Skip to main content

Population Genomics and Biogeography of the Northern Acorn Barnacle (Semibalanus balanoides) Using Pooled Sequencing Approaches

  • Chapter
  • First Online:
Population Genomics: Marine Organisms

Part of the book series: Population Genomics ((POGE))

Abstract

The northern acorn barnacle (Semibalanus balanoides) is a robust system for the study of evolutionary processes in the intertidal. S. balanoides has a well-characterized ecology, a wide circumboreal distribution, and a life history characterized by tractable environmental stressors at various ecological scales. In this chapter, we discuss a variety of topics concerning the development of S. balanoides as a model in ecological genomics as well as inferences of demography and historical phylogeography. In addition, we introduce two novel genomic tools for S. balanoides: the complete mtDNA sequence and the second draft of the nuclear genome (Sbal2). Using these tools, we conducted a reanalysis of previously described mtDNA haplotypes, a and b, as well as genome-wide levels of variation and population structure across the North Atlantic using pooled sequencing approaches. Analyses of sequence data from older and more recent Illumina platforms revealed the effects of technical bias in the estimates of population genomic metrics. We found concordant levels of nuDNA and mtDNA genetic variation with no evidence of demographic bottlenecks. We observed low genome-wide F ST values across the Atlantic, suggesting a large number of ancestral polymorphisms and shared standing variation across the basin. Comparisons of genome-wide estimates of F ST with those derived from a discriminant analysis of principal components uncovered population-structure-informative SNPs. This suggests the existence of latent population structure across broad scales, despite the capacity for extensive planktonic dispersal. Noticeably, our samples collected in Iceland displayed higher similarity to North American populations than to the rest of Europe. We hypothesize this is consistent with a periglacial refugium in Iceland concomitant with a barrier to gene flow caused by the North Atlantic current. Lastly, we discuss challenges and opportunities for the improvement of genomic tools in barnacles. Our reflections in this area are easily generalizable to most natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G, Chen N. Deconstructing isolation-by-distance: the genomic consequences of limited dispersal. PLoS Genet. 2017;13:e1006911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akashi H, Osada N, Ohta T. Weak selection and protein evolution. Genetics. 2012;192:15–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann K, Rheinsmith EL. Nuclear DNA amounts in Pacific Crustacea. Chromosoma. 1973;43:225–36.

    Article  CAS  PubMed  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazin E, Glemin S, Galtier N. Population size does not influence mitochondrial genetic diversity in animals. Science. 2006;312:570–2.

    Article  CAS  PubMed  Google Scholar 

  • Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58:268–76.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol. 1995;57:289–300.

    Google Scholar 

  • Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9.

    Article  PubMed  Google Scholar 

  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.

    Article  CAS  PubMed  Google Scholar 

  • Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13:R56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AF, Kann LM, Rand DM. Gene flow versus local adaptation in the northern acorn barnacle, Semibalanus balanoides: insights from mitochondrial DNA variation. Evolution. 2001;55:1972–9.

    Article  CAS  PubMed  Google Scholar 

  • Bushnell B. BBMap short read aligner. Berkeley: University of California; 2016. http://sourceforge.net/projects/bbmap.

  • Camus MF, Wolff JN, Sgro CM, Dowling DK. Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Mol Biol Evol. 2017;34:2600–12.

    Article  CAS  PubMed  Google Scholar 

  • Chapman JA, Ho I, Sunkara S, Luo S, Schroth GP, Rokhsar DS. Meraculous: de novo genome assembly with short paired-end reads. PLoS One. 2011;6:e23501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol. 1999;99:45–56.

    Google Scholar 

  • Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer GR, Delledonne M, Luo C, Ecker JR, Cantu D, Rank DR, Schatz MC. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford DL, Oleksiak MF. Ecological population genomics in the marine environment. Brief Funct Genomics. 2016;15(5):342–51.

