Skip to main content

Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology

  • Chapter
  • First Online:
Free Fatty Acid Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 236))

Abstract

The effects of fatty acids on cancer cells have been studied for decades. The roles of dietary long-chain n-3 polyunsaturated fatty acids, and of microbiome-generated short-chain butyric acid, have been of particular interest over the years. However, the roles of free fatty acid receptors (FFARs) in mediating effects of fatty acids in tumor cells have only recently been examined. In reviewing the literature, the data obtained to date indicate that the long-chain FFARs (FFA1 and FFA4) play different roles than the short-chain FFARs (FFA2 and FFA3). Moreover, FFA1 and FFA4 can in some cases mediate opposing actions in the same cell type. Another conclusion is that different types of cancer cells respond differently to FFAR activation. Currently, the best-studied models are prostate, breast, and colon cancer. FFA1 and FFA4 agonists can inhibit proliferation and migration of prostate and breast cancer cells, but enhance growth of colon cancer cells. In contrast, FFA2 activation can in some cases inhibit proliferation of colon cancer cells. Although the available data are sometimes contradictory, there are several examples in which FFAR agonists inhibit proliferation of cancer cells. This is a unique response to GPCR activation that will benefit from a mechanistic explanation as the field progresses. The development of more selective FFAR agonists and antagonists, combined with gene knockout approaches, will be important for unraveling FFAR-mediated inhibitory effects. These inhibitory actions, mediated by druggable GPCRs, hold promise for cancer prevention and/or therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang Z, Ding JL (2016) GRP41 and GPR43 in obesity and inflammation – protective or causative? Front Immunol 7. doi:10.3389/fimmu.2016.00028

  • Ang Z, Er JZ, Ding JL (2015) The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes. Sci Rep. 5 doi:10.1038/srep08134

  • Audigier Y, Picault F-X, Chaves-Almagro C, Masri B (2013) G protein-coupled receptors in cancer: biochemical interactions and drug design. Prog Mol Biol Transl Sci 115:143–173. doi:10.1016/B978-0-12-394587-7.00004-X

    Article  CAS  PubMed  Google Scholar 

  • Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Calderon PB, Feron O, Muccioli GG, Sonveaux P, Cani PD, Delzenne NM (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 107:1337–1344. doi:10.1038/bjc.2012.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindels LB, Dewulf EM, Delzenne NM (2013) GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 34:226–232. doi:10.1016/j.tips.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  • Bolognini D, Tobin AB, Milligan G, Moss CE (2016) The pharmacology and function of receptors for short-chain fatty acids. Mol Pharm 89:388–398. doi:10.1124/mol.115.10230

    Article  CAS  Google Scholar 

  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C, Fornwald JA, Ignar DM, Jenkinson S (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 178:619–628. doi:10.1038/sj.bjp.0706770

    Article  Google Scholar 

  • Bultman SJ (2013) Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res 20:1–5. doi:10.1158/1078-0432.CCR-13-1483

    Google Scholar 

  • Burns RN, Singh M, Senatorov IS, Moniri NH (2014) Mechanisms of homologous and heterologous phosphorylation of FFA receptor 4 (GPR120): GRK6 and PKC mediate phosphorylation of Thr347, Ser350, and Ser357 in the C-terminal tail. Biochem Pharmacol 87:650–659. doi:10.1016/j.bcp.2013.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher AJ, Hudson BD, Shimpukade B, Alvarez-Curto E, Prihandoko R, Ulven T, Milligan G, Tobin AB (2014) Concomitant action of structural elements and receptor phosphorylation determine arrestin-3 interaction with the free fatty acid receptor FFA4. J Biol Chem 289:18451–18465. doi:10.1074/jbc.M114.568816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung H, Lee YS, Mayoral R, Oh DY, Siu JT, Webster NJ, Sears DD, Olefsky JM, Ellies LG (2014) Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer. Oncogene 34:1–10. doi:10.1038/onc.2014.283

    Google Scholar 

  • Currie E, Schulze A, Zechner R, Walther TC, Farese RV (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161. doi:10.1016/j.cmet.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94. doi:10.1038/nrc2069

