Skip to main content

Bacterial Biofilms on Wounds, a Major Factor That Delays Wound Healing and a Potential Threat to Human Life and Economy

  • Chapter
  • First Online:
Biofilm, Pilonidal Cysts and Sinuses

Abstract

Biofilms are responsible for over 80% of hospital- and community-acquired infections and are highly prevalent, costly to treat, and a significant cause of morbidity and mortality. Microbiological analysis of wound infection revealed existence of polymicrobial including multiple species of bacteria (both aerobic and anaerobic), fungi, and viruses but bacteria are the principal pathogens and are responsible for early dominance, biofilm formation, and infection on wounds. For instance, reports suggest that over 50% of diabetic foot ulcerations lead to infection, and consequently lower extremity amputation. However, 85% of diabetes-related amputations are preventable if infection is treated early. Bacterial resistance to antimicrobial agents is a major factor that influences apprehends of wound healing and a potential threat to human life and economy. With the increase in bacterial resistance to antibiotics and wound regime novel strategies are essential to encounter biofilms and its associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Walter J (2008) Ecological role of Lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74(16):4985–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Percival SL, McCarty SM, Lipsky B (2015) Biofilms and wounds: an overview of the evidence. Adv Wound Care (New Rochelle) 4(7):373–381

    Article  Google Scholar 

  4. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    Article  CAS  PubMed  Google Scholar 

  5. Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19(2):45–46. 48-50, 52-3

    Article  CAS  PubMed  Google Scholar 

  6. The Australian Lung Foundation (2007) Respiratory infectious disease burden in Australia. lungfoundation.com.au/wp-content/uploads/2014/03/2007-RID-Case-Statement. Accessed 7 Jan 2017

  7. European Centre for Disease Prevention and Control (2009) The bacterial challenge: Time to react. ecdc.europa.eu/en/.../0909_TER_The_Bacterial_Challenge_Time_to_React. Accessed 7 Jan 2017

  8. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR (1999) Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 20(4):250–278

    Article  CAS  PubMed  Google Scholar 

  9. Cruse PJ, Foord R (1980) The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. Surg Clin North Am 60(1):27–40

    Article  CAS  PubMed  Google Scholar 

  10. Culver DH, Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, Banerjee SN, Edwards JR, Tolson JS, Henderson TS et al (1991) Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am J Med 91(3B):152S–157S

    Article  CAS  PubMed  Google Scholar 

  11. Urban JA (2006) Cost analysis of surgical site infections. Surg Infect (Larchmt) 7(Suppl 1):S19–S22

    Article  Google Scholar 

  12. Nawar EW, Niska RW, Xu J (2007) National hospital ambulatory medical care survey: 2005 emergency department summary. Adv Data 386:1–32

    Google Scholar 

  13. Bhowmik D, Chiranjib B, Yadav J, Chandira MR (2009) Role of community pharmacist in management and prevention diabetic foot ulcer and infections. J Chem Pharm Res 1(1):38–53

    Google Scholar 

  14. Hobizal KB, Wukich DK (2012) Diabetic foot infections: current concept review. Diabet Foot Ankle 3:10

    Article  PubMed Central  Google Scholar 

  15. Amputations - 4,400 reasons to take diabetes seriously (2016) Diabetes Australia. https://www.diabetesaustralia.com.au/news/15266?type=articles. Accessed 7 Jan 2017

  16. American Diabetes Association (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36(4):1033–1046

    Article  PubMed Central  Google Scholar 

  17. Rowe VL (2017) Diabetic ulcers. http://emedicine.medscape.com/article/460282-overview. Accessed 7 Jan 2017

  18. Diabetes Foundation (India). http://www.diabetesfoundationindia.org/about.htm. Accessed 7 Jan 2017

  19. Fife C, Walker D, Thomson B, Carter M (2007) Limitations of daily living activities in patients with venous stasis ulcers undergoing compression bandaging: problems with the concept of self bandaging. Wounds 19(10):255–257

    PubMed  Google Scholar 

  20. Aydin A, Shenbagamurthi S, Brem H (2009) Lower extremity ulcers: venous, arterial, or diabetic? Emerg Med 41(8):18–24