    Article  CAS  PubMed  Google Scholar 

  • Crisp DJ. Racial differences between North American and European forms of Balanus balanoides. J Mar Biol Assoc UK. 1964;44:33.

    Article  Google Scholar 

  • Crisp DJ. Differences between North American and European Populations of Balanus balanoides revealed by transplantation. J Fish Res Board Can. 1968a;25:2633–41.

    Article  Google Scholar 

  • Crisp DJ. Distribution of the parasitic isopod Hemioniscus balani with special reference to the east coast of North America. J Fish Res Board Can. 1968b;25:1161–7.

    Article  Google Scholar 

  • Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29:51–63.

    Article  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elyashiv E, Bullaughey K, Sattath S, Rinott Y, Przeworski M, Sella G. Shifts in the intensity of purifying selection: an analysis of genome-wide polymorphism data from two closely related yeast species. Genome Res. 2010;20:1558–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM. Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci U S A. 2010;107:16196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endler JA. Natural selection in the wild. Princeton: Princeton University Press; 1986.

    Google Scholar 

  • Eytan RI, Hellberg ME. Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution. 2010;64:3380–97.

    Article  CAS  PubMed  Google Scholar 

  • Flight PA, O’Brien MA, Schmidt PS, Rand DM. Genetic structure and the North American postglacial expansion of the barnacle, Semibalanus balanoides. J Hered. 2012;103:153–65.

    Article  CAS  PubMed  Google Scholar 

  • Flight PA, Rand DM. Genetic variation in the acorn barnacle from allozymes to population genomics. Integr Comp Biol. 2012;52:418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flight PA, Schoepfer SD, Rand DM. Physiological stress and the fitness effects of Mpi genotypes in the acorn barnacle Semibalanus balanoides. Mar Ecol Prog Ser. 2010;404:139–49.

    Article  Google Scholar 

  • Fratantoni DM. North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. J Geophys Res Oceans. 2001;106(C10):22067–93.

    Article  Google Scholar 

  • Fujimoto M, Bodily PM, Okuda N, Clement MJ, Snell Q. Effects of error-correction of heterozygous next-generation sequencing data. BMC Bioinformatics. 2014;15(Suppl 7):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao S, Bertrand D, Chia BK, Nagarajan N. OPERA-LG: efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with performance guarantees. Genome Biol. 2016;17:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41:e129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmuth B, Mieszkowska N, Moore P, Hawkins SJ. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst. 2006;37:373–404.

    Article  Google Scholar 

  • Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd JR, Friedlaender FR, Speed WC, Pakstis AJ, De La Vega FM, Kidd KK. Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investigative Genet. 2011;2(1):1.

    Article  CAS  Google Scholar 

  • Kimura M, Ohta T. On the constancy of the evolutionary rate of cistrons. J Mol Evol. 1971;1(1):18–25.

    Article  PubMed  Google Scholar 

  • Kofler R, Pandey RV, Schlotterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27:3435–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Waterman MS. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics. 1988;2:231–9.

    Article  CAS  PubMed  Google Scholar 

  • Le SQ, Durbin R. SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome Res. 2011;21:952–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25:1–18.

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup Genome Project Data Processing. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv Pre-print, version 2. 2013.

    Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Genet. 2003;4:981–94.

    Article  CAS  Google Scholar 

  • Luu K, Bazin E, Blum MG. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour. 2017;17:67–77.

    Article  CAS  PubMed  Google Scholar 

  • Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Olsen J, Perez KE, Stam W, Väinölä R, Viard F, Wares J. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology. 2008;89:S108–S22.

    Article  PubMed  Google Scholar 

  • Malécot G, Blaringhem L-F. Les mathématiques de l'hérédité. 1948.

    Google Scholar 

  • Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsden CD, Ortega-Del Vecchyo D, O’Brien DP, Taylor JF, Ramirez O, Vila C, Marques-Bonet T, Schnabel RD, Wayne RK, Lohmueller KE. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci U S A. 2016;113:152–7.