    Article  CAS  PubMed  Google Scholar 

  • Dranse HJ, Kelly MEM, Hudson BD (2013) Drugs or diet?--developing novel therapeutic strategies targeting the free fatty acids family of GPCRs. Br J Pharmacol 170:696–711. doi:10.1111/bph.12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Dransfield PJ, Lin SCH, Wong S, Wang Y, Wand Z, Kohn T, Yu M, Brown SP, Vimolratana M, Zhu L, Li AR, Su Y, Jiao X, Liu J, Swaminath G, Tran T, Luo J, Zhuang R, Hang J, Guo Q, Li F, Connors R, Medina JC, Houze JB (2014) Improving the pharmacokinetics of GPR40/FFA1 agonists. ACS Med Chem Lett 5:384–389. doi:10.1021/ml4005123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian CJ, Kimler BF, Hursting SD (2015) Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res 17. doi:10.1186/s13058-015-0571-6

  • Felber JP, Golay A (2002) Pathways from obesity to diabetes. Int J Obes Relat Metab Disord 26(Suppl 2):S39–S45

    Article  CAS  PubMed  Google Scholar 

  • Feng X-T, Leng J, Xie Z, Li S-L, Zhao W, Tang Q-L (2012) GPR40: a therapeutic target for mediating insulin secretion. Int J Mol Med 30:1261–1266. doi:10.3892/ijmm.2012.1142

    CAS  PubMed  Google Scholar 

  • Fukushima K, Yamasaki E, Ishii S, Tomimatsu A, Takahashi K, Hirane M, Fukushima N, Honoki K, Tsukiuchi T (2015) Different roles of GPR120 and GPR40 in the acquisition of malignant properties in pancreatic cancer cells. Biochem Biophys Res Commun 465:512–515. doi:10.1016/j.bbrc.2015.08.050

    Article  CAS  PubMed  Google Scholar 

  • Gotoh C, Hong Y-H, Iga T, Hishikawa D, Suzuki Y, Song S-H, Choi K-C, Adachi T, Hirasawa A, Tsujimoto G, Sasaki S-I, Roh S-G (2007) The regulation of adipogenesis through GPR120. Biochem Biophys Res Commun 354:591–597. doi:10.1016/j.bbrc.2007.01.028

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Suburu J, Chen H, Chen YQ (2013) Mechanisms of omega-3 polyunsaturated fatty acids in prostate cancer prevention. Biomed Res Int. doi:10.1155/2013/824563

    Google Scholar 

  • Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G (2011) Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 100:3594–3601. doi:10.1002/jps.22639

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Ichimura A, Hirasawa A (2014) Therapeutic role and ligands of medium- to long-chain fatty acid receptors. Front Endocrinol (Lausanne) 5. doi:10.3389/fendo.2014.00083

  • Hardy S, St-Onge GG, Joly E, Langelier Y, Prestki MM (2005) Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem 280:13285–13291. doi:10.1074/jbc.M410922200

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka H, Tsukui M, Takada S, Kurashina K, Choi YL, Soda M, Yamashita Y, Haruta H, Hamada T, Ueno T, Tamada K, Hosoya Y, Sata N, Yasuda Y, Nagai H, Sugano K, Mano H (2009) Identification of transforming activity of free fatty acid receptor 2 by retroviral expression screening. Cancer Sci 101:54–59. doi:10.1111/j.1349-7006.2009.01348.x

    Article  PubMed  Google Scholar 

  • Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G (2008) Free fatty acid receptors and drug discovery. Biol Pharm Bull 31:1847–1851. doi:10.1248/bpb.31.1847

    Article  CAS  PubMed  Google Scholar 

  • Holliday ND, Watson S-J, Brown AJH (2012) Drug discovery opportunities and challenges at G protein coupled receptors for long chain free fatty acids. Front Endocrinol (Lausanne) 2:1–12. doi:10.3389/fendo.2011.00112

    Google Scholar 

  • Hopkins MM, Meier KE (2016) Omega-3 fatty acids and their impact on prostate cancer risk. Curr Nutr Rep. doi:10.1007/s13668-016-1250-1

    Google Scholar 

  • Hopkins MM, Zhang Z, Liu Z, Meier KE (2016) Eicosopentaneoic acid and other free fatty acid receptor agonists inhibit lysophosphatidic acid- and epidermal growth factor-induced proliferation of breast cancer cells. J Clin Med 5. doi:10.3390/jcm5020016

  • Hubbard EG (1927) The note book of Elbert Hubbard. Hubbard EG II (ed) Wm Wise & Co, New York, p 118

    Google Scholar 

  • Hudson BD, Murdoch H, Milligan G (2013a) Minireview: the effects of species ortholog and SNP variation on receptors for free fatty acids. Mol Endocrinol 27:1177–1187. doi:10.1210/m3.2013-1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E, Heathcote H, Tobin AB, Ulven T, Milligan G (2013b) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharm 84:710–725. doi:10.1124/mol.113.087783

