Skip to main content

Ligands at Free Fatty Acid Receptor 1 (GPR40)

  • Chapter
  • First Online:
Free Fatty Acid Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 236))

Abstract

FFA1 is a G protein-coupled receptor activated by medium- to long-chain fatty acids. FFA1 plays important roles in various physiological processes such as insulin secretion and energy metabolism. FFA1 expressed on pancreatic β-cells and intestine contributes to insulin and incretin secretion, respectively. These physiological functions of FFA1 are interesting as an attractive drug target for type II diabetes and metabolic disorders. A number of synthetic FFA1 ligands have been developed and they have contributed to our current understanding of the physiological and pathophysiological functions of FFA1 both in in vitro and in vivo studies. In addition, these synthetic ligands also provided information on the structure–activity relationships of FFA1 ligands. Further, FFA1 protein crystallized with one of the high affinity agonist leads provided useful insights for the development of more effective ligands. Among FFA1 ligands, several compounds have been further investigated in the clinical trials. Thus, FFA1 ligands have great potential as drug candidates. In this section, recent progress about FFA1 ligands and the possibility of their clinical use are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araki T, Hirayama M, Hiroi S, Kaku K (2012) GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes Metab 14:271–278

    Article  CAS  PubMed  Google Scholar 

  • Astellas Pharma (2013) https://www.astellas.com/en/ir/library/pdf/1q2013_pre_en.pdf

  • Bertrand R, Wolf A, Ivashchenko Y, Löhn M, Schäfer M, Brönstrup M, Gotthardt M, Derdau V, Plettenburg O (2016) Synthesis and characterization of a promising novel FFAR1/GPR40 targeting fluorescent probe for β-cell imaging. ACS Chem Biol 11:1745–1754

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT et al (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen E, Urban C, Merten N, Liebscher K, Karlsen KK, Hamacher A, Spinrath A, Bond AD, Drewke C, Ullrich S et al (2008) Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA(1)/GPR40), a potential target for the treatment of type II diabetes. J Med Chem 51:7061–7064

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Due-Hansen ME, Urban C, Merten N, Pfleiderer M, Karlsen KK, Rasmussen SS, Steensgaard M, Hamacher A, Schmidt J et al (2010) Structure-activity study of dihydrocinnamic acids and discovery of the potent FFA1 (GPR40) agonist TUG-469. ACS Med Chem Lett 1:345–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schröder R, Hudson BD, Milligan G, Cawthorne MA, Kostenis E, Kassack MU et al (2012) Free fatty acid receptor 1 (FFA1/GPR40) agonists: mesylpropoxy appendage lowers lipophilicity and improves ADME properties. J Med Chem 55:6624–6628

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Hansen SVF, Urban C, Hudson BD, Wargent ET, Grundmann M, Jenkins L, Zaibi M, Stocker CJ, Ullrich S et al (2013) Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes. ACS Med Chem Lett 4:441–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen E, Watterson KR, Stocker CJ, Sokol E, Jenkins L, Simon K, Grundmann M, Petersen RK, Wargent ET, Hudson BD et al (2015) Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br J Nutr 113:1677–1688

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Hudson BD, Hansen AH, Milligan G, Ulven T (2016) Development and characterization of a potent free fatty acid receptor 1 (FFA1) fluorescent tracer. J Med Chem 59:4849–4858

    Article  CAS  PubMed  Google Scholar 

  • Civelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R, Schiöth HB (2013) G protein–coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 53:127–146

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Harmar AJ (2013) Evolving pharmacology of orphan GPCRs: IUPHAR Commentary. Br Pharmacol 170:693–695

    Article  CAS  Google Scholar 

  • Defossa E, Wagner M (2014) Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 24:2991–3000

    Article  CAS  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  • Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido DM, Corbett DF, Dwornik KA, Goetz AS, Littleton TR, McKeown SC, Mills WY, Smalley TL, Briscoe CP, Peat AJ (2006) Synthesis and activity of small molecule GPR40 agonists. Bioorg Med Chem Lett 16:1840–1845

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Hirasawa A, Sun Q, Koshimizu T, Itsubo C, Sadakane K, Awaji T, Tsujimoto G (2009) Flow cytometry-based binding assay for GPR40 (FFAR1; free fatty acid receptor 1). Mol Pharmacol 75:85–91

    Article  CAS  PubMed  Google Scholar 

  • Hauge M, Vestmar MA, Husted AS, Ekberg JP, Wright MJ, Di Salvo J, Weinglass AB, Engelstoft MS, Madsen AN, Lückmann M et al (2015) GPR40 (FFAR1) – combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4:3–14

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    Article  CAS  PubMed  Google Scholar 