    Google Scholar 

  21. Baker SR, Stacey MC, Jopp-McKay AG, Hoskin SE, Thompson PJ (1991) Epidemiology of chronic venous ulcers. Br J Surg 78(7):864–867

    Article  CAS  PubMed  Google Scholar 

  22. Naidoo NG, Beningfield S (2009) Claudication of the lower limb. An approach to investigation and management. 27(7): https://www.ajol.info/index.php/cme/article/download/50309/38996. Accessed 7 Jan 2017

  23. Bhattacharya S, Mishra RK (2015) Pressure ulcers: current understanding and newer modalities of treatment. Indian J Plast Surg 48(1):4–16

    Article  PubMed  PubMed Central  Google Scholar 

  24. Garibaldi RA, Brodine S, Matsumiya S (1981) Infections among patients in nursing homes. N Engl J Med 305(13):731–735

    Article  CAS  PubMed  Google Scholar 

  25. Garibaldi RA, Peterson PJ (1986) Infections and infection control among residents of eight rural Wisconsin nursing homes. Arch Intern Med 146(10):1981–1984

    Article  Google Scholar 

  26. Donnelly L, Clayton J (2017) The telegraph. Soaring numbers of patients die with bedsores and infected wounds. http://www.telegraph.co.uk/news/health/news/9046485/Soaring-numbers-of-patients-die-withbedsores-and-infected-Woundshtml. Accessed 7 Jan 2017

  27. Mahalingam S, Gao L, Nageshwaran S, Vickers C, Bottomley T (2014) Improving pressure ulcer risk assessment and management using the Waterlow scale at a London teaching hospital. J Wound Care 23(12):613–622

    Article  CAS  PubMed  Google Scholar 

  28. Frank C, Bayoumi I, Westendorp C (2005) Approach to infected skin ulcers. Can Fam Physician 51:1352–1359

    PubMed  PubMed Central  Google Scholar 

  29. Tiwari VK (2012) Burn wound: how it differs from other wounds? Indian J Plast Surg 45(2):364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19(2):403–434

    Article  PubMed  PubMed Central  Google Scholar 

  31. American Burn Association (2000) Burn incidence and treatment in the US: 2000 fact sheet. http://www.ameriburn.org. Accessed 7 Jan 2017

  32. The Times of India (2012) 10 lakh Indians suffer from burns every year. http://timesofindia.indiatimes.com/india/10-lakh-Indians-suffer-from-burns-everyyear/articleshow/13880849.cms. Accessed 7 Jan 2017

  33. Barret JP, Herndon DN (2003) Effects of burn wound excision on bacterial colonization and invasion. Plast Reconstr Surg 111(2):744–750

    Article  PubMed  Google Scholar 

  34. Weber JM, Sheridan RL, Pasternack MS, Tompkins RG (1997) Nosocomial infections in pediatric patients with burns. Am J Infect Control 25(3):195–201

    Article  CAS  PubMed  Google Scholar 

  35. Ovington L (2003) Bacterial toxins and wound healing. Ostomy Wound Manage 49(7A Suppl):8–12

    PubMed  Google Scholar 

  36. Browne AC, Vearncombe M, Sibbald RG (2001) High bacterial load in asymptomatic diabetic patients with neurotrophic ulcers retards wound healing after application of Dermagraft. Ostomy Wound Manage 47(10):44–49

    CAS  PubMed  Google Scholar 

  37. Edwards R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17(2):91–96

    Article  PubMed  Google Scholar 

  38. Sibbald RG, Woo K, Ayello EA (2006) Increased bacterial burden and infection: the story of nerds and stones. Adv Skin Wound Care 19(8):447–461

    Article  PubMed  Google Scholar 

  39. Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14(2):244–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fazli M, Bjarnsholt T, Kirketerp-Moller K, Jorgensen B, Andersen AS, Krogfelt KA, Givskov M, Tolker-Nielsen T (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47(12):4084–4089

    Article  PubMed  PubMed Central  Google Scholar 

  41. Taylor MD, Napolitano LM (2004) Methicillin-resistant Staphylococcus aureus infections in vascular surgery: increasing prevalence. Surg Infect 5(2):180–187