    Article  CAS  PubMed  Google Scholar 

  • Meiklejohn CD, Montooth KL, Rand DM. Positive and negative selection on the mitochondrial genome. Trends Genet. 2007;23:259–63.

    Article  CAS  PubMed  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez JCB, Oleksiak MF. A cost-effective approach to sequence hundreds of complete mitochondrial genomes. PLoS One. 2016;11:e0160958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunez JCB, Seale TP, Fraser MA, Burton TL, Fortson TN, Hoover D, Travis J, Oleksiak MF, Crawford DL. Population genomics of the euryhaline teleost Poecilia latipinna. PLoS One. 2015;10:e0137077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddes S, Zelig A, Kaplan N. Three invariant Hi-C interaction patterns: applications to genome assembly. Methods. 2018;142:89–99.

    Article  CAS  PubMed  Google Scholar 

  • Orvik KA, Niiler P. Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic. Geophys Res Lett. 2002;29(19):1896.

    Article  Google Scholar 

  • Paschou P, Ziv E, Burchard EG, Choudhry S, Rodriguez-Cintron W, Mahoney MW, Drineas P. PCA-correlated SNPs for structure identification in worldwide human populations. PLoS Genet. 2007;3:1672–86.

    Article  CAS  PubMed  Google Scholar 

  • Patterson N, Price AL, Reich D. Population structure and eigen analysis. PLoS Genet. 2006;2:e190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I. Sealer: a scalable gap-closing application for finishing draft genomes. Bmc Bioinformatics. 2015;16:230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Losada M, Hoeg JT, Simon-Blecher N, Achituv Y, Jones D, Crandall KA. Molecular phylogeny, systematics and morphological evolution of the acorn barnacles (Thoracica: Sessilia: Balanomorpha). Mol Phylogenet Evol. 2014;81C:147–58.

    Article  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7:e37135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    Article  CAS  PubMed  Google Scholar 

  • Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics. 2012;13:341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand DM. Mitigating mutational meltdown in mammalian mitochondria. PLoS Biol. 2008;6:e35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rand DM. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol. 1994;9:125–31.

    Article  CAS  PubMed  Google Scholar 

  • Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roman J, Palumbi SR. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol. 2004;13:2891–8.

    Article  CAS  PubMed  Google Scholar 

  • Ruddiman WF, Mcintyre A. The North-Atlantic Ocean during the last deglaciation. Palaeogeogr Palaeoclimatol Palaeoecol. 1981;35:145–214.

    Article  CAS  Google Scholar 

  • Safonova Y, Bankevich A, Pevzner PA. dipSPAdes: assembler for highly polymorphic diploid genomes. J Comput Biol. 2015;22:528–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlotterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals-mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749–63.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt PS, Bertness MD, Rand DM. Environmental heterogeneity and balancing selection in the acorn barnacle Semibalanus balanoides. Proc Biol Sci. 2000;267:379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt PS, Rand DM. Intertidal microhabitat and selection at Mpi: interlocus contrasts in the northern acorn barnacle, Semibalanus balanoides. Evolution. 1999;53:135–46.

    PubMed  Google Scholar 

  • Schmidt PS, Rand DM. Adaptive maintenance of genetic polymorphism in an intertidal barnacle: habitat- and life-stage-specific survivorship of Mpi genotypes. Evolution. 2001;55:1336–44.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt PS, Serrão EA, Pearson GA, Riginos C, Rawson PD, Hilbish TJ, Brawley SH, Trussell GC, Carrington E, Wethey DS, Grahame JW, Bonhomme F, Rand DM. Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci. Ecology. 2008;89:S91–S107.

    Article  PubMed  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallbook F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Rottinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006;314:941–52.

    Article  PubMed Central  Google Scholar 

  • Shen X, Chu KH, Chan BK, Tsang LM. The complete mitochondrial genome of the fire coral-inhabiting barnacle Megabalanus ajax (Sessilia: Balanidae): gene rearrangements and atypical gene content. Mitochondrial DNA. 2014a:1–2.

