FFA:

Free fatty acid

GLUT:

Glucose transporter

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

IS:

Infarct size

KATP :

ATP-sensitive potassium channel

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

MPTP:

Mitochondrial permeability transition pore

ROS:

Reactive oxygen species

SERCA2a:

Sarcoplasmic reticulum calcium-ATPase 2a

SR:

Sarcoplasmic reticulum

TAL:

Medullary thick ascending limb

TG:

Triglyceride

UPC:

Uncoupling protein

References

  • Abozguia K, Shivu GN, Ahmed I et al (2009) The heart metabolism: pathophysiological aspects in ischaemia and heart failure. Curr Pharm Des 15(8):827–835

    Article  CAS  PubMed  Google Scholar 

  • Albrecht-Küpper BE, Leineweber K, Nell PG (2012) Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal 8(Suppl 1):91–99

    Article  PubMed  Google Scholar 

  • Ambrosy AP, Pang PS, Khan S et al (2013) Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur Heart J 34(11):835–843

    Article  PubMed  Google Scholar 

  • Badar AA, Perez-Moreno AC, Hawkins NM et al (2015) Clinical characteristics and outcomes of patients with coronary artery disease and angina: analysis of the irbesartan in patients with heart failure and preserved systolic function trial. Circ Heart Fail 8(4):717–724

    Article  PubMed  Google Scholar 

  • Bajaj M, Defronzo RA (2003) Metabolic and molecular basis of insulin resistance. J Nucl Cardiol 10(3):311–323

    Article  PubMed  Google Scholar 

  • Bayes M, Rabasseda X, Prous JR (2003) Gateways to clinical trials. Methods Find Exp Clin Pharmacol 25(6):483–506

    CAS  PubMed  Google Scholar 

  • Bayeva M, Gheorghiade M, Ardehali H (2013) Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 61(6):599–610

    Article  CAS  PubMed  Google Scholar 

  • Bayeva M, Sawicki KT, Butler J et al (2014) Molecular and cellular basis of viable dysfunctional myocardium. Circ Heart Fail 7(4):680–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Beach RE, Good DW (1992) Effects of adenosine on ion transport in rat medullary thick ascending limb. Am J Physiol 263(3 Pt 2):F482–F487

    CAS  PubMed  Google Scholar 

  • Bello D, Shah DJ, Farah GM et al (2003) Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 108(16):1945–1953

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda) 21:380–387

    Article  CAS  Google Scholar 

  • Boden G (2001) Free fatty acids-the link between obesity and insulin resistance. Endocr Pract 7(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32(Suppl 3):14–23

    Article  CAS  PubMed  Google Scholar 

  • Bott-Flugel L, Bernshausen A, Schneider H et al (2011) Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism. PLoS One 6(3):e18048

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugger H, Guzman C, Zechner C et al (2011) Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 67(6):1381–1388

    Article  CAS  PubMed  Google Scholar 

  • Capurso C, Capurso A (2012) From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol 57(2–4):91–97

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Shryock JC, Shreeniwas R et al (2003) Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem 3(4):369–385

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Santikul M, Smith M et al (2007a) Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid. J Pharmacol Exp Ther 321(1):327–333

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Wong MY, Voshol PJ et al (2007b) A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab 292(5):E1358–E1363

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Chisholm JW, Reaven GM et al (2009) A1 adenosine receptor: role in diabetes and obesity. Handb Exp Pharmacol 193:271–295

    Article  CAS  Google Scholar 

  • Dinh W, Voors A, Delesen H et al (2016) Safety and tolerability of neladenoson bialanate, a novel oral partial and selective adenosine A1 receptor agonist, in healthy volunteers pretreated with beta-blocker. Paper presented at the ESC HF Congress 2016, Florence

    Google Scholar 

  • Dittrich HC, Gupta DK, Hack TC et al (2007) The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Card Fail 13(8):609–617

