Skip to main content

cCMP and cUMP Across the Tree of Life: From cCMP and cUMP Generators to cCMP- and cUMP-Regulated Cell Functions

  • Chapter
  • First Online:
Non-canonical Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 238))

Abstract

The cyclic purine nucleotides cAMP and cGMP are well-established second messenger molecules that are generated by distinct nucleotidyl cyclases (NCs) and regulate numerous cell functions via specific effector molecules. In contrast, the existence of the cyclic pyrimidine nucleotides cCMP and cUMP has been controversial for many years. The development of highly specific and sensitive mass spectrometry methods has enabled the unequivocal detection and quantitation of cCMP and cUMP in biological systems. These cNMPs occur broadly in numerous mammalian cell lines and primary cells. cCMP has also been detected in mouse organs, and both cCMP and cUMP occur in various developmental stages of the zebrafish Danio rerio. So far, the soluble guanylyl cyclase (sGC) and soluble adenylyl cyclase (sAC) have been identified as cCMP and cUMP generators. Dissociations in the expression patterns of sAC and sGC relative to cCMP and cUMP abundance may point to the existence of hitherto unidentified cCMP- and cUMP-generating NCs. The broad occurrence of cCMP and cUMP in vertebrates and the distinct cNMP patterns suggest specific roles of these cNMPs in the regulation of numerous cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bähre H, Kaever V (2017) Mass-spectrometric analysis of non-canonical cyclic nucleotides. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2017_5001

    Google Scholar 

  • Bähre H, Danker KY, Stasch J-P et al (2014) Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells. Biochem Biophys Res Commun 443:1195–1199

    Article  PubMed  Google Scholar 

  • Bähre H, Hartwig C, Munder A et al (2015) cCMP and cUMP occur in vivo. Biochem Biophys Res Commun 460:909–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckert U, Wolter S, Hartwig C et al (2014a) ExoY from Pseudomonas aeruginosa is a nucleotidyl cyclase with preference for cGMP and cUMP formation. Biochem Biophys Res Commun 450:870–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckert U, Grundmann M, Wolter S et al (2014b) cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem Biophys Res Commun 451:497–502

    Article  CAS  PubMed  Google Scholar 

  • Beste KY, Burhenne H, Kaever V et al (2012) Nucleotidyl cyclase activity of soluble guanylyl cyclase α1β1. Biochemistry 51:194–204

    Article  CAS  PubMed  Google Scholar 

  • Beste KY, Spangler CM, Burhenne H et al (2013) Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor. PLoS One 8, e702223

    Article  Google Scholar 

  • Brus R, Herman ZS, Juraszczyk Z et al (1984) Central action of cyclic: 3′,5′-thymidine, 3′,5′-uridine and 3′,5′-citidine monophosphates in rat. Acta Med Pol 25:1–9

    CAS  PubMed  Google Scholar 

  • Cech SY, Ignarro LJ (1977) Cytidine 3′,5′-monophosphate (cyclic CMP) formation in mammalian tissues. Science 198:1063–1065

    Article  CAS  PubMed  Google Scholar 

  • Chan PJ (1987) The effect of cyclic cytidine 3′,5′-monophosphate (cCMP) on the in vitro development, hatching and attachment of the mouse blastocyst. Experientia 43:929–930

    Article  CAS  PubMed  Google Scholar 

  • Choi HB, Gordon GR, Zhou N et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desch M, Schinner E, Kees F et al (2010) Cyclic cytidine 3′,5′-monophosphate (cCMP) signals via cGMP kinase I. FEBS Lett 584:3979–3984

    Article  CAS  PubMed  Google Scholar 

  • Detremmerie CM, Chen Z, Li Z et al (2016) Endothelium-dependent contraction of isolated arteries to thymoquinone require biased activity of sGC with subsequent cIMP production. J Pharmacol Exp Ther 358:558–568

    Article  CAS  PubMed  Google Scholar 

  • Di Benedetto B, Rupprecht R (2013) Targeting glia cells: novel perspectives for the treatment of neuropsychiatric diseases. Curr Neuropharmacol 11:171–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Dittmar F, Abdelilah-Seyfried S, Tschirner SK et al (2015) Temporal and organ-specific detection of cNMPs including cUMP in the zebrafish. Biochem Biophys Res Commun 408:708–712