  • Houze JB, Zhu L, Sun Y, Akerman M, Qiu W, Zhang AJ, Sharma R, Schmitt M, Wang Y, Liu J et al (2012) AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett 22:1267–1270

    Article  CAS  PubMed  Google Scholar 

  • Hu H, He LY, Gong Z, Li N, Lu YN, Zhai QW, Liu H, Jiang HL, Zhu WL, Wang HY (2009) A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun 390:557–563

    Article  CAS  PubMed  Google Scholar 

  • Humphries PS, Benbow JW, Bonin PD, Boyer D, Doran SD, Frisbie RK, Piotrowski DW, Balan G, Bechle BM, Conn EL et al (2009) Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg Med Chem Lett 19:2400–2403

    Article  CAS  PubMed  Google Scholar 

  • Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, Kimura I, Leloire A, Liu N, Iida K et al (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483:350–354

    Article  CAS  PubMed  Google Scholar 

  • Ito R, Tsujihata Y, Matsuda-Nagasumi K, Mori I, Negoro N, Takeuchi K (2013) TAK-875, a GPR40/FFAR1 agonist, in combination with metformin prevents progression of diabetes and β-cell dysfunction in Zucker diabetic fatty rats. Br J Pharmacol 170:568–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176

    Article  CAS  PubMed  Google Scholar 

  • Japan Tobacco (2013) https://www.jt.com/media/news/2013/pdf/20130131_04.pdf

  • Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R (2015) Efficacy and safety of fasiglifam (TAK-875), a G protein-coupled receptor 40 agonist, in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab 17:675–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B (2003) A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 301:406–410

    Article  CAS  PubMed  Google Scholar 

  • Krasavin M, Lukin A, Zhurilo N, Kovalenko A, Zahanich I, Zozulya S, Moore D, Tikhonova IG (2016) Novel free fatty acid receptor 1 (GPR40) agonists based on 1,3,4-thiadiazole-2-carboxamide scaffold. Bioorg Med Chem 24:2954–2963

    Article  CAS  PubMed  Google Scholar 

  • Kristinsson H, Smith DM, Bergsten P, Sargsyan E (2013) FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology 154:4078–4088

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhong K, Guo Z, Zhong D, Chen X (2015) Fasiglifam (TAK-875) inhibits hepatobiliary transporters: a possible factor contributing to fasiglifam-induced liver injury. Drug Metab Dispos 43:1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Pan M, Su X, Dai Y, Fu M, Cai X, Shi W, Huang W, Qian H (2016) Discovery of novel pyrrole-based scaffold as potent and orally bioavailable free fatty acid receptor 1 agonists for the treatment of type 2 diabetes. Bioorg Med Chem 24:1981–1987

    Article  CAS  PubMed  Google Scholar 

  • Lin DC-H, Zhang J, Zhuang R, Li F, Nguyen K, Chen M, Tran T, Lopez E, Lu JYL, Li XN et al (2011) AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS One 6

    Google Scholar 

  • Lin DC-H, Guo Q, Luo J, Zhang J, Nguyen K, Chen M, Tran T, Dransfield PJ, Brown SP, Houze J et al (2012) Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 82:843–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Swaminath G, Brown SP, Zhang J, Guo Q, Chen M, Nguyen K, Tran T, Miao L, Dransfield PJ et al (2012) A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 7, e46300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancini AD, Poitout V (2015) GPR40 agonists for the treatment of type 2 diabetes: life after “TAKing” a hit. Diabetes Obes Metab 17:622–629

    Article  CAS  PubMed  Google Scholar 

  • Mancini AD, Bertrand G, Vivot K, Carpentier É, Tremblay C, Ghislain J, Bouvier M, Poitout V (2015) β-Arrestin recruitment and biased agonism at free fatty acid receptor 1. J Biol Chem 290:21131–21140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik H, Vakilynejad M, Wu J, Viswanathan P, Dote N, Higuchi T, Leifke E (2012) Safety, tolerability, pharmacokinetics, and pharmacodynamic properties of the GPR40 agonist TAK-875: results from a double-blind, placebo-controlled single oral dose rising study in healthy volunteers. J Clin Pharmacol 52:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Negoro N, Sasaki S, Mikami S, Ito M, Suzuki M, Tsujihata Y, Ito R, Harada A, Takeuchi K, Suzuki N et al (2010) Discovery of TAK-875: a potent, selective, and orally bioavailable GPR40 agonist. ACS Med Chem Lett 1:290–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DY, Olefsky JM (2016) G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 15:161–172