    Article  CAS  PubMed  Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ et al (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118(6):1461–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djoussé L, Benkeser D, Arnold A et al (2013) Plasma free fatty acids and risk of heart failure: the Cardiovascular Health Study. Circ Heart Fail 6(5):964–969

    Article  PubMed  Google Scholar 

  • Ellenbogen KA, O’Neill G, Prystowsky EN et al (2005) Trial to evaluate the management of paroxysmal supraventricular tachycardia during an electrophysiology study with tecadenoson. Circulation 111(24):3202–3208

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    Google Scholar 

  • Gheorghiade M, Sopko G, De Luca L et al (2006) Navigating the crossroads of coronary artery disease and heart failure. Circulation 114(11):1202–1213

    Article  PubMed  Google Scholar 

  • Givertz MM, Massie BM, Fields TK et al (2007) The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50(16):1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Greene SJ, Sabbah HN, Butler J et al (2016) Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure. Heart Fail Rev 21(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Hasenfuss G, Reinecke H, Studer R et al (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442

    Article  CAS  PubMed  Google Scholar 

  • Headrick JP, Gauthier NS, Berr SS et al (1998) Transgenic A1 adenosine receptor overexpression markedly improves myocardial energy state during ischemia-reperfusion. J Mol Cell Cardiol 30(5):1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Heseltine L, Webster JM, Taylor R (1995) Adenosine effects upon insulin action on lipolysis and glucose transport in human adipocytes. Mol Cell Biochem 144(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Mustafa SJ (1995) Binding of A1 adenosine receptor ligand [3H]8-cyclopentyl-1,3-dipropylxanthine in coronary smooth muscle. Circ Res 77(1):194–198

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, van Galen PJ, Williams M (1992) Adenosine receptors: pharmacology, structure-activity relationships, and therapeutic potential. J Med Chem 35(3):407–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AB, Argyraki M, Thow JC et al (1992) Effect of increased free fatty acid supply on glucose metabolism and skeletal muscle glycogen synthase activity in normal man. Clin Sci (Lond) 82(2):219–226

    Article  CAS  Google Scholar 

  • Joo JD, Kim M, Horst P et al (2007) Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors. Am J Physiol Renal Physiol 293(6):F1847–F1857

    Article  CAS  PubMed  Google Scholar 

  • Kirsch GE, Codina J, Birnbaumer L et al (1990) Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 259(3 Pt 2):H820–H826

    CAS  PubMed  Google Scholar 

  • Laskowski KR, Russell RR 3rd (2008) Uncoupling proteins in heart failure. Curr Heart Fail Rep 5(2):75–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100(9):999–1008

    Article  CAS  PubMed  Google Scholar 

  • Massie BM, O'Connor CM, Metra M et al (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363(15):1419–1428

    Article  PubMed  Google Scholar 

  • Matherne GP, Linden J, Byford AM et al (1997) Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Natl Acad Sci U S A 94(12):6541–6546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mjos OD (1971a) Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest 50(7):1386–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mjos OD (1971b) Effect of inhibition of lipolysis on myocardial oxygen consumption in the presence of isoproterenol. J Clin Invest 50(9):1869–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mootha VK, Arai AE, Balaban RS (1997) Maximum oxidative phosphorylation capacity of the mammalian heart. Am J Physiol 272(2 Pt 2):H769–H775

    CAS  PubMed  Google Scholar 

  • Motiwala SR, Gaggin HK, Gandhi PU et al (2015) Concentrations of highly sensitive cardiac troponin-I predict poor cardiovascular outcomes and adverse remodeling in chronic heart failure. J Cardiovasc Transl Res 8(3):164–172

    Article  PubMed  Google Scholar 

  • Mubagwa K, Flameng W (2001) Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res 52(1):25–39

    Article  CAS  PubMed  Google Scholar 

  • Musser B, Morgan ME, Leid M et al (1993) Species comparison of adenosine and beta-adrenoceptors in mammalian atrial and ventricular myocardium. Eur J Pharmacol 246(2):105–111