    Article  Google Scholar 

  42. Alebachew T, Yismaw G, Derabe A, Sisay Z (2012) Staphylococcus aureus burn wound infection among patients attending Yekatit 12 hospital burn unit, Addis Ababa. Ethiop J Health Sci 22(3):209–213

    PubMed  PubMed Central  Google Scholar 

  43. Holder IA (1993) Pseudomons aeruginosa burn infections: pathogenesis and treatment. In: Campa M, Bendinelli M, Friedman H (eds) Pseudomonas aeruginosa as an opportunistic pathogen. Springer, Boston, pp 275–295

    Chapter  Google Scholar 

  44. Williams FN, Herndon DN, Hawkins HK, Lee JO, Cox RA, Kulp GA, Finnerty CC, Chinkes DL, Jeschke MG (2009) The leading causes of death after burn injury in a single pediatric burn center. Crit Care 13(6):R183

    Article  PubMed  PubMed Central  Google Scholar 

  45. Davis KA, Moran KA, McAllister CK, Gray PJ (2005) Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis 11(8):1218–1224

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mousa HA (1997) Aerobic, anaerobic and fungal burn wound infections. J Hosp Infect 37(4):317–323

    Article  CAS  PubMed  Google Scholar 

  47. Valencia IC, Kirsner RS, Kerdel FA (2004) Microbiologic evaluation of skin wounds: alarming trend toward antibiotic resistance in an inpatient dermatology service during a 10-year period. J Am Acad Dermatol 50(6):845–849

    Article  PubMed  Google Scholar 

  48. Storm-Versloot MN, Vos CG, Ubbink DT, Vermeulen H (2010) Topical silver for preventing wound infection. Cochrane Database Syst Rev 3:CD006478

    Google Scholar 

  49. Nelson EA, O'Meara S, Golder S, Dalton J, Craig D, Iglesias C, Group DS (2006) Systematic review of antimicrobial treatments for diabetic foot ulcers. Diabet Med 23(4):348–359

    Article  CAS  PubMed  Google Scholar 

  50. Chow I, Lemos EV, Einarson TR (2008) Management and prevention of diabetic foot ulcers and infections: a health economic review. Pharmacoeconomics 26(12):1019–1035

    Article  PubMed  Google Scholar 

  51. Di Domenico E, Farulla I, Prignano G, Gallo M, Vespaziani M, Cavallo I, Sperduti I, Pontone M, Bordignon V, Cilli L, De Santis A, Di Salvo F, Pimpinelli F, Lesnoni La Parola I, Toma L, Ensoli F (2017) Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype. Int J Mol Sci 18(5):1077

    Article  PubMed Central  CAS  Google Scholar 

  52. Crouzet M, Le Senechal C, Brozel VS, Costaglioli P, Barthe C, Bonneu M, Garbay B, Vilain S (2014) Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol 14:253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  54. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  55. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524

    Article  CAS  PubMed  Google Scholar 

  56. Das T, Krom BP, van der Mei HC, Busscher HJ, Sharma PK (2011) DNA-mediated bacterial aggregation is dictated by acid-base interactions. Soft Matter 7(6):2927–2935

    Article  CAS  Google Scholar 

  57. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33

    Article  CAS  PubMed  Google Scholar 

  58. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76(1):46–65

    Article  CAS  PubMed  Google Scholar 

  59. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    Article  CAS  PubMed  Google Scholar 

  60. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, Kharazmi A, Høiby N, Mathee K (2004) Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53(7):679–690

    Article  CAS  PubMed  Google Scholar 

  62. Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186(14):4457–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291(24):12547–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ha DG, O'Toole GA (2015) c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spectr 3(2):MB-0003-2014

    Article  PubMed  CAS  Google Scholar 

  65. Martin DW, Schurr MJ, Mudd MH, Govan JR, Holloway BW, Deretic V (1993) Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90(18):8377–8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pier GB (1998) Pseudomonas aeruginosa: a key problem in cystic fibrosis. ASM News 64(6):339–347

    Google Scholar 

  68. Al-Dahmoshi HOM (2013) Genotypic and phenotypic investigation of alginate biofilm formation among Pseudomonas aeruginosa isolated from burn victims in Babylon, Iraq. Sci J Microbiol 2013:Article ID sjmb-233b