    Google Scholar 

  • Shen X, Tsoi KH, Cheang CC. The model barnacle Balanus balanus Linnaeus, 1758 (Crustacea: Maxillopoda: Sessilia) mitochondrial genome and gene rearrangements within the family Balanidae. Mitochondrial DNA. 2014b:1–3.

    Google Scholar 

  • Silva G, Lima FP, Martel P, Castilho R. Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proc Biol Sci. 2014;281.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.

    Article  CAS  PubMed  Google Scholar 

  • Simpson JT, Durbin R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 2012;22:549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995;139:457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small KS, Brudno M, Hill MM, Sidow A. Extreme genomic variation in a natural population. Proc Natl Acad Sci U S A. 2007;104:5698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. In. 2013–2015.

    Google Scholar 

  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:ii215–i25.

    Article  PubMed  Google Scholar 

  • Toews DP, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30.

    Article  CAS  PubMed  Google Scholar 

  • The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69.

    Article  CAS  Google Scholar 

  • van Oppen MJH, Draisma SGA, Olsen JL, Stam WT. Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar Biol. 1995;123:179–88.

    Article  Google Scholar 

  • Vermeij GJ. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology. 1991;17:281–307.

    Article  Google Scholar 

  • Wares JP. Intraspecific variation and geographic isolation in idotea balthica (Isopoda: Valvifera). J Crustac Biol. 2001;21:1007–13.

    Article  Google Scholar 

  • Wares JP, Cunningham CW. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution. 2001;55:2455–69.

    Article  CAS  PubMed  Google Scholar 

  • Wright S. Isolation by distance. Genetics. 1943;28:114–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Luo X, Qian J, Pang X, Song J, Qian G, Chen J, Chen S. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One. 2012;7:e52249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye C, Ma ZS, Cannon CH, Pop M, Yu DW. Exploiting sparseness in de novo genome assembly. Bmc Bioinformatics. 2012;13(Suppl 6):S1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye C, Hill C, Ruan J, Ma Z. DBG2OLC: efficient assembly of large genomes using the compressed overlap graph. arXiv. 2015;1410.2801.

    Google Scholar 

  • Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics. 2013;29:2669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Kim Neil, Stephen Rong, and Alejandro Damian-Serrano for their insightful discussion on genetic variation, statistical genetics, and pipeline design as well as comments on the manuscript and also to Dylan R. Gaddes for editorial comments that improved the manuscript. This work was made possible by Brown University through the use of the facilities of its Center for Computation and Visualization. This work was funded by a NSF grant IGERT DGE-0966060 to DMR. DMR acknowledges support from NIH 2R01GM067862.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joaquin C. B. Nunez or David M. Rand .

Editor information

Editors and Affiliations

Data Availability

Data Availability

Companion to this book chapter, we have made available the reference sequences for Sbal2 (DDBJ/ENA/GenBank accession PHFM00000000) and the complete mtDNA of S. balanoides (GeneBank accessions MG010647, MG010648, MG010649). Other genomic resources have been made available in FigShare (figshare.com). The gene feature file (GFF, v3) of Sbal2 from the Drosophila AUGUSTUS model, the UniProt BLAST hits file, and the nuDNA and mtDNA SNP tables are available at DOI: 10.6084/m9.figshare.6682995. The additional COX I sequences from our analyses can be found in GeneBank accessions MG925538–MG925662 and MG928281–MG928323. We note, however, that files corresponding to the 2017/2018 pool-seq datasets from Iceland, Maine, and Rhode Island, as well as the transcriptome, form part of larger analyses which are currently active in our research group. These datasets will be released in the future with their corresponding publications.

Glossary

Admixture

Refers to the process in which previously isolated populations begin interbreeding.