    Article  CAS  Google Scholar 

  • Hudson BD, Shimpukade B, Milligan G, Ulven T (2014) The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem 289:20345–20358. doi:10.1074/jbc.M114.561449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii S, Kitamura Y, Hirane M, Tomimatsu A, Fukushima K, Takahashi K, Fukushima N, Honoki K, Tsujiuchi T (2015a) Negative effects of G-protein-coupled free fatty acid receptor GPR40 on cell migration and invasion in fibrosarcoma HT1080 cells. Mol Carcinog. doi:10.1002/mc.22408

    Google Scholar 

  • Ishii S, Hirane M, Kato S, Fukushima N, Tsujiuchi T (2015b) Opposite effects of GPR 120 and GPR 40 on cell motile activity induced by ethionine in liver epithelial cells. Biochem Biophys Res Commun 456:135–138. doi:10.1016/j.bbrc.2014.11.047

    Article  CAS  PubMed  Google Scholar 

  • Kaparianos A, Argyropoulou E, Spiropoulos K (2013) The role of β-arrestins in respiratory pathophysiology and tumorigenesis: going a step beyond the cell surface. Eur Rev Med Pharmacol Sci 16:1781–1794

    Google Scholar 

  • Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN, Walker MD, Poitout V (2012) Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci U S A 109:2376–2381. doi:10.1073/pnas.1114350109

  • Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH (2013) Short-chain fatty acids activate GPR41 and GPR 43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396–406. doi:10.1053/gastro.2013.04.056

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Mizukami Y, Miura T, Fujimoto K, Kobayashi S, Matsuzaki M (2001) Orphan G protein-coupled receptor, GPR41, induces apoptosis via a p53/Bax pathway during ischemic hypoxia and reoxygenation. J Biol Chem 276:26453–26460. doi:10.1074/jbc.M101289200

    Article  CAS  PubMed  Google Scholar 

  • Laviano A, Rianda S, Molfino A, Fanelli FR (2013) Omega-3 fatty acids in cancer. Curr Opin Clin Nutr Metab Care 16:156–161. doi:10.1097/MCO.0b013e32835d2d99

    Article  CAS  PubMed  Google Scholar 

  • Le Poul E, Loison C, Struy S, Springael J-Y, Lannoy V, Decobecq M-E, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489. doi:10.1074/jbc.M301403200

    Article  PubMed  Google Scholar 

  • Li X, Yu Y, Funk CD (2013) FASEB J 27:4987–4997

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Hopkins MM, Zhang Z, Quisenberry CR, Fix L, Galvan BM, Meier KE (2015a) Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther 352:380–394. doi:10.1124/jpet.114.218974

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu HD, Wang WB, Xu ZG, Liu CH, He DF, Du LP, Li MY, Yu X, Sun JP (2015b) FFAR receptor (GPR120): a hot target for the development of anti-diabetic therapies. Eur J Pharmacol 763:120–168. doi:10.1016/j.ejphar.2015.06.028

    Article  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. doi:10.1038/nrmicro3344

  • Luttrell LM (2013) Arrestin pathways as drug targets. Prog Mol Biol Transl Sci 118:469–497. doi:10.1016/B978-0-12-394440-5.00018-8

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62:305–327. doi:10.1124/pr.109.002436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Wang T, Shi M, Fu P, Pei H, Ye H (2016) Synthesis, activity and docking study of novel phenylthiazole-carboxamido acid derivatives as FFA2 agonists. Chem Biol Drug Des. doi:10.1111/cbdd.12729

    Google Scholar 

  • Manna S, Chakraborty T, Ghosh B, Chatterjee M, Panda A, Srivastava S, Rana A, Chatterjee M (2008) Dietary fish oil associated with increased apoptosis and modulated expression of Bax and Bcl-2 during 7,12-dimethylbenz(α)anthracene-induced mammary carcinogenesis in rats. Prostaglandins Leukot Essent Fatty Acids 79:5–14. doi:10.1016/j.plefa.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • Milligan G, Stoddart LA, Smith NJ (2009) Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3. Br J Pharmacol 158:146–153. doi:10.1111/j.1476-5381,2009,00421.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan G, Alvarez-Curto E, Watterson KR, Ulven T, Hudson BD (2015) Characterising pharmacological ligands to study the long chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4. Br J Pharmacol 172:3254–3265. doi:10.1111/bph.12879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobraten K, Haug TM, Klelveland CR, Lea T (2013) Lipids Health Dis 12:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munkarah A, Hamid S, Chhina J, Mert I, Jackson L, Hensley-Alford S, Chitale D, Giri S, Rattan R (2016) Abstract 81: targeting of free fatty acid signaling in ovarian cancer may serve as a potential therapeutic approach. Clin Cancer Res 22:A81