    Article  CAS  PubMed  Google Scholar 

  • Mustafa SJ, Morrison RR, Teng B et al (2009) Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol 193:161–188

    Article  CAS  Google Scholar 

  • Nell PG, Albrecht-Kupper B (2009) The adenosine A1 receptor and its ligands. Prog Med Chem 47:163–201

    Article  CAS  PubMed  Google Scholar 

  • Neubauer S (2007) The failing heart–an engine out of fuel. N Engl J Med 356(11):1140–1151

    Article  PubMed  Google Scholar 

  • Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Parsons WJ, Stiles GL (1987) Heterologous desensitization of the inhibitory A1 adenosine receptor-adenylate cyclase system in rat adipocytes. Regulation of both Ns and Ni. J Biol Chem 262(2):841–847

    CAS  PubMed  Google Scholar 

  • Peterman C, Sanoski CA (2005) Tecadenoson: a novel, selective A1 adenosine receptor agonist. Cardiol Rev 13(6):315–321

    Article  PubMed  Google Scholar 

  • Phan TT, Abozguia K, Nallur Shivu G et al (2009) Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol 54(5):402–409

    Article  PubMed  Google Scholar 

  • Phan TT, Shivu GN, Abozguia K et al (2010) Impaired heart rate recovery and chronotropic incompetence in patients with heart failure with preserved ejection fraction. Circ Heart Fail 3(1):29–34

    Article  PubMed  Google Scholar 

  • Puhl SL, Kazakov A, Muller A et al (2016) Adenosine A1 receptor activation attenuates cardiac hypertrophy and fibrosis in response to alpha1-adrenoceptor stimulation in vivo. Br J Pharmacol 173(1):88–102

    Article  CAS  PubMed  Google Scholar 

  • Razeghi P, Young ME, Alcorn JL et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104(24):2923–2931

    Article  CAS  PubMed  Google Scholar 

  • Roman V, Keijser JN, Luiten PG et al (2008) Repetitive stimulation of adenosine A1 receptors in vivo: changes in receptor numbers, G-proteins and A1 receptor agonist-induced hypothermia. Brain Res 1191:69–74

    Article  CAS  PubMed  Google Scholar 

  • Rosano GM, Fini M, Caminiti G et al (2008) Cardiac metabolism in myocardial ischemia. Curr Pharm Des 14(25):2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Rusinaru D, Houpe D, Szymanski C et al (2014) Coronary artery disease and 10-year outcome after hospital admission for heart failure with preserved and with reduced ejection fraction. Eur J Heart Fail 16(9):967–976

    Article  PubMed  Google Scholar 

  • Sabbah HN (2000) Apoptotic cell death in heart failure. Cardiovasc Res 45(3):704–712

    Article  CAS  PubMed  Google Scholar 

  • Sabbah HN, Sharov V, Riddle JM et al (1992) Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 24(11):1333–1347

    Article  CAS  PubMed  Google Scholar 

  • Sabbah HN, Shimoyama H, Kono T et al (1994) Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation 89(6):2852–2859

    Article  CAS  PubMed  Google Scholar 

  • Sabbah HN, Gupta RC, Kohli S et al (2013) Chronic therapy with a partial adenosine A1-receptor agonist improves left ventricular function and remodeling in dogs with advanced heart failure. Circ Heart Fail 6(3):563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweda F, Segerer F, Castrop H et al (2005) Blood pressure-dependent inhibition of Renin secretion requires A1 adenosine receptors. Hypertension 46(4):780–786

    Article  CAS  PubMed  Google Scholar 

  • Shah RV, Desai AS, Givertz MM (2010) The effect of renin-angiotensin system inhibitors on mortality and heart failure hospitalization in patients with heart failure and preserved ejection fraction: a systematic review and meta-analysis. J Card Fail 16(3):260–267