    Google Scholar 

  69. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128

    Article  CAS  PubMed  Google Scholar 

  70. Das T, Manefield M (2012) Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One 7(10):e46718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177(14):3998–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, CárcamoOyarce G, Gloag ES, Shimoni R, Omasits U, Ito S, Yap X, Monahan LG, Cavaliere R, Ahrens CH, Charles IG, Nomura N, Eberl L, Whitchurch CB (2016) Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun 7:11220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Das T, Kutty SK, Kumar N, Manefield M (2013) Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS One 8(3):e58299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peterson BW, van der Mei HC, Sjollema J, Busscher HJ, Sharma PK (2013) A distinguishable role of eDNA in the viscoelastic relaxation of biofilms. MBio 4(5):e00497-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    Article  CAS  PubMed  Google Scholar 

  76. Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-Nacetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74(2):470–476

    Article  CAS  PubMed  Google Scholar 

  77. Harmsen M, Lappann M, Knochel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76(7):2271–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sahu PK, Iyer PS, Oak AM, Pardesi KR, Chopade BA (2012) Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation. Sci World J 2012:973436

    Article  CAS  Google Scholar 

  79. Suter S, Schaad UB, Roux L, Nydegger UE, Waldvogel FA (1984) Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis 149(4):523–531

    Article  CAS  PubMed  Google Scholar 

  80. Upritchard HG, Cordwell SJ, Lamont IL (2008) Immunoproteomics to examine cystic fibrosis host interactions with extracellular Pseudomonas aeruginosa proteins. Infect Immun 76(10):4624–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hamood AN, Griswold JA, Duhan CM (1996) Production of extracellular virulence factors by Pseudomonas aeruginosa isolates obtained from tracheal, urinary tract, and wound infections. J Surg Res 61(2):425–432

    Article  CAS  PubMed  Google Scholar 

  82. Bjorn MJ, Pavlovskis OR, Thompson MR, Iglewski BH (1979) Production of exoenzyme S during Pseudomonas aeruginosa infections of burned mice. Infect Immun 24(3):837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci U S A 72(6):2284–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A 75(7):3211–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Frithz-Lindsten E, Du Y, Rosqvist R, Forsberg A (1997) Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25(6):1125–1139

    Article  CAS  PubMed  Google Scholar 

  86. Peters JE, Park SJ, Darzins A, Freck LC, Saulnier JM, Wallach JM, Galloway DR (1992) Further studies on Pseudomonas aeruginosa LasA: analysis of specificity. Mol Microbiol 6(9):1155–1162

    Article  CAS  PubMed  Google Scholar 

  87. Schmidtchen A, Holst E, Tapper H, Bjorck L (2003) Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb Pathog 34(1):47–55

    Article  CAS  PubMed  Google Scholar 

  88. Kessler E, Safrin M (1988) Synthesis, processing, and transport of Pseudomonas aeruginosa elastase. J Bacteriol 170(11):5241–5247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heck LW, Morihara K, McRae WB, Miller EJ (1986) Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect Immun 51(1):115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Heck LW, Alarcon PG, Kulhavy RM, Morihara K, Russell MW, Mestecky JF (1990) Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J Immunol 144(6):2253–2257

    CAS  PubMed  Google Scholar 

  91. Bainbridge T, Fick RB Jr (1989) Functional importance of cystic fibrosis immunoglobulin G fragments generated by Pseudomonas aeruginosa elastase. J Lab Clin Med 114(6):728–733

    CAS  PubMed  Google Scholar 

  92. Murray PR (1999) Manual of clinical microbiology. ASM Press, Washington, DC

    Google Scholar 

  93. Holder IA, Haidaris CG (1979) Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: extracellular protease and elastase as in vivo virulence factors. Can J Microbiol 25(5):593–599

    Article  CAS  PubMed  Google Scholar 

  94. Voynow JA, Fischer BM, Zheng S (2008) Proteases and cystic fibrosis. Int J Biochem Cell Biol 40(6-7):1238–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183(21):6454–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56(9):2515–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. O'Malley YQ, Reszka KJ, Spitz DR, Denning GM, Britigan BE (2004) Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 287(1):L94–103