    Article  Google Scholar 

  • Navarro-Tito N, Robledo T, Salazar EP (2008) Arachidonic acid promotes FAK activation and migration in MDA-MB-231 breast cancer cells. Exp Cell Res 314:3340–3355. doi:10.1016/j.yexcr.2008.08.018

    Article  CAS  PubMed  Google Scholar 

  • Nehra D, Pan AH, Le HD, Fallon EM, Carlson SJ, Kalish BT, Puder M (2014) DHA, G-protein coupled receptors and melanoma: is GPR40 a potential therapeutic target? J Surg Res 188:451–451–458. doi:10.1016/j.jss.2014.01.037

  • O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS (2013) The emerging mutational landscape of G-proteins and G-protein coupled receptors in cancer. Nat Rev Cancer 13:412–424. doi:10.1038/nrc3521

    Article  PubMed  PubMed Central  Google Scholar 

  • Offermanns S (2014) Free fatty acid (FFA) and hydroxyl carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 54:407–434. doi:10.1146/annurev-pharmtox-011613-135945

    Article  CAS  PubMed  Google Scholar 

  • Oh DY, Walenta E (2014) Omega-3 fatty acids and FFAR4. Front Endocrinol 5:1–5. doi:10.3389/fendo.2014.00115

    Article  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin sensitizing effects. Cell 142:687–698. doi:10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, Powels MA, Salvo JD, Sinz C, Watkins SM, Armando AM, Chung H, Evans RM, Quehenberger O, McNelis J, Bogner-Strauss JG, Olefsky JM (2014) A GPR120 selective agonist improves insulin resistance and chronic inflammation. Nat Med 20:942–947. doi:10.1038/nm.3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, Kim CH (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8:80–93. doi:10.1038/mi.2014.44

    Article  CAS  PubMed  Google Scholar 

  • Pogash TJ, El-Bayoumy K, Amin S, Gowda K, de Cicco RL, Barton M, Su Y, Russo IH, Himmelberger JA, Slifker M, Manni A, Russo J (2015) Oxidized derivative of docosahexaenoic acid preferentially inhibit cell proliferation in triple negative over luminal breast cancer cells. In Vitro Cell Dev Biol Anim 51:121–127. doi:10.1007/s1626-014-9822-6

    Article  CAS  PubMed  Google Scholar 

  • Prihandoko R, Alvarez-Curto E, Hudson BD, Butcher AJ, Ulven T, Miller AM, Tobin AB, Milligan G (2016) Distinct phosphorylation clusters determine the signaling outcome of the free fatty acid receptor FFA4/GPR120. Mol Pharmacol. doi:10.1124/mol.115.101949

    PubMed  Google Scholar 

  • Qian J, Wu C, Chen X, Li X, Ying G, Jin L, Ma Q, Li G, Shi Y, Zhang G, Zhou N (2014) Differential requirements of arrestin-3 and clathrin for ligand-dependent and –independent internalization of human G protein-coupled receptor 40. Cell Signal 26:2412–2423. doi:10.1016/j.cellsig.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  • Sauer LA, Dauchy RT, Blask DE, Krause JA, Davidson LK, Dauchy EM (2005) Eicosapentaenoic acid suppresses cell proliferation in MCF-7 human breast cancer xenografts in nude rats via a pertussis toxin-sensitive signal transduction pathway. J Nutr 135:2124–2129

    CAS  PubMed  Google Scholar 

  • Sharma A, Belna J, Logan J, Espat J, Hurteau JA (2005) The effects of omega-3 fatty acids on growth regulation of epithelial ovarian cancer cell lines. Gynecol Oncol 99:58–64

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Belna J, Espat J, Rodriguez G, Cannon VT, Hurteau JA (2009) Effects of omega-e fatty acids on components of the transforming growth factor beta-1 pathway: implication for dietary modification and prevention in ovarian cancer. Am J Obstet Gynecol 200:516.e1–516.e6. doi:10.1016/j.ajog.2008.12.023