    Article  CAS  PubMed  Google Scholar 

  • Sharov VG, Goussev A, Lesch M et al (1998) Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 30(9):1757–1762

    Article  CAS  PubMed  Google Scholar 

  • Sharov VG, Todor AV, Silverman N et al (2000) Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 32(12):2361–2367

    Article  CAS  PubMed  Google Scholar 

  • Shearer J, Severson DL, Su L et al (2009) Partial A1 adenosine receptor agonist regulates cardiac substrate utilization in insulin-resistant rats in vivo. J Pharmacol Exp Ther 328(1):306–311

    Article  CAS  PubMed  Google Scholar 

  • Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79(12A):2–10

    Article  CAS  PubMed  Google Scholar 

  • Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Srinivas M, Shryock JC, Dennis DM et al (1997) Differential A1 adenosine receptor reserve for two actions of adenosine on guinea pig atrial myocytes. Mol Pharmacol 52(4):683–691

    CAS  PubMed  Google Scholar 

  • Staehr PM, Dhalla AK, Zack J et al (2013) Reduction of free fatty acids, safety, and pharmacokinetics of oral GS-9667, an A(1) adenosine receptor partial agonist. J Clin Pharmacol 53(4):385–392

    Article  PubMed  Google Scholar 

  • Steinberg BA, Zhao X, Heidenreich PA et al (2012) Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation 126(1):65–75

    Article  PubMed  Google Scholar 

  • Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 193:535–587

    Article  CAS  Google Scholar 

  • Teerlink JR, Iragui VJ, Mohr JP et al (2012) The safety of an adenosine A1-receptor antagonist, rolofylline, in patients with acute heart failure and renal impairment: findings from PROTECT. Drug Saf 35(3):233–244

    Article  CAS  PubMed  Google Scholar 

  • Tendera M, Gaszewska-Zurek E, Parma Z et al (2012) The new oral adenosine A1 receptor agonist capadenoson in male patients with stable angina. Clin Res Cardiol 101(7):585–591

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Galuppo P, Wolf C et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267

    Article  CAS  PubMed  Google Scholar 

  • Tuunanen H, Engblom E, Naum A et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137

    Article  CAS  PubMed  Google Scholar 

  • Vaduganathan M, Greene SJ, Ambrosy AP et al (2013) The disconnect between phase II and phase III trials of drugs for heart failure. Nat Rev Cardiol 10(2):85–97

    Article  CAS  PubMed  Google Scholar 

  • Vaduganathan M, Butler J, Pitt B et al (2015) Contemporary drug development in heart failure: call for hemodynamically neutral therapies. Circ Heart Fail 8(4):826–831

    Article  PubMed  Google Scholar 

  • Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86(3):901–940

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Miracle C, Thomson S (2008) Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail 10(2):176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veres G, Radovits T, Otila G et al (2010) Efficacy of the non-adenosine analogue A1 adenosine receptor agonist (BR-4935) on cardiovascular function after cardiopulmonary bypass. Thorac Cardiovasc Surg 58(2):86–92

    Article  CAS  PubMed  Google Scholar 

  • Xiang F, Huang YS, Zhang DX et al (2010) Adenosine A1 receptor activation reduces opening of mitochondrial permeability transition pores in hypoxic cardiomyocytes. Clin Exp Pharmacol Physiol 37(3):343–349

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Gross GJ (1993) Glibenclamide antagonizes adenosine A1 receptor-mediated cardioprotection in stunned canine myocardium. Circulation 88(1):235–244

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Dinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dinh, W., Albrecht-Küpper, B., Gheorghiade, M., Voors, A.A., van der Laan, M., Sabbah, H.N. (2016). Partial Adenosine A1 Agonist in Heart Failure. In: Bauersachs, J., Butler, J., Sandner, P. (eds) Heart Failure. Handbook of Experimental Pharmacology, vol 243. Springer, Cham. https://doi.org/10.1007/164_2016_83

Download citation

Publish with us

Policies and ethics