Ancestral polymorphisms

Genetic variation present in two (or more) species, subspecies, or populations that appeared prior to divergence.

Assembly graph

A graph that can be traversed to create an assembled DNA sequence. The most commonly used assembly graph is a De Bruijn graph.

Contig

DNA or RNA sequence, typically assembled from multiple overlapping short sequence reads.

Coverage

Indicates the number of times that a particular genomic region was sampled by mapped reads produced by a sequencing experiment.

COX I

Cytochrome c oxidase I, a gene encoded in mtDNA involved in the electron transport chain. This gene is commonly used in population genetic studies and species identification or DNA barcoding.

D-loop

The mitochondrial DNA control region, also known as the displacement loop. It contains the sequences for the origin of replication and transcription of the mtDNA molecule. Its high rate of DNA substitution makes it suitable for analyses of closely related populations and species.

De Bruijn graph

A directed graph representing overlaps between k-mers present in a set of reads. Nodes are represented by k-mers and edges by (k − 1)-mers.

De novo genome assembly

The process of stringing together overlapping DNA sequence reads to make longer DNA sequences, called contigs. Perfect genome assembly would produce 1 contig for each chromosome.

Effective population sizes (N e)

The effective number of breeding individuals in a population, equivalent to the idealized population size in which the effects of stochastic sampling on allele frequencies (i.e. genetic drift) are similar to the real population of interest.

High-throughput sequencing (HTS)

Highly parallelized DNA sequencing that produces millions to 100s of millions of DNA sequences of varying length (50–250 bp for the Illumina platform; 1,000 to >20,000 bp for the Pacific Biosystems (PacBio) and Oxford Nanopore platforms.)

Homoplasy

A condition where a character is shared by a set of species or populations that is not shared by their common ancestor. In DNA terminology, it may refer to the independent mutation (or back-mutation) to the same nucleotide state in two populations.

Incomplete lineage sorting

The process by which a phylogenetically informative marker is shared among species or populations in which other markers have diverged to fixation in each population.

Indels

An insertion or deletion in a DNA sequence.

K-mer

A DNA sequence of length k. In genome assembly, k-mers are generated by splitting reads into smaller pieces of length k.

Long reads

DNA-sequences longer than 1,000 bp.

Mapping reads to a reference

The process of identifying a subsequence or multiple subsequences in the reference genome that matches or approximately matches a read.

N50

A statistical measure of the average length of a set of sequences (or contigs). N50 measures the length N such that 50% of all bases are contained within sequences with length less than or equal to N.

Panmictic

An idealized demographic model in which all members of a population mate randomly, resulting in panmixia.

Pool-seq

An experimental approach for the quantification of genetic variation in populations through the pooling and subsequent sequencing of multiple individuals.

Reduced representation libraries

An experimental approach to quantify genetic variation in populations by sampling a reduced (~10%) portion of the genome to high coverage.

Reference genome

A set of genomic sequences that represents the genome of a population or species. These sequences may include DNA from multiple individuals.

Sbal1

The first generation of the Semibalanus balanoides genome.

Sbal2

The second generation of the Semibalanus balanoides genome.

Sequencing bias

The introduction of sequencing artifacts by the unequal sampling of DNA sequences due to characteristics of the target sequence, such as GC content.

Short reads

DNA sequences with lengths ranging from 50 to 200 bp.

Single-nucleotide polymorphisms (SNPs)

A genomic variant occurring at a single-nucleotide position in genomic sequences.

Standing genetic variation

Allelic variation that currently exists within populations as opposed to new variants arising by de novo mutation.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nunez, J.C.B., Elyanow, R.G., Ferranti, D.A., Rand, D.M. (2018). Population Genomics and Biogeography of the Northern Acorn Barnacle (Semibalanus balanoides) Using Pooled Sequencing Approaches. In: Oleksiak, M., Rajora, O. (eds) Population Genomics: Marine Organisms. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_58

Download citation

Publish with us

Policies and ethics