  • Shimpukade B, Hudson BD, Hovgaard CK, Milligan G, Ulven T (2012) Discovery of a potent and selective GPR120 agonist. J Med Chem 55:4511–4515. doi:10.1021/jm300215x

    Article  CAS  PubMed  Google Scholar 

  • Soto-Guzman A, Tobledo T, Lopez-Perez M, Salazar EP (2008) Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells. Mol Cell Endocrinol 294:81–91. doi:10.1016/j.mce.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  • Sparks SM, Chen G, Collins JL, Ganger D, Dock ST, Jayawickreme C, Jenkinson S, Laudeman C, Leesnitzer MA, Liang X, Maloney P, McCoy DC, Moncol D, Rash V, Rimele T, Vulimiri P, Way JM, Ross S (2014) Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). Bioorg Med Chem Lett 24:3100–3103. doi:10.1016/j.bmci.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Hirasawa A, Hara T, Kimura I, Adachi T, Awaji T, Ishiguro M, Suzuki T, Miyata N, Tsujimoto G (2010) Structure-activity relationships of GPR120 agonists based on a docking simulation. Mol Pharmacol 78:804–810. doi:10.1124/mol.110.066324

  • Talukdar S, Olefsky JM, Osborn O (2011) Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32:543–550. doi:10.1016/j.tips.2011.-4.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Chen Y, Jiang H, Robbins GT, Nie D (2010) G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer 128:847–856. doi:10.1002/ijc.25638

    Article  PubMed  Google Scholar 

  • Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol 3. doi:10.3389/fendo.2012.00111

  • Van Jaarsveld MTM, Houthuijzen JM, Voest EE (2015) Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015:2–15. doi:10.1038/onc.2015.467

    Google Scholar 

  • Watson S-J, Brown AJH, Holliday ND (2012) Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81:631–642. doi:10.1124/mol.111.077388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watterson KR, Hudson BD, Ulven T, Milligan G (2014) Treatment of type 2 diabetes by free fatty acid receptor agonists. Front Endocrinol 5:1–9. doi:10.3389/fendo.2014.00137

    Article  Google Scholar 

  • Wu J, Zhou Z, Hu Y, Dong S (2012) Butyrate-induced GPR41 activation inhibits histone acetylation and cell growth. J Genet Genomics 39:375–384. doi:10.1016/j.jgg.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang H, Zhao X, Shi Y, Jin M, Wan R, Xu H, Cheng Y, Ge H, Zhang Y (2013) Identification of G protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 32:5541–5550. doi:10.1038/0nc.2013.264

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Wang Q, Zhao J, Dong L, Ge Y, Hou L, Liu Y, Zheng Z (2014) J Nutr Biochem 25:104–110

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jian W, Spinetti T, Tardivel A, Castillo R, Barquin C, Guarda G, Tian Z, Tschopp J, Zhou R (2013) Immunity 38:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Ren X-L, Fu Y-Q, Gao J-L, Li D (2014) Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer 14:105–119. doi:10.1186/1471-2407-14-105

  • Yonezawa T, Katoh K, Obara Y (2004) Existence of GPR40 functioning in a human breast cancer cell line, MCF-7. Biochem Biophys Res Commun 314:805–809. doi:10.1016/j.bbrc.2003.12.175

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa T, Kogayashi Y, Obara Y (2006) Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCV-7 human breast cancer cell line. Cell Signal 19:185–193. doi:10.1016/j.cellsig.2006.06.004

    Article  PubMed  Google Scholar 

  • Zhang D, Leung PS (2014) Potential roles of GPR120 and its agonists in the management of diabetes. Drug Des Devel Ther 8:1013–1027. doi:10.2147/DDDT.S53892

  • Zou Z, Bellenger S, Massey KA, Nicolaou A, Geissler A, Bidu C, Bonnotte B, Pierre A-S, Minville-Walz M, Rialland M, Seubert J, Kang JX, Lagrost L, Narce M, Bellenger J (2013) Inhibition of the HER2 pathway by n-3 polyunsaturated fatty acids prevents breast cancer in fat-1 transgenic mice. J Lipid Res 54:3453–3463. doi:10.1194/jlr.Mo42754

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hopkins, M.M., Meier, K.E. (2016). Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology. In: Milligan, G., Kimura, I. (eds) Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, vol 236. Springer, Cham. https://doi.org/10.1007/164_2016_48

Download citation

Publish with us

Policies and ethics