    Article  CAS  Google Scholar 

  • Oh DY, Walenta E (2014) The role of omega-3 fatty acid receptor GPR120 in insulin resistance. Int J Obes Suppl 4:S14–S16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM et al (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X-M, Cao L-Y, Zhang J, Qin W-P, Yang Y, Wan B, Guo L-H (2016) Investigation of the binding interaction of fatty acids with human G protein-coupled receptor 40 using a site-specific fluorescence probe by flow cytometry. Biochemistry (Mosc) 55:1989–1996

    Article  CAS  Google Scholar 

  • Schmidt J, Liebscher K, Merten N, Grundmann M, Mielenz M, Sauerwein H, Christiansen E, Due-Hansen ME, Ulven T, Ullrich S et al (2011) Conjugated linoleic acids mediate insulin release through islet G protein-coupled receptor FFA1/GPR40. J Biol Chem 286:11890–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NJ, Stoddart LA, Devine NM, Jenkins L, Milligan G (2009) The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J Biol Chem 284:17527–17539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F, Snell G, Lane W, Ivetac A, Aertgeerts K, Nguyen J et al (2014) High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513:124–127

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, Brown AJ, Milligan G (2007) Uncovering the pharmacology of the G protein-coupled receptor GPR40: high apparent constitutive activity in guanosine 5’-O-(3-[35S]thio)triphosphate binding studies reflects binding of an endogenous agonist. Mol Pharmacol 71:994–1005

    Article  CAS  PubMed  Google Scholar 

  • Sum CS, Tikhonova IG, Costanzi S, Gershengorn MC (2009) Two arginine-glutamate ionic locks near the extracellular surface of FFAR1 gate receptor activation. J Biol Chem 284:3529–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Wang T, Zhou Y, Liu H, Jiang H, Zhu W, Wang H (2013) DC260126: a small-molecule antagonist of GPR40 that protects against pancreatic β-cells dysfunction in db/db mice. PLoS One 8, e66744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano R, Yoshida M, Inoue M, Honda T, Nakashima R, Matsumoto K, Yano T, Ogata T, Watanabe N, Toda N (2014) Discovery of 3-aryl-3-ethoxypropanoic acids as orally active GPR40 agonists. Bioorg Med Chem Lett 24:2949–2953

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Hirasawa A, Hara T, Kimura I, Hirano T, Suzuki T, Miyata N, Awaji T, Ishiguro M, Tsujimoto G (2013) FFA1-selective agonistic activity based on docking simulation using FFA1 and GPR120 homology models. Br J Pharmacol 168:1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhonova IG, Sum CS, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC (2008) Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J Med Chem 51:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujihata Y, Ito R, Suzuki M, Harada A, Negoro N, Yasuma T, Momose Y, Takeuchi K (2011) TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther 339:228–237

    Article  CAS  PubMed  Google Scholar 

  • Waring MJ, Baker DJ, Bennett SNL, Dossetter AG, Fenwick M, Garcia R, Georgsson J, Groombridge SD, Loxham S, MacFaul PA et al (2015) Discovery of a series of 2-(pyridinyl)pyrimidines as potent antagonists of GPR40. Med Chem Commun 6:1024–1029

    Article  CAS  Google Scholar 

  • Watterson KR, Hudson BD, Ulven T, Milligan G (2014) Treatment of type 2 diabetes by free fatty acid receptor agonists. Front Endocrinol 5

    Google Scholar 

  • Yang L, Zhang J, Si L, Han L, Zhang B, Ma H, Xing J, Zhao L, Zhou J, Zhang H (2016) Synthesis and biological evaluation of GPR40/FFAR1 agonists containing 3,5-dimethylisoxazole. Eur J Med Chem 116:46–58

    Article  CAS  PubMed  Google Scholar 

  • Yashiro H, Tsujihata Y, Takeuchi K, Hazama M, Johnson PRV, Rorsman P (2012) The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther 340:483–489

    Article  CAS  PubMed  Google Scholar 

  • Yazaki R, Kumagai N, Shibasaki M (2011) Enantioselective synthesis of a GPR40 agonist AMG 837 via catalytic asymmetric conjugate addition of terminal alkyne to α, β-unsaturated thioamide. Org Lett 13:952–955

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan G, Li Y, Zhu W, Wang H (2010) DC260126, a small-molecule antagonist of GPR40, improves insulin tolerance but not glucose tolerance in obese Zucker rats. Biomed Pharmacother 64:647–651

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The author declares no conflict of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Hara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hara, T. (2016). Ligands at Free Fatty Acid Receptor 1 (GPR40). In: Milligan, G., Kimura, I. (eds) Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, vol 236. Springer, Cham. https://doi.org/10.1007/164_2016_59

Download citation

Publish with us

Policies and ethics