    Article  Google Scholar 

  • Dittmar F, Wolter S, Seifert R (2016) Regulation of apoptosis by cyclic nucleotides in human erythroleukemia (HEL) cells and human myelogenous leukemia (K-562) cells. Biochem Pharmacol 112:13–23

    Article  CAS  PubMed  Google Scholar 

  • Dove S (2017) Mammalian nucleotidyl cyclases and their nucleotide binding sites. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_34

    Google Scholar 

  • Ervens J, Seifert R (1991) Differential modulation by N4, 2′-O-dibutyryl cytidine 3′:5′-cyclic monophosphate of neutrophil activation. Biochem Biophys Res Commun 174:258–267

    Article  CAS  PubMed  Google Scholar 

  • Friebe A, Sandner P, Seifert R (2015) From bedside to bench--meeting report of the 7th International Conference on cGMP “cGMP: generators, effectors and therapeutic implications” in Trier, Germany, from June 19th to 21st 2015. Naunyn Schmiedebergs Arch Pharmacol 388:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Gaion RM, Krishna G (1979) Cytidylate cyclase: the product isolated by the method of Cech and Ignarro is not cytidine 3′,5′-monophosphate. Biochem Biophys Res Commun 86:105–111

    Article  CAS  PubMed  Google Scholar 

  • Geng W, Wang Z, Zhang J et al (2005) Cloning and characterization of the human soluble adenylyl cyclase. Am J Physiol Cell Physiol 288:C1305–C1316

    Article  CAS  PubMed  Google Scholar 

  • Gille A, Lushington GH, Mou TC et al (2004) Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J Biol Chem 279:19955–19969

    Article  CAS  PubMed  Google Scholar 

  • Goldberg ND, O’Dea RF, Haddox MK (1973) Cyclic GMP. Adv Cyclic Nucleotide Res 3:155–223

    CAS  PubMed  Google Scholar 

  • Göttle M, Dove S, Steindel P et al (2007) Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Mol Pharmacol 72:526–535

    Article  PubMed  Google Scholar 

  • Göttle M, Dove S, Kees F et al (2010) Cytidylyl and uridylyl cyclase activity of Bacillus anthracis edema factor and Bordetella pertussis CyaA. Biochemistry 49:5494–5503

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross OP, Pugh EN Jr, Burns ME (2015) cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses. Front Mol Neurosci 8:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Grundmann M, Kostenis E (2017) Holistic methods for the analysis of cNMP effects. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_42

    Google Scholar 

  • Hartwig C, Bähre H, Wolter S et al (2014) cAMP, cGMP, cCMP and cUMP concentrations across the tree of life: high cCMP and cUMP levels in astrocytes. Neurosci Lett 579:183–187

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Danker KY, Wolter S et al (2014) Soluble adenylyl cyclase accounts for high basal cCMP and cUMP concentrations in HEK293 and B103 cells. Biochem Biophys Res Commun 448:236–240

    Article  CAS  PubMed  Google Scholar 

  • Ipata PL, Balestri F (2013) The functional logic of cytosolic 5′-nucleotidases. Curr Med Chem 20:4205–4216

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Fontaine BM, Strobel F et al (2014) A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2′,3′-cIMP. Biomolecules 4:1070–1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannt A, Wieland T (2016) Managing risks in drug discovery: reproducibility of published findings. Naunyn Schmiedebergs Arch Pharmacol 389:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinboelting S, van den Heuvel J, Steegborn C (2014) Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution. FEBS J 281:4151–4164

    Article  CAS  PubMed  Google Scholar 

  • Leung SWS, Gao Y, Vanhoutte PM (2017) 3′,5′-cIMP as potential second messenger in the vascular wall. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_39

    Google Scholar 

  • Lorenz R, Bertinetti D, Herberg FW (2017) cAMP-dependent protein kinase and cGMP-dependent protein kinase as cyclic nucleotide effectors. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_36

    Google Scholar 

  • Marondedze C, Wong A, Thomas L et al (2017) Cyclic nucleotide monophosphates in plants and plant signalling. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_35

    Google Scholar 

  • Mikolcevic P, Rainer J, Geley S (2012) Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell Cycle 11:3758–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow KA, Seifert R, Kaever V et al (2015) Heterogeneity of pulmonary endothelial cyclic nucleotide response to Pseudomonas aeruginosa ExoY infection. Am J Physiol Lung Cell Mol Physiol 309:L1199–L1207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow KA, Frank DW, Balczon R et al (2017) The Pseudomonas aeruginosa exoenzyme Y: a promiscuous nucleotidyl cyclase edema factor and virulence determinant. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2017_5003