    Article  CAS  PubMed  Google Scholar 

  98. Munro NC, Barker A, Rutman A, Taylor G, Watson D, McDonald-Gibson WJ, Towart R, Taylor WA, Wilson R, Cole PJ (1989) Effect of pyocyanin and 1-hydroxyphenazine on in vivo tracheal mucus velocity. J Appl Physiol (1985) 67(1):316–323

    Article  CAS  Google Scholar 

  99. Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte MK (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophilmediated host defenses in vivo. J Immunol 174(6):3643–3649

    Article  CAS  PubMed  Google Scholar 

  100. Muller M, Sorrell TC (1991) Production of leukotriene B4 and 5-hydroxyeicosatetraenoic acid by human neutrophils is inhibited by Pseudomonas aeruginosa phenazine derivatives. Infect Immun 59(9):3316–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Denning GM, Wollenweber LA, Railsback MA, Cox CD, Stoll LL, Britigan BE (1998) Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect Immun 66(12):5777–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Muller M, Li Z, Maitz PK (2009) Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase. Burns 35(4):500–508

    Article  PubMed  Google Scholar 

  103. Gonzalez MR, Fleuchot B, Lauciello L, Jafari P, Applegate LA, Raffoul W, Que YA, Perron K (2016) Effect of human burn wound exudate on Pseudomonas aeruginosa virulence. mSphere 1(2):e00111-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rada B, Jendrysik MA, Pang L, Hayes CP, Yoo DG, Park JJ, Moskowitz SM, Malech HL, Leto TL (2013) Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One 8(1):e54205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Das T, Kutty SK, Tavallaie R, Ibugo AI, Panchompoo J, Sehar S, Aldous L, Yeung AWS, Thomas SR, Kumar N, Gooding JJ, Manefield M (2015) Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep 5:8398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lamont IL, Konings AF, Reid DW (2009) Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. Biometals 22(1):53–60

    Article  CAS  PubMed  Google Scholar 

  107. Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68(4):1834–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McMorran BJ, Merriman ME, Rombel IT, Lamont IL (1996) Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. Gene 176(1–2):55–59

    Article  CAS  PubMed  Google Scholar 

  109. Doring G, Pfestorf M, Botzenhart K, Abdallah MA (1988) Impact of proteases on iron uptake of Pseudomonas aeruginosa pyoverdin from transferrin and lactoferrin. Infect Immun 56(1):291–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sriyosachati S, Cox CD (1986) Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa. Infect Immun 52(3):885–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64(2):518–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99(10):7072–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296(2):149–161

    Article  CAS  PubMed  Google Scholar 

  114. Lambert PA (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95(Suppl 41):22–26

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib NE (2014) Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol 196(7):453–472

    Article  CAS  PubMed  Google Scholar 

  116. Billings N, Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, Ribbeck K (2013) The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 9(8):e1003526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5(13):1213–1219

    Article  CAS  PubMed  Google Scholar 

  118. Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H (2016) A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150:702–714

    Article  CAS  PubMed  Google Scholar 

  119. Rosi-Marshall EJ, Kelly JJ (2015) Antibiotic stewardship should consider environmental fate of antibiotics. Environ Sci Technol 49(9):5257–5258

    Article  CAS  PubMed  Google Scholar 

  120. HC S, Ying GG, He LY, Liu YS, Zhang RQ, Tao R (2014) Antibiotic resistance, plasmid mediated quinolone resistance (PMQR) genes and ampC gene in two typical municipal wastewater treatment plants. Environ Sci Process Impacts 16(2):324–332

    Article  CAS  Google Scholar 

  121. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14(8):742–750

    Article  PubMed  Google Scholar 

  122. Chadha T (2014) Bacterial biofilms: survival mechanisms and antibiotic resistance. J Bacteriol Parasitol 5(3):190

    Article  Google Scholar 

  123. Courvalin P (2016) Why is antibiotic resistance a deadly emerging disease? Clin Microbiol Infect 22(5):5–407

    Article  Google Scholar 

  124. Purdy Drew KR, Sanders LK, Culumber ZW, Zribi O, Wong GC (2009) Cationic amphiphiles increase activity of aminoglycoside antibiotic tobramycin in the presence of airway polyelectrolytes. J Am Chem Soc 131(2):486–493

    Article  CAS  PubMed  Google Scholar 

  125. Wilton M, Charron-Mazenod L, Moore R, Lewenza S (2015) Extracellular DNA acidifies biofilms and Iiduces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60(1):544–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Nichols WW, Dorrington SM, Slack MP, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32(4):518–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chan C, Burrows LL, Deber CM (2004) Helix induction in antimicrobial peptides by alginate in biofilms. J Biol Chem 279(37):38749–38754

    Article  CAS  PubMed  Google Scholar 

  128. Gilleland LB, Gilleland HE, Gibson JA, Champlin FR (1989) Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J Med Microbiol 29(1):41–50

    Article  CAS  PubMed  Google Scholar 

  129. Farber BF, Kaplan MH, Clogston AG (1990) Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J Infect Dis 161(1):37–40

    Article  CAS  PubMed  Google Scholar 

  130. Dever LA, Dermody TS (1991) Mechanisms of bacterial resistance to antibiotics. Arch Intern Med 151(5):886–895

    Article  CAS  PubMed  Google Scholar 

  131. Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33(1):113–137

    Article  CAS  PubMed  Google Scholar 

  132. Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A 72(8):2999–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Waxman DJ, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 52:825–869

    Article  CAS  PubMed  Google Scholar 

  134. Fisher J, Belasco JG, Charnas RL, Khosla S, Knowles JR (1980) Beta-lactamase inactivation by mechanism-based reagents. Philos Trans R Soc Lond B Biol Sci 289(1036):309–319

    Article  CAS  PubMed  Google Scholar 

  135. Sykes RB, Matthew M (1976) The β-lactamases of gram-negative bacteria and their rôle in resistance to β-lactam antibiotics. J Antimicrob Chemother 2(2):115–117

    Article  CAS  PubMed  Google Scholar 

  136. Sanders CC (1984) Inducible beta-lactamases and non-hydrolytic resistance mechanisms. J Antimicrob Chemother 13(1):1–3

    Article  CAS  PubMed  Google Scholar 

  137. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43(4):727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Davies J, Smith DI (1978) Plasmid-determined resistance to antimicrobial agents. Annu Rev Microbiol 32:469–518

    Article  CAS  PubMed  Google Scholar 

  139. Brinkman FS, Bains M, Hancock RE (2000) The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model. J Bacteriol 182(18):5251–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Livermore DM (2001) Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 47(3):247–250

    Article  CAS  PubMed  Google Scholar 

  141. Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158(2):513–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Murakami K, Nomura K, Doi M, Yoshida T (1987) Production of low-affinity penicillin-binding protein by low- and high-resistance groups of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 31(9):1307–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Harder KJ, Nikaido H, Matsuhashi M (1981) Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother 20(4):549–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gardete S, Tomasz A (2014) Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 124(7):2836–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Watanabe Y, Cui L, Katayama Y, Kozue K, Hiramatsu K (2011) Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J Clin Microbiol 49(7):2680–2684

    Article  PubMed  PubMed Central  Google Scholar 

  146. Paulsen IT (2003) Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol 6(5):446–451

    Article  CAS  PubMed  Google Scholar 

  147. Blair JMA, Richmond GE, Piddock LJV (2014) Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9(10):1165–1177

    Article  CAS  PubMed  Google Scholar 

  148. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64(4):672–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zgurskaya HI, Weeks JW, Ntreh AT, Nickels LM, Wolloscheck D (2015) Mechanism of coupling drug transport reactions located in two different membranes. Front Microbiol 6:100

    PubMed  PubMed Central  Google Scholar 

  150. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443(7108):173–179

    Article  CAS  PubMed  Google Scholar 

  151. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3(2):255–264

    CAS  PubMed  Google Scholar 

  152. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(12):3322–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhou G, Shi QS, Huang XM, Xie XB (2015) The three bacterial lines of defense against antimicrobial agents. Int J Mol Sci 16(9):21711–21733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vetting MW, Hegde SS, Wang M, Jacoby GA, Hooper DC, Blanchard JS (2011) Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J Biol Chem 286(28):25265–25273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sato K, Inoue Y, Fujii T, Aoyama H, Inoue M, Mitsuhashi S (1986) Purification and properties of DNA gyrase from a fluoroquinolone-resistant strain of Escherichia coli. Antimicrob Agents Chemother 30(5):777–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Levin ME, Hatfull GF et al (1993) Mol Microbiol 8(2):277–285