    Google Scholar 

  • Newton RP, Salih SG, Salvage BJ et al (1984) Extraction, purification and identification of cytidine 3′,5′-cyclic monophosphate from rat tissues. Biochem J 221:665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo T, Kufareva I, Coleman JL et al (2016) Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol 173:2934–2951

    Google Scholar 

  • Post SR, Ostrom RS, Insel PA (2000) Biochemical methods for detection and measurement of cyclic AMP and adenylyl cyclase activity. Methods Mol Biol 126:363–374

    CAS  PubMed  Google Scholar 

  • Ramos-Espiritu L, Kleinboelting S, Navarrete FA et al (2016) Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nat Chem Biol 12:838–844

    Google Scholar 

  • Rehmann H (2017) Epac as cNMP effector. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_37

    Google Scholar 

  • Schlossmann J, Wolfertstetter S (2017) Identification of cCMP and cUMP substrate proteins and cross-talk between cNMPs. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_38

    Google Scholar 

  • Schmidt HH, Hofmann F, Stasch JP (eds) (2009) cGMP: generators, effectors and therapeutic implications. Handbook of experimental pharmacology, vol 191. Springer, Heidelberg

    Google Scholar 

  • Schneider EH, Seifert R (2010) Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 128:387–418

    Article  CAS  PubMed  Google Scholar 

  • Schneider EH, Seifert R (2015) Report on the third symposium “cCMP and cUMP as New Second Messengers”. Naunyn Schmiedebergs Arch Pharmacol 388:1–3

    Article  CAS  PubMed  Google Scholar 

  • Schneider EH, Seifert R (2017) Inactivation of non-canonical cyclic nucleotides: hydrolysis and transport. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2017_5004

    Google Scholar 

  • Schwede F, Rentsch A, Genieser HG (2017) Medicinal chemistry of the noncanonical cyclic nucleotides cCMP and cUMP. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2015_41

    Google Scholar 

  • Seifert R (2015) cCMP and cUMP: emerging second messengers. Trends Biochem Sci 40:8–15

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Lushington GH, Mou TC et al (2012) Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci 33:64–78

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Schneider EH, Bähre H (2015) From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 148:154–184

    Article  CAS  PubMed  Google Scholar 

  • Shaw G, Morse S, Ararat M et al (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871

    CAS  PubMed  Google Scholar 

  • Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 12:599–611

    Article  CAS  PubMed  Google Scholar 

  • Stasch JP, Schmidt P, Alonso-Alija C et al (2002) NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 136:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases – similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta 1842:2535–2547

    Article  CAS  PubMed  Google Scholar 

  • Stevens TC, Ochoa CD, Morrow KA et al (2014) The Pseudomonas aeruginosa exoenzyme Y impairs endothelial cell proliferation and vascular repair following lung injury. Am J Physiol Lung Cell Mol Physiol 306:L915–L924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland EW (1970) On the biological role of cyclic AMP. J Am Med Assoc 214:1281–1288

    Article  Google Scholar 

  • Taha HM, Schmidt J, Göttle M et al (2009) Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2′(3′)-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. Mol Pharmacol 75:693–703

    Article  CAS  PubMed  Google Scholar 

  • Van Schouven B, Melacini G (2017) Regulation of HCH channels by non-canonical cyclic nucleotides. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2017_5006

    Google Scholar 

  • Wolter S, Kloth C, Golombek M et al (2015) cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol 98:119–131

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Dittmar F, Seifert R (2017) cCMP and cUMP in apoptosis: concepts and methods. In: Seifert R (ed) Noncanonical cyclic nucleotides, Handbook of experimental pharmacology. Springer, Heidelberg. doi:10.1007/164_2016_5007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Seifert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Seifert, R. (2016). cCMP and cUMP Across the Tree of Life: From cCMP and cUMP Generators to cCMP- and cUMP-Regulated Cell Functions. In: Seifert, R. (eds) Non-canonical Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 238. Springer, Cham. https://doi.org/10.1007/164_2016_5005

Download citation

Publish with us

Policies and ethics