    Article  CAS  PubMed  Google Scholar 

  157. Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14(9):18488501

    Google Scholar 

  158. Perez-Giraldo C, Rodriguez-Benito A, Moran FJ, Hurtado C, Blanco MT, Gomez-Garcia AC (1997) Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother 39(5):643–646

    Article  CAS  PubMed  Google Scholar 

  159. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Agents that inhibit bacterial biofilm formation. Future Med Chem 7(5):647–671

    Article  CAS  PubMed  Google Scholar 

  160. Sambanthamoorthy K, Gokhale AA, Lao W, Parashar V, Neiditch MB, Semmelhack MF, Lee I, Waters CM (2011) Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother 55(9):4369–4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23(6):291–296

    Article  CAS  PubMed  Google Scholar 

  162. Nizalapur S, Kimyon O, Yee E, Ho K, Berry T, Manefield M, Cranfield CG, Willcox M, Black DS, Kumar N (2017) Amphipathic guanidine-embedded glyoxamide-based peptidomimetics as novel antibacterial agents and biofilm disruptors. Org Biomol Chem 15(9):2033–2051

    Article  CAS  PubMed  Google Scholar 

  163. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245

    Article  CAS  PubMed  Google Scholar 

  164. Welsh MA, Eibergen NR, Moore JD, Blackwell HE (2015) Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J Am Chem Soc 137(4):1510–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nizalapur S, Kimyon O, Biswas NN, Gardner CR, Griffith R, Rice SA, Manefield M, Willcox M, Black DS, Kumar N (2016) Design, synthesis and evaluation of N-aryl-glyoxamide derivatives as structurally novel bacterial quorum sensing inhibitors. Org Biomol Chem 14(2):680–693

    Article  CAS  PubMed  Google Scholar 

  166. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rasch M, Buch C, Austin B, Slierendrecht WJ, Ekmann KS, Larsen JL, Johansen C, Riedel K, Eberl L, Givskov M, Gram L (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by Vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 27(3):350–359

    Article  CAS  PubMed  Google Scholar 

  168. Burton E, Gawande PV, Yakandawala N, LoVetri K, Zhanel GG, Romeo T, Friesen AD, Madhyastha S (2006) Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother 50(5):1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153(Pt 7):2083–2092

    Article  CAS  PubMed  Google Scholar 

  172. TK L, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104(27):11197–11202

    Article  CAS  Google Scholar 

  173. Klare W, Das T, Ibugo A, Buckle E, Manefield M, Manos J (2016) Glutathione-disrupted biofilms of clinical Pseudomonas aeruginosa strains exhibit an enhanced antibiotic effect and a novel biofilm transcriptome. Antimicrob Agents Chemother 60(8):4539–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vilchèze C, Hartman T, Weinrick B, Jacobs WR Jr (2013) Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat commun 4:1881

    Article  PubMed  CAS  Google Scholar 

  175. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185(15):4585–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Arora DP, Hossain S, Xu Y, Boon EM (2015) Nitric oxide regulation of bacterial biofilms. Biochemistry 54(24):3717–3728

    Article  CAS  PubMed  Google Scholar 

  178. Engelsman AF, Krom BP, Busscher HJ, van Dam GM, Ploeg RJ, van der Mei HC (2009) Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomater 5(6):1905–1910

    Article  CAS  PubMed  Google Scholar 

  179. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6(3):361–370

    Article  CAS  PubMed  Google Scholar 

  180. Kimyon Ö, Das T, Ibugo AI, Kutty SK, Ho KK, Tebben J, Kumar N, Manefield M (2016) Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Front Microbiol 7:972

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theerthankar Das Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, T., Kimyon, O., Manefield, M.J. (2017). Bacterial Biofilms on Wounds, a Major Factor That Delays Wound Healing and a Potential Threat to Human Life and Economy. In: Shiffman, M., Low, M. (eds) Biofilm, Pilonidal Cysts and Sinuses. Recent Clinical Techniques, Results, and Research in Wounds, vol 1. Springer, Cham. https://doi.org/10.1007/15695_2017_6

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03076-6

  • Online ISBN: 978-3-030-